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Decoherence of a Gaussian Beam Due 
to Beam-Beam Interaction 

G. v. Stupakov, v. v. Parkhomchuk, and V. D. Shiltsev 
Superconducting Super Collider Laboratory· 

2550 Beckleymeade Ave. 
Dallas, TX 75237 

Using both analytical and computer simulation approaches, we compute the decoherence function that 
describes decay of the betatron oscillations of the centroid of an initially offset beam due to head-on beam­
beam collisions. Based on this function, the decoherence time is estimated for the Superconducting Super 

Collider. We also discuss several definitions of the decoherence time arising in different beam dynamics 

problems. 

1 INTRODUCTION 

When a beam is kicked transversely, its centroid experiences decaying betatron oscillations. 
The decay is related to the tune spread in the beam, which-depending on a particular 
case--can be caused by nonlinearity of the lattice, chromaticity of the ring, or beam-beam 
interaction. Decoherence due to the fIrst two sources of the tune spread has been previously 
studied by Meller et al. I However, for the Superconducting Super Collider (SSC) at its full 
energy of 20 TeV, the main source of the tune spread in the beam comes from the beam­
beam interaction. For example, at 20 Te V an effective tune spread is about 7 ·10-4 due to 
beam-beam effects,2 2· 10-5 due to residual chromaticity, 3 and about 5· 10-6 due to the 
lattice non-linearity.3 

In this paper, we analyze the decoherence that is produced by head-on beam-beam 
collisions in the model of strong-weak beams and give estimates of the decoherence time. 

The importance of the decoherence phenomenon is associated with the fact that in the 
course of the damping of betatron oscillations the transverse emittance of the beam 
increases. Characteristic time associated with the damping determines a scale on which 
coherent oscillations transform to an increment of the emittance. This time is one of the key 
parameters required for the design of the feedback system needed to suppress emittance 
growth of the beam. 2-5 

• Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract 
No. DE-AC35-89ER40486. 
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We use two different approaches to attack the problem. The first is based on an analytical 
consideration that reduces the problem of decoherence to calculation of a 3-dimensional 
integral. In addition, we performed a computer simulation in which an ensemble of particles 
was tracked in a linear lattice subject to beam-beam interaction. Both methods gave results 
that agree fairly well with one another. 

2 ANALYTICAL CONSIDERATION 

Let us consider two colliding proton round beams with a Gaussian distribution function 
characterized by the rms beam width (1. Due to beam-beam head-on collisions, a particle of 
a beam having the betatron amplitudes ax and ay in x and y directions, respectively, 

acquires a tune shift in x-direction, equal t06 

1 

~VX(al,a2) = -C;J due-u
(a

1
+a

2
) 10 (a2u)[Io(a1u) - II (a1u )], (1) 

o 

where a 1 = a; j 4(12, a 2 = a: /4a2
, In (z) is the modified Bessel function of the n-th order, 

and C; is the usual tune shift parameter, with C; = Nprpj47rE, where Np is the number of 

particles in the bunch, rp is the classical proton radius, and e is the normalized emittance. 

Note that ~vx is negative for collisions of particles having the same charge sign. Because 

of the axial symmetry of the problem, all of our equations remain valid when x ~ y and 
y~x. 

In terms of the variables a 1 and a2 , the distribