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1. Introduction 

Grand Unified Theories possess many attractive features. They simplify enormously 

the description of matter content of the standard model by reducing the number of irre

ducible representations of the gauge group needed to account for all observed particles. 

They explain electric charge quantization. They bring all non-gravitational interactions 

under a common umbrella treatment. Yet, the minimal standard model extension to an 

SU(5) GUT is all but ruled out: not only does proton not decay at the predicted rate, 

precise measurements[l] of the gauge couplings of strong and electroweak interactions have 

led to the observation that at no scale do they unify. 

This rather grim observation is, nevertheless, not generic of GUT theories, and it 

seems premature to dismiss the class of theories on the basis of the failure of the minimal 

version. Remarkably, the minimal supersymmetric extension of the minimal SU(5) GUT is 

free of the aforementioned problems. That the three gauge couplings unify[2] in that case is 

not a surprise: an additional parameter, Msusy, is introduced which can be chosen so that 

couplings do unify. What is remarkable is that unification occurs at a scale M GUT high 

enough that proton stability is not in conflict with observation, yet bellow the Planck scale, 

making it plausible that calculations with presently understood techniques are sensible. 

Moreover, the additional parameter, Msusy , which describes the scale at which the running 

of the gauge couplings changes from what is dictated by the standard model to what is 

dictated by its supersymmetric extension, comes out rather small, just about equal to the 

scale of electroweak symmetry breaking. If one interprets Msusy as some average mass 

of the supersymmetric partners of standard particles, the inescapable conclusion is that a 

rich spectrum of new elementary particles is awaiting discovery in the few hundred Ge V 

range (well accessible to planned next generation hadron colliders). 

One ought not to rush into conclusions, though. Barbieri and Hall[3] have pointed 

out that the standard analysis of running of gauge couplings assumes all the superheavy 

particles (those with masses naturally of order of MGUT) are degenerate. The value of 

Msusy , they argue, can be shifted if one drops this assumption and includes the effects of 

the non-degenerate superheavy thresholds. On closer examination, it has been noticed[4] 

that in the minimal SUSY SU(5) model the dependence of Msusy on superheavy thresholds 

is rather weak. 
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For example, if G:s(Mz) = 0.125 with small errors!, the value of Msusy exclusive of 

super heavy threshold effects comes out to be well below the electroweak scale. Superheavy 

thresholds can push Msusy back up. But to obtain Msusy ~ Mz one must have that 

the superheavy supermultiplets that transform as (8,1)0 + (1,3)0 under the gauge group 

SU(3) X SU(2) X U(l) acquire masses some eight orders of magnitude below MauT . Worse 

yet, to keep MauT well below the Planck scale one must further complicate the spectrum 

of superheavies, splitting the masses of these two multiplets by two orders of magnitude. 

The simple compelling picture of a dessert between the electroweak and GUT scales is lost. 

Instead one must populate the dessert with particles at two new intermediate scales. For 

the remaining of this work we neglect these heavy threshold effects. 

In addition to superheavy threshold effects, one must consider the effects of light 

thresholds (non-degeneracy of the SUSY particles with masses naturally of order the elec

troweak scale). Ross and Roberts[5] argue that because in most models the average mass 

of the colored superpartners is larger than that of the uncolored ones, a simple param

eterization in terms of a single threshold at Msusy may be misleading. Langacker and 

Polonski[6] point out that one need not interpret Msusy as some sort of average mass for 

the spectrum of SUSY particles. The spectrum of the model is not expected to be simple. 

One can imagine accounting for the complicated spectrum in some accurate fashion, and 

then finding a scale Msusy which would mimic the effects of a complicated spectrum. Only 

this scale does not have a clear physical meaning. In fact, they find it possible to construct 

examples of rather heavy SUSY spectra (compared with Mz ), yet having Msusy ~ Mz. 

The standard analyses of light threshold effects consists of modifying the evolution 

equations for the gauge couplings at each consecutive threshold[7]. More specifically, start

ing from unified gauge couplings at MauT, G:l(MaUT) = G:2(MauT) = G:3(MauT), one 

uses the renormalization group equation (RGE) to evolve these couplings down to the first 

threshold. The evolution equations are modified by reducing the number of active degrees 

freedom that affect the running, and the couplings are run further down to the next thresh

old, and so on. In what follows we shall refer to this method as the 'run-and-match' or 

the 'naive' method. This method is justified, and expected to be a good approximation, 

provided all of the SUSY particles are much heavier than the Z-boson. Also, this kind of 

analyses by necessity assumes unbroken electroweak symmetry, which again is reasonable 

at mass scales well above M z. 

1 A literature search shows that its value, as reported by LEP experiments over the last two 

years, has wandered over few times the quoted error bars. 
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In this paper we address the issue of how to compute these light threshold effects when 

the SUSY particles are not necessarily much heavier than the Z-boson. The motivation 

for this comes not just from the discussion just given, but from the recent observation that 

phenomenologically viable models that incorporate SUSY SU(5) and radiative electroweak 

breaking invariably contain many particles with masses barely exceeding Mz· 

We will first formulate carefully the question we want to address. This is done in 

section 2 where we give the fundamental equations that allow us to relate the measurements 

of gauge couplings as reported by, say, LEP ISLC experiments to the gauge couplings of the 

SUSY model. In section 3 we develop general formulae for threshold effects modifications 

to relations among parameters dictated by grand unified theories. In section 4 we exhibit 

the result of one loop computations of the quantities that go into the general formulae of 

the preceding section. Special care must be taken in dealing with the Higgs sector and 

the top quark, and this is addressed in section 5. In preparation for the discussion and 

presentation of our numerical analysis of section 7, we review the minimal supergravity 

SU(5) model in section 6. Our conclusions can be found in section 8. 

There is a long history of calculations of radiative corrections in and beyond the 

electroweak theory[8]. Calculations in supersymmetric theories date back to refs. [9]. No 

doubt the trivial calculations of one loop diagrams in this paper can be found elsewhere. 

The emphasis in this paper is on the treatment of light threshold effects in grand-unified 

theories, and in particular in SUSY-GUTs. It may not be obvious to the reader but, as we 

will see (sect. 2), the computations involved coincide with those of radiative corrections to 

electroweak parameters. Thus, for example, while ref. [10] presents a detailed discussion of 

radiative corrections to electroweak parameters in SUSY extensions of the standard model 

(see table 1 and figs. 39-45 of that work), the same work treats the case of grand-unified 

SUSY theories as containing a single common mass threshold at a scale 'f.L' (see figs. 47-49 

there). We believe ours is therefore the most complete treatment of the light thresholds 

in SUSY GUTs to date. Moreover, we have failed to find as detailed a presentation of 

the numerical size of the effects for the minimal SUSY SU(5) GUT theory with radiative 

breaking as we give here (cf, sect. 7). 

2. Generalities 

Gauge coupling constants are not physical observables. When an experiment reports 

on the value of a gauge coupling, there is an implicit translation of some observables into 
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these theoretical constructs. This is not to say that the values of gauge couplings lack 

in importance. On the contrary, given a well specified definition of these couplings, they 

encode concisely the results of measurements. 

When an experimental result is analyzed to extract the value of gauge coupling con

stants, the actual value obtained depends in detail on the theoretical assumptions. Given 

two different models with the same gauge group but different particle content, as is the 

case of the standard model and its supersymmetric extension, the extracted values of gauge 

couplings from the same set of observables is a priori different for the two models. In prin

ciple one could analyze the observables directly under the different set of assumptions, ie, 

different models, and thus extract the values of gauge coupling constants appropriate to 

those assumptions. In practice however, it is impossible to reanalyze the experiment for 

each new set of assumptions. 

The results of experiments are therefore most often given in terms of an analysis 

based on the standard model. This makes sense. The standard model is the most concise 

model of elementary interactions consistent with all present observations. Clearly what 

we need is a means for translating experimentally determined values of gauge couplings in 

the standard model into gauge couplings in extensions of the standard model. 

It is possible to have such a translation. An obvious case is one in which the model at 

hand is an extension of the standard model that has only very heavy particles with hard 

masses. By this we mean that their masses are much larger than the energies at which 

the experiments are carried out, and that the masses are symmetric under the electroweak 

SU(2) x U(l), up to small corrections. Then the decoupling theorem guarantees that the 

physics at experimental energies is described by an effective Lagrangian which corresponds 

precisely to the standard model. The effective coupling constants of this effective theory are 

numerically equal to the standard model's. The gauge couplings of the underlying theory 

are easily related to those of the effective theory, by matching conditions at the scale 

of the heavy particles. Non-supersymmetric GUTs furnish an example. The underlying 

coupling constant, O'.GUT, can be derived by matching at MauT, so one must determine 

experimentally the electroweak and strong couplings at a low scale, and then run them up 

to MauT where the effective theory can be matched to the full underlying theory. 

In fact, this method can also be used even when the heavy particles are only moder

ately heavier than the energy scale of experiments. This is because this method accounts 

for all effects that are logarithmic in the ratio of the experimental scale E and the heavy 

mass M, In( E / M); corrections are suppressed by powers of E / M, or even of (E / M)2 . 
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Therefore it is quite sensible to use this method to analyze SUSY GUTs, especially if one 

is interested in a spectrum of heavy particles in the TeV range. In fact, this is precisely the 

way in which the low threshold effects have been accounted for by many in the past[5--7,1l]. 

We refer to this method as the 'run-and-match' or 'naive' calculation. 

But one may ask what the proper procedure is, and even whether one exists, for the 

case in which the heavy particles are only barely heavier than the experimental scale, ie, 

E / M is only slightly smaller than unity. After all, many recent analysis of SUSY GUTS 

show that models typically contain several particles in the few hundred Ge V range. And 

not only is E / M only slightly smaller than 1; since the multiplicity is high, one expects to 

find large coefficients in front of the order (E / M) correction. 

It turns out it is easy to construct the proper procedure. We will assume that particles 

are heavy enough that they cannot be directly produced at present (else, the theory should 

be ruled out or confirmed experimentally in short order!). This is important because it 

implies immediately that the only observables available are those of the standard model. 

In other words, we can consider, say, cross sections or decay widths of standard model 

particles for comparison with experiment, and not consider any novel processes of the 

extended theory. Let Oi, i = 1,2,3, ... stand for a collection of observables. For example, 

this can be taken to be the forward-backward asymmetry at the peak of the Z-resonance, 

the differential cross section dO'( e + e - --+ J-L+ J-L- ) / d cos () at a collection of specific center 

of mass energies and angles, and similar cross sections into other leptons or quarks. The 

standard model gives expressions Fi for these observables in terms of its parameters gk, 

(2.1) 

Now, any extension of the standard model will also give expreSSlOns Fi for the same 

observables in term of its own parameters. Among these parameters are those which 

have a direct correspondence to those of the standard model, gk, like gauge couplings and 

particle masses. In addition there are new parameters en characterizing the new physics, 

like new particle masses. So one has, 

(2.2) 

Although conceptually the same, one must differentiate between the couplings gk and gk. 

In fact, it is this difference that we are trying to calculate for the case of gauge couplings! 
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In other words, the problem at hand is to calculate 9k from knowledge of gk, given an 

assumption on the values of the parameters en. 

Our task is to invert eqs (2.1)-(2.2) for 9k in terms of gk (and, implicitly, en). Now, 

the additional degrees of freedom enter into the expressions for observables as heavy virtual 

particles. Therefore, their effects are small. We can write 

(2.3) 

where lig k are small one loop order corrections which are expressed as functions of gk (and, 

implicitly, en). It turns out to be convenient to write the functions F as a sum of two 

pieces, one identical to the standard model's, plus the rest: 

(2.4) 

This is convenient because ~F can be regarded as a small quantity, the same order as lig. 

This means also that we are assuming the same renormalization scheme and gauge choice 

in both models. Combining equations and keeping only leading order in small quantities, 

one obtains 

'"' 8F-~ li9'~(9k) + ~Fi(gk' en) = 0 . 
1 g, 

(2.5) 

Equation (2.5) is a set of simultaneous equations for ligk. In the first term, the derivative 

aaF; should be evaluated at tree level, because the coefficient lig l is already of one loop g, 

order. This is a welcome simplification: we only need to compute the one loop effects of the 

new particles, because the standard ones have already been included in the experimental 

determination of the couplings 9 k • 

It is important to note that this discussion depends crucially on approximate de

coupling. Were the new particles not heavy enough, the dependence of observables on 

kinematic variables (like s and t in cross sections) would differ from one model to the 

other. To the extent that deviations from the standard model cannot be inferred from 

kinematic dependence of observables one can neglect these kinematic effects in ~F. Al

though this observation seems rather innocuous, it is of practical importance. We need it 

to ensure compatibility of expressions (2.1) and (2.2). 

Now, it would seem the program of determining the threshold corrections ligk is com

plete: calculate the functions Fi at tree level, and the virtual effects of the new particles 

at one loop ~Fi' and plug into eq. (2.5). Then solve for ligk. Still, this program involves a 
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choice of specific observables, labeled by i. Recall that we would like to be able to connect 

the 9k to the gk without detailed knowledge of the experimental data. 

The Feynman diagrams that contribute to the functions 6.Fi can be classed in two 

groups: corrections to standard particle propagators and vertex or box corrections. The 

former are process independent, ie, they enter in a universal form into the relation between 

9 and g. The latter depend on each process, but are often smaller than the former. We 

therefore drop them. In standard lingo, we retain only oblique corrections. In any case 

this kind of truncation is implicitly done in the run-and-match approach. Our analysis 

is intended as an improvement on that approach, but it is clear that it is incomplete in 

this regard. (It should also be clear, from the above discussion, that short of a complete 

reanalysis of experimental data, this is the best one can do). 

3. Derivation of Master Formulas. 

We are ready to proceed with explicit calculations. Although the expression for the 

threshold corrections Iigk will be process independent, it is necessary to choose particular 

(gedanken) process to obtain it. 

We first consider a particularly simple example, pVII- ~ eVe scattering. We hope this 

will serve to illustrate the general approach with a minimum of unnecessary complications. 

We take the observable 0 as the cross section (at some kinematic point), divided by the 

phase space, ie, the square-modulus of the invariant amplitude, 

o = F(g) = L IAI2 (3.1) 
helicities 

At tree level this is given by the Feynman diagram in fig. 1 

Now, we really only need to extract the dependence on couplings, without paying 

careful attention to the kinematic factors. Therefore we write 

(3.2) 

Here s is the standard kinematic variable, 92 is the SU(2) coupling constant and v is the 

electroweak breaking vacuum expectation value. Clearly A is just a product of spinors and 

gamma matrices. 

The one loop virtual effects of new heavy particles includes vertex, box and propagator 

corrections; these are shown in fig. 2. As discussed previously, we will neglect the vertex 
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corrections. The propagator corrections are conveniently expressed in terms of the self

energy (defined as the IPI amputated two point function for the charged vector boson): 

(3.3) 

In terms of these the W-boson propagator in Feynman-'tHooft gauge is 

9p.v - qp.qv/q2 . qp.qv/q2 

-t q2 _ 9~V2 _ q2II~) - t q2 _ 9~v2 _ q2II~) (3.4) 

The function !::..F that we need to compute is defined by eq. (2.4), which tells us that 

we should take the difference between IAI2 in the extended model and in the standard 

model. The tree level amplitudes are equal in both models, so the difference comes from 

the cross product of the tree level amplitude and the one-loop amplitude: 

~ (T) 

AF 4 R sIIw '" IA-12 
L..l. = 292 e ( 2 2)3 ~ 

S - 92 V helicities 

(3.5) 

Here by fI~) we mean that part of the self-energy which is not already in the standard 

model calculation, ie, which comes from the new particles of the extended model running 

around in the loop. Using eqs (3.1)-(3.5) in eq. (2.5), one obtains 

a ( 9~ ) 2 29~s ~ (T) 
892~ 2 2 + ( 2 2)3 ReIIw = 0 . 

V92 S - 92 V S - 92v 
(3.6) 

The solution is immediate: 

(3.7) 

Finally we must decide at what value of s we should evaluate fI~) (s). From our 

discussion at the end of the previous section, it is clear that it should make little difference, 

and that the best choice is that which corresponds to the most precise experiments. Since 

the best determinations of the electroweak couplings should come from experiments done 

at the electroweak boson resonances, the best choice is s = Mlv. Thus, we finally obtain 

£ 2 2R II~ (T)(M2 ) u92 = -92 e w w' (3.8) 

Similar expressions can be obtained for other couplings by considering other processes. 

From neutrino scattering one obtains 

(3.9) 
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while from quark scattering 
$; 2 2R 11~ (T)(M2 ) 
v93 = -93 e 9 Z' (3.10) 

Here2 In the 91 and 93 stand for the gauge couplings for the U(l) and SU(3) groups, 

respectively, and 11z and 11g are the Z-boson and gluon self energies. Again, the hat over 

these quantities reminds us to include only non-standard model contributions. 

These expressions for threshold corrections can be manipulated to express threshold 

corrections for derived quantities. Since this is often done, and in order to compare with 

existing results, we also cast our results in terms of the correction to the weak mixing 

angle, 

b sin2 (J = cos2 (J Re [fi~)(Mlv) - fi~)(M~)] (3.11) 

Here, the weak mixing angle is defined in terms of the gauge coupling constants, sin2 (J = 

9r!(9r + 9D· Also, of specific interest to the SUSY-GUT theories is the light thresholds 

correction to the leading-log relation 

. 2 (J 1 7 a e .m . 
sm =-+----

5 15 as 
(3.12) 

Expressing this relation in terms of the couplings as extracted from experiment, that is, 

using the standard model couplings, one finds corrections to the relation, 

• 2 1 7 a e .m . 
sm (J = - + ---- + blight. 

5 15 as 
(3.13) 

The correction Olight was computed, using the run-and-match approach in ref. [7]. In 

section 7 we will compare the results of that and our calculation of Olight. 

Using the results for b9i above, one obtains 

h'1ight = a2eO'
m

' [~( -1 + 2 sin2 
(J - 5 sin4 (J)<pw + ~<P Z + ~<p gj 

7r sm (J sm (J 3 

where we have introduced the reduced self-energies 

Refi(T)(M2 ) = ~_1_<p 
W W 4 . 2L1 W 

7r SID u 

Refi~)(M~) = a e .m . 1 <Pz 
47r sin2 () cos2 () 

Re fI(T) (M2) = as <p 
9 Z 47r 9 

(3.14) 

(3.15a) 

(3.15b) 

(3.15c) 

2 In this section, the normalization of 91 is the standard model one. In the following sections 

we will switch, without warning, to the normalization that is more appropriate for GUT theories. 

That is, we will absorb a factor of ..j573 in 91. 
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These are functions of the masses of the virtual particles. When anyone such mass becomes 

large, the leading contribution to these functions is in the form of a logarithm of the ratio of 

the mass to the Mz or Mw. Thus one recovers the form of the result of the usual method, 

described earlier, of matching couplings and changing evolution equations at thresholds. 

We have checked that our expressions agree with the standard run-and-match formulas 

when we take the large mass, SU(2) symmetric limit. 

4. Explicit Computations 

In the previous section we set up the stage for explicit computations. In this section 

we present explicit results of one-loop computations. 

Lets consider first the case of scalar particles contributions to <P x. The two required 

one-loop Feynman diagrams are shown in fig. 3. The calculation is performed using di

mensional regularization and minimal subtraction. The result can be written succinctly in 

terms of the function 

(4.1) 

where 

and 11 is the renormalization point. For a colored complex scalar of mass m in the R 

representation of color SU(3), with Casimir invariant C(R), one has 

<Pg = C(R)I1(m,m,Mz ) . (4.2) 

The all important effect of mixing enters the computation of <Pz and <Pw. Writing 

the scalar field component of the neutral current as 

(4.3) 

and the corresponding scalar masses as mi,j, one obtains the Z self-energy 

(4.4) 

The coupling 9ij includes the usual group theoretic factors and gauge couplings, and the 

angles from the mixing matrix. Consider, for a definite example, a scalar of mass m which 
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does not mlX, that is, for which the mass and weak eigenstates agree. We only need 

consider scalars in representations which are singlets or doublets under weak-SU(2). Let 

7 3 stand for the third component of weak-isospin and Q for electric charge. Qne obtains, 

(4.5) 

The expression for q, w is entirely analogous to that of q, z in eqn. (4.3). Lets consider the 

case of no mixing. q,w = 0 for weak-singlets, while if the members of the doublet have 

masses ml and m2 

(4.6) 

Next we turn to the case offermions. There is only one Feynman diagram contribution 

to q, X at one-loop; see fig. 4. In the case of fermions, three functions are needed to describe 

the results: 

(4.7a) 

(4. 7b) 

(4.7c) 

In terms of these, one has for colored fermions 

(4.8) 

We will be generally concerned with right handed, as well as left handed, weak-doublets. 

Therefore it is useful to introduce some additional notation, allowing for the possibility of 

mixing in the neutral current: 

(4.9) 

These couplings, gL and gR, involve both mixing and the usual 7 3 - sin2 6Q factors. In 

terms of these, 

q,z = ~(lgbI2 + Igm 2 )(I2 (mi,mj,Mz ) + 13(mi,mj,Mz )) + Re(gbg~*)I4(mi,mj,Mz) 
( 4.10) 
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The expression for <Pw can in fact be read off from this, but we give it explicitly for future 

reference. For a fermion doublet with components of mass ml and m2, 

(4.11) 

We have neglected mixing, which is a good approximation in the quark sector. Were we 

to neglect mixing in other sectors, this expression would be valid by replacing 1/4 --+ 

1/2C(rep). In the case of the wino-zino multiplet, which transforms as the adjoint, the 

appropriate replacement is 1/4 --+ 1. But in addition one has to include the all important 

effect of mixing, and the corresponding formula is just as in eq. (4.10). 

It should be kept in mind that the fermions in the neutralino sector are Majorana. 

The equations above apply to them too, provided one remembers to include factors of 1/2 

as appropriate. 

Explicit expressions for the integrals appearing in eqs. (4.1) and (4.7) are easily writ

ten. We refrain from doing so because the expressions are lengthy. A detail discussion of 

the behavior of these functions can be found in section 7 below. 

5. Top and Higgs 

The experimental extraction of gauge couplings in the standard model depends on 

assumptions on two other undetermined parameters, the top and Higgs masses. It is 

customary to make a global fit of observables including not just the gauge couplings but 

these masses --or at least the top mass- as well. How are we to deal with this in our 

translation between standard and extended models? 

Consider first the dependence on the Higgs mass. In supersymmetric models one 

must introduce two distinct Higgs doublets to ensure that all quarks and charged leptons 

are massive. Both fields get vacuum expectation values, and the physical spectrum is 

more complicated than that of the standard model. The details are spelled out in the 

next section. For now we would like to concentrate on the question of how to account 

for the different Higgs sectors in the standard model and the supersymmetric one. The 

problem is that the physical Higgs of the standard model generally has no simple direct 

correspondence in the supersymmetric extension. The linear combination of fields that 

gets a vacuum expectation value, a clear candidate for the corresponding standard model 

Higgs, is not a mass eigenstate. 
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Thus, in computing 8gk one must be careful to include these distinctions into 6.Fi in 

eq. (2.4). In fact, 6.Fi should include all the supersymmetric Higgs sector contributions and 

subtract the standard model ones. However, the standard model calculation introduces an 

unknown parameter, the Higgs mass. In fact, some of the uncertainty in the determination 

of the standard model's gauge couplings is due to the lack of determination of the Higgs 

mass. In our approach, the standard Higgs contribution would be replaced by a sum of 

contributions from the two neutral scalars, plus, in addition, genuinely new contributions. 

When the two neutral scalars are degenerate and with mass equal to that of the standard 

model's Higgs, this sum is exactly equal to the standard model Higgs contribution that it 

replaces. Because the mass of the Higgs is unknown, and since the standard model gauge 

couplings are not very sensitive to it, it is a good approximation to retain the standard 

model Higgs contribution, and instead to neglect the corresponding terms in the model 

with two Higgs doublets. 

To summarize, given the uncertainties associated with the standard model determina

tion of gauge couplings, the calculation of Higgs sector threshold corrections needs include 

only contributions from physical scalars in the Wand Z self-energy diagrams of fig. 3. 

It must be noted here that in the run-and-match analysis this is accomplished by 

neglecting mixing between the two Higgs doublets. Then a correspondence is made be

tween one of them and the standard model's, while the other gives a new light threshold 

correction. 

The contribution from the top quark is identical in the standard model and its exten

sion. It is included in the function Fi(gk) of eq. (2.4). The problem is that the determina

tion of gauge couplings usually uses this as a fit variable. This could lead us into a com

plicated analysis of correlations. We are fortunate in that the models we are interested in 

-supergravity unification with radiative-induced electroweak symmetry breaking- yield 

top quark masses in the range obtained from these fits. Therefore, to good approximation, 

the effect of top need not be included in our calculations. 

6. Review of the minimal SU(5) supergravity model. 

In the next section we will illustrate our treatment of the light thresholds. In prepara

tion we review here the minimal SU(5) supergravity model. We also describe the procedure 

we have adopted for the calculation of the spectrum. The particle content of the model 

consist of three generation of quarks and leptons, the SU(3) x SU(2) x U(l)y gauge bosons, 
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two Higgs doublets and the supersymmetric particles of all these particles. We neglect the 

Yukawa couplings of the two light generations. The superpotential of the effective low 

energy theory thus has the form 

(6.1) 

where Q and L are quark and lepton doublet superfields, and UC, DC and EC are the corre

sponding SU(2) singlets; hI and h2 are the two Higgs doublets. The soft supersymmetry 

breaking terms are 

Vsoft = (At AtQuch2 + AbAbQDchl + ATATLEch1 + Bf.Lh1 h2 + h.c.)+ 

m~11h112 + mtlh212 + milLI2 + m~clEcl2 + m~IQI2 + mtclUc I2 + mbclDcl2. 
(6.2) 

The SU(5) model is specified by the boundary conditions at the unification scale. 

The low energy parameters can then be determined from knowledge of their scale depen

dence. This is dictated by the renormalization group. The renormalization group equations 

(RGEs) for the minimal supersymmetric standard model are well known and are given in 

appendix A for completeness. 

The boundary conditions at the unification scale that we adopt equate all of the 

trilinear coefficients Ax and equate the hard scalar masses in the soft supersymmetry 

breaking potential of eqn. (6.2). In addition one has conditions that follow from minimal

SU(5): equate the tau and beauty Yukawa couplings, Ab(MGUT) = AT(MGUT) and equate 

the gaugino masses Mi (i = 1,2,3, corresponding to the U(l) X SU(2) X SU(3) gauginos). 

The free parameters are then the common trilinear coefficients A, the soft Higgs mass 

parameter B, the top Yukawa At, the bilinear Higgs mixing coefficient f.L, the common 

gaugino mass m~, the common scalar mass mo, the scale of unification MGUT and the 

unified gauge coupling aaUT. The free parameter AT is of course fixed by the tau mass. 

Given values of these free parameters one can compute the low energy spectrum of the 

theory, and then complete the calculation of the relation between gauge couplings at low 

energies as outlined in previous sections. We would like to explore the span of predictions 

that correspond to a large region of this free parameter space. It is quite unnecessary, 

though, to vary freely over values of all of these parameters. In computing the spectrum, 

we take as initial values sin2 Ow = 0.233 and as = 0.120, from which we determine MGUT 

and (XaUT. 
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The Yukawa couplings of the heavy generation are given by 

>'b T = _1_ mb,T >'t = _1_ mt 
, cos {3 v sin {3 v 

(6.3) 

where v = .J v; + v~ 246/ J2 Ge V, tan {3 V2 / VI and VI,2 refer to the expectation 

values of the two Higgs doublets. We obtain the heavy generation Yukawa couplings by 

eq. (6.3) from the input parameters mt and tan (3, and the input values of m T = 1.78 GeV 

and mb = 4.0 GeV at the Z-scale. In our numerical analysis, we evolve the Yukawa 

couplings from the Z-scale to MauT' and constrain the parameter space by the requirement 

>'b(MaUT) differs from >'T(MauT) by no more than 5%. In so doing we neglect the effect 

of thresholds on the running of these Yukawa couplings. Thus for this procedure we need 

also a priori knowledge of the angle {3. 

In the next step in our numerical computation of the spectrum we evolve the Yukawa 

couplings, the soft SUSY breaking parameters and the gauge couplings with the boundary 

conditions specified at MauT, to the electroweak scale, with the RGEs of the MSSM as 

given in appendix A. We then obtain the supersymmetric spectrum at the weak scale from 

the equations given below. 

In order to span over parameter space at the scale of grand-unification, and compute 

the low energy spectrum via the RGE's subject to the conditions that we obtain the correct 

masses of the tau-lepton and bottom-quark and that the correct electroweak breaking scale 

is the minimum of the tree level neutral Higgs potential, we trade the input parameters J-L 

and B for v and tan{3 (or, equivalently, VI and V2)' Therefore, Band J-L become computed 

parameters. This we can do because the running of the SUSY parameters, as given by the 

RGE's in appendix A, does not depend on the values of B or J-L (except for J-L itself). Thus, 

in our numerical analysis we span over the space generated by A, mt, m 1, mo and tan {3, 
2 

and compute the spectrum for each set of values. 

We turn now to a description of the spectrum itself. We lay down here the basis for 

our numerical treatment of the next section, making no attempt to describe the spectrum's 

salient qualitative features. A nice account of this can be found in ref. [12] while extensive 

numerical analysis of the spectrum can be found in ref. [13]. Our results for the spar

tide spectrum agree qualitatively with the results of these references. For the two light 

generation spartides we neglect the Yukawa couplings in the RGE's. The light-generation 

spartide masses may then be analytically calculated from the one-loop RGEs in terms of 

the three unknowns ml, mo, and cos2{3: 
2 

2 2 2 d mp = mo + cpml + p. 
2 

(6.4) 
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The coefficients cp for the different sparticles are 

(6.5) 

with 

8 ( ( 3QGUTt) -2) C3(mp) = - '9 1 - 1 + 211" (6.6a) 

3 QGUTt ( ( )-2) 
c2(mp) ="2 1 - 1 - 211" (6.6b) 

C (m-) = 10 (1 _ (1 _ 33QGUTt) -2) 
Y P 33 1011" (6.6c) 

where QGUT is the coupling at the unification scale and t = log(mp/ MauT). The RGE's 

are integrated to the physical sparticle mass to obtain the c's. The d's arise from D-terms 

in the potential and are given by 

( 
- 3 - ) dp = 2 T:
L 

- -gYp tan2 8w cos 2{3 Mrv . (6.7) 

In case of small tan {3 the bottom quark and tau lepton Yukawa couplings can be 

neglected as well. In the case of large tan (3 the heavy generation sparticle mass matrices 

are given by 

mt(At + Jl cot (3)) 
mhc +m; +dur 

mb(Ab + Jl tan(3)) 
m~c + ml + dJr 

mr(Ar + Jl tan (3)) 
m~c + m; + der 

(6.8a) 

(6.8b) 

(6.8c) 

The mass eigenstates are obtained by diagonalizing the mass matrices above by a 2 x 2 

unitary transformation. 

The chargino and neutralino mass matrices are given by 

M _ = ( M2 M wV2 Sin(3) 
c MwV2cos{3 Jl ' 

and 

MN = ( ~1 
-Mz sin8w cos {3 
Mz sin8w sin{3 

o 
M2 

M z cos 8w sin {3 
- Mz cos 8w cos {3 

-Mz sin 8w cos {3 
Mz cos 8w sin {3 

o 
Jl 
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(6.9) 

Mz sin 8w sin (3 ) 
-Mz cos 8w cos {3 

Jl ' 
o 

(6.10) 



respectively, where Mi = (ad au )ml (i = 1,2,3) are the gaugino masses at their mass 
2 

scale. The mass eigenstates and mixing can be found in ref. [14]. 

There are two complex Higgs doublets in the MSSM, (ht, hg), whose neutral vacuum 

expectation value (VEV) V2 gives mass to the t charged quarks, and (h~, h-;) whose neutral 

VEV gives mass to the -t charged quarks. Of the eight real degrees of freedom, three are 

the Goldstone bosons that are absorbed by the standard model gauge bosons. The CP

odd neutral Higgs boson AO and the orthogonal combinations h+ = sin,8(h-;)* +cos,8 ht, 

h- = (h+)* correspond to physical particles with masses 

m~ = -mi(tan,8 + cot,8) , (6.11) 

and 

(6.12) 

where m3 = B Il The two CP-even neutral Higgs bosons mass eigenstates are obtained by 

diagonalizing 

M2 _ sin2,8 (cot ,8Mi + tan,8m~ 
R - 2 -(M~ + m7.t) 

-(Mi + m7.t) ) 
tan,8M~ + cot ,8m~ + ~ , 

(6.13) 

where ~ is the one loop radiative correction to the neutral Higgs boson masses[15] 

(6.14) 

The linear combination of Higgs fields that gets a VEV, hsm, and the one that does not 

get a VEV, hs'Usy, are obtained from the mass eigenstates h and H by a rotation, 

( 
hsm ) _ ( cos( a - ,8) 

hs'Usy - - sin( a - ,8) 
sin( a - ,8)) ( h ) 
cos(a -,8) H ' 

(6.15) 

where a is the angle that rotates from the gauge to the mass eigenstates. Requiring a 

negative eigenvalue for the neutral Higgs mass-squared matrix and that the Higgs potential 

is bounded from below imposes two conditions on the running of the mass parameters: 

1 2 2 4 0 . m}m2 -m3 < 

2. m~ + m~ - 21mi I > 0 

17 



7. Numerical Results and Discussion 

We first consider the functions <P x of section 4 as compared with the naive (leading

log, or "run-and-match") result. The latter can be obtained by the standard run-and

match computation, or simply by taking the large m/Mz limit of our expressions. Both 

procedures must agree when in our expressions SU(2) x U(l) breaking is neglected. 

Consider the contributions of scalars to Dlight of eq. (3.14), both in our procedure and 

using the run-and-match approximation. When SU(2) x U(l) breaking is neglected, so 

that all members of a weak-isospin multiplet are degenerate, all three functions <P x are 

simply proportional to the function II. Thus, for the contribution of anyone scalar, the 

ratio of Dlight computed in the run-and-match approximation to our result is simply the 

ratio of the leading-log term in II to the whole expression for II. This ratio is plotted in 

fig. 5 as a function of m / M z. It is apparent that the error in the approximation is small 

except for m/Mz ::::: 1. 

Next, consider the contributions of fermions to Dlight. The <Pg piece is easiest to 

analyze, since it is simply proportional to the function 12 ; see eqs. (4.7a) and (4.8). In 

fig. 6 we plot the ratio of the naive run-and-match approximation to the complete one 

loop threshold correction function <P g, due to virtual fermions. In this case, again, the 

convergence to the naive run-and-match limit is extremely fast. 

The most interesting case is that of the fermion contributions to <P z and <Pw. Recall, 

from eq. (4.10) that <Pz is a linear combinations of the integrals 12,13 and 14, and <Pw of 12 

and 13. The behavior of 12 was analyzed above, and was found to be quite uninteresting. 

Turning our attention to 13 , we see by inspection of eq. (4.7b) that its asymptotic behavior, 

for large m, is 13(m, m, q) '" -4m2 /q2 In(m2 / p,2) + 2/3 + q2/15m2 + O(q4/m 4). This 

is an example of non~decoupling, in which the leading term grows as a power (rather 

than a log) of the mass. In fact, the combination cP z - CPw is precisely what enters 

the computation of Veltman's p parameter, which is well known to grow as '" m~ in 

the standard model[16]. Notice though that for particles in vectorial representations the 

prefactor (Tl -T~)2 vanishes. So a large effect will depend on the breaking of SU(2) x U(l). 

It is interesting to note that the combination 13 + 14 which often enters into <P z, 

vanishes in the limit of degenerate multiplets. This can be seen by writing it as 
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These type of leading corrections to blight are missed altogether by the naive run

and-match calculation. In fact, there is no pure log term in 13 , an indication that it is 

invisible to the naive approach. And, clearly, the combination 13 + 14 is missed altogether 

too. Therefore we cannot quantify the effects of these terms, relative the run-and-match 

approach, in a manner similar to the above examples. We postpone further consideration 

until we come to computations in the full SU(5) supergravity model, below. 

To get some idea of how important the SU(2) breaking effects can be, we can look at 

the contribution to blight from a doublet of scalars, with masses m} and m2 respectively, 

and compare to the would be contribution from a degenerate doublet with some average 

mass, m avg • For definiteness we shall take m avg = (m} + m2)/2, although one could just 

as well use, say, mavg = JmI m2. In fig. 7 we plot the ratio II (mI' m2, q) / II (mavg , mavg , q) 

for m2 / q = 1.5,3.5,5.5 and 7.5 (corresponding to the ever increasing location of the peaks 

in the graph). It is clear that SU(2) breaking effect can be rather considerable. It should 

be pointed out that large SU(2) breaking effects would show up as significant deviations 

from unity of Veltman's p-parameter. For consistency with the observed value of p, the 

parameters of the SUSY-GUT are such that the SU(2) breaking effects are small. 

These comparisons, although instructive, are incomplete. They miss the possibility of 

cumulative effects of the many particles in the rich supersymmetric spectrum. We therefore 

use our equations in the context of the model described in the previous section. This will 

allow consideration of the effects of mixing. These are obviously important and altogether 

missed by the run-and-match approach, but serious consideration of them requires a choice 

of reasonable mixings. In the minimal supergravity model based on SU(5) the mixing is 

completely fixed in terms of other more fundamental parameters. 

We calculate the spectrum in the minimal supersymmetric SU(5) model as described 

in section 6. There are five input parameters, namely A, mo, m,l, tanf3 and the top 
2 

quark mass mt. They are constrained by the requirement of radiatively induced symmetry 

breaking of the electroweak group, and lower bounds on supersymmetric particle masses. 

We perform a systematic, although rather coarse-grained, search through parameter space. 

Each of the five parameters is allowed to vary over a reasonable range. The range is sampled 

at some fixed predetermined interval size. Table 1 summarizes the range and size of the 

sampling interval for each of the five parameters. This represents a sampling of more than 

4 x 104 points. Of the resulting spectrum we require that it does not violate experimental 

bounds: we require that chargino, squark, gluino, slepton and neutralino masses to be in 

excess of 45 GeV, 100 GeV, 150 GeV, 43 GeV and 20 GeV, respectively. We also require 
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that the lightest neutralino is lighter than the chargino. Only some 1.5 x 104 sampling 

points in parameter space survive this requirements. To study the dependence on each of 

the input parameters we use a finer grind for one of the inputs and take two or three extreme 

points for the other input parameters. We find that mt < 160 GeV and tan", < 30. This 

is the case in part because we have assumed that the tau and bottom Yukawa couplings 

are equal at the unification scale. The gluino mass limit, My > 150 GeV, constrains ml to 
2 

be above 55 GeV. Upper limits on IAol, mo and ml can be set by resorting to naturalness 
2 

arguments [5]. However, as our interest is in the SUSY spectrum close to the electroweak 

scale, we impose upper bounds on these parameters not far above the electroweak scale. 

Xi X f D..X 

AD -200 200 50 

mo 0 400 50 

m12 100 300 25 

tan", 2 30 4 

mt 110 170 10 

Table 1. The range and sampling size of the parameter space. Each free parameter X zs 

sampled in the interval (Xi, X f) with spacing D..X between consecutive points. 

How good is the run-and-match analysis in this case? In fig. 8 we compare our 

calculation with the result of ref. [7]. We plot sin2 8, calculated in (3.13) using as = 0.120 

and a e .m . = 1/127.9, against sin2 8 in the run-and-match approximation. Each point on 

this plot represents a specific choice of the free parameters. It is clear that for many 

points the run-and-match approximation is far too crude to be useful. In fact, we find 

that 92% of the points in parameter space give c5light which differs from the run-and-match 

approximation by more than 30%. 
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In figs. 9--12 we plot the dependence of sin2 
() in our calculation on the mass of a 

few of the superparticles. The dependence on the lightest chargino mass, MC,min, can be 

seen in fig. 9. As expected, the points tend to concentrate around the sin2 
() value of the 

run-and-match approximation as MC,min increases. The mass of the lightest neutral Higgs 

increases rapidly as a function of tan,8, reaching a limiting value of about 100 GeV at 

tan,8 '" 6. This is the reason for the two band structure of fig. 10, a scatter plot of sin2 
() 

against MH,min' The band at about 60 GeV is made up mostly of points at tan,8 = 2, 

while the band at 100 GeV consists mostly of points with tan,8 ~ 6. Fig. 11 shows sin2 
() 

against the mass of the lighter of the two top-squarks. It is similar to fig. 9 in that points 

tend to accumulate at the run-and-match value as MT,min increases, although the spread 

seems larger. Also worth noticing is the rapid monotonic variation at low values of MT,min' 

This is not surprising, since,as we have argued repeatedly, the effects of our calculation 

should be more noticeable for lighter than for heavier spectra. Fig. 12 again demonstrates 

this effects, now as a function of the lightest neutralino. 

We would like to emphasize that our numerical analysis is not intended as a complete 

analysis of the parameter space and of the SUSY spectrum. Nor do we believe, in view of 

the huge parameter space, that such analysis carry substantial meaning. The parameter 

space can be constrained by making specific assumptions, motivated to some extent by the

oretical considerations, on the form of the Kaeler potential in the supergravity model, and 

consequently on the initial boundary conditions at the unification scale. Partial analysis of 

the SUSY spectrum, based on such specific assumptions, have been performed by several 

groups[13]. In this paper, our purpose is to address the question of how to appropriately 

account for the effects of light thresholds, and to illustrate the need for a proper method 

to do so. Our numerical analysis should be regarded merely as illustrative. 

8. Conclusions 

The standard run-and-match approach to the calculation of light threshold effects is 

seen to be very inaccurate when the supersymmetric spectrum is not too heavy and there is 

substantial SU(2) breaking and mixing. We have described a better approximation which 

incorporates these effects. Although we have concentrated on the predicted value of sin2 
() 

in the numerical analysis in this work, clearly similar analysis apply to the calculation 

of other quantities of interest. For example, one may include threshold effects in the 

calculation of the spectrum itself[17]. 
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The calculation that we have presented is a sensible approach, while supersymmet

ric particles are not found and provided there is no evidence of experimental deviations 

from standard model expectations. When either of these assumptions is violated the cal

culation should be replaced by a full calculation of the novel process, including possible 

non-universal effects, that is, non-oblique corrections. 

In the mean time one may use this type of calculation to restrain more severely the 

allowed parameter space of supersymmetric grand-unified theories. It would be interesting 

to produce an analysis including simultaneously the predictions of sin2 () and other re

stricting quantities, to better limit the boundaries of parameters space. For example, the 

inclusive rate for radiative B decays may be fairly restrictive of extreme values of tan,8. 

Unfortunately, to the extent that the standard model is successful, one can always find 

a region of the SUSY-GUT that satisfies all experimental constraints, for the sparticles 

decouple as they become much heavier than the massive vector bosons, and in that limit 

the predicted value of sin2 
() is consistent with experiment. 
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Appendix A. RGE's for the MSSM 

The renormalization group equation for the minimal supersymmetric standard model 

are well known and are given here for completeness. 

(A.la) 

(A.lb) 
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where, 

Ft = .x;(m~ + mte + mi2 + A;) 

Fb = .x~(m~ + mte + mil + A~) 
FT = .x;(mi + m~e + mil + A;) 
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(A.le) 

(A.ld) 

(A. Ie) 

(A. If) 

(A.lg) 

(A.lh) 

(A.Ii) 

(A.lj) 

(A.lk) 

(A.ll) 

(A. 1m) 

(A. In) 

(A.lo) 

(A.2a) 

(A.2b) 

(A.2e) 
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Figure Captions 

Fig. 1. Tree level Feynman diagram for the scattering amplitude for !-"vp. ---+ eVe scatter
mg. 

Fig. 2. Feynman diagrams for one loop virtual effects of new heavy particles. 

Fig. 3. One-loop Feynman diagrams in the calculation of threshold corrections: scalar 

particle contributions. 

Fig. 4. One-loop Feynman diagram in the calculation of threshold corrections: fermion 

contributions. 

Fig. 5. Ratio of the naive run-and-match approximation to the complete one loop thresh

old correction functions q, x, due to a virtual scalar. 

Fig. 6. Ratio of the naive run-and-match approximation to the complete one loop thresh

old correction function q, g, due to virtual fermions. 

Fig. 7. The effect of SU(2) breaking, as included in our analysis, in the scalar contri

bution to q,w. This is a plot of the ratio II(ml,m2,q)/II(mavg,mavg,q), where 

m avg = (ml + m2)/2, for mdq = 1.5,3.5,5.5 and 7.5 (corresponding to the ever 

increasing location of the peaks in the graph). 

Fig. 8. Plot of the calculated sin2 
(), this work, versus the calculated sin2 

() in the stan

dard 'run-and-match' approximation[7]. See eq. (3.13). Each point on this plot 

represents a specific choice of free parameters of the minimal supersymmetric 

SU(5) grand-unified theory that survives experimental bounds on the spectrum. 

The parameter space spanned here is detailed in Table 1. 

Fig. 9. Scatter plot of sin2 
() against the mass of the lightest chargino, MC,rnin, for the 

minimal supersymmetric SU(5) grand-unified theory. Each point represents a 

choice of parameters; see Table 1. 

Fig. 10. Scatter plot of sin2 
() against the mass of the lightest neutral Higgs, MH,rnin, for 

the minimal supersymmetric SU(5) grand-unified theory. Each point represents 

a choice of parameters; see Table 1. 

Fig. 11. Scatter plot of sin2 
() against the mass of the lightest top-squark, Mr,rnin, for the 

minimal supersymmetric SU(5) grand-unified theory. Each point represents a 

choice of parameters; see Table 1. 

Fig. 12. Scatter plot of sin2 
() against the mass of the lightest neutralino, MN,rnin, for the 

minimal supersymmetric SU(5) grand-unified theory. Each point represents a 

choice of parameters; see Table 1. 
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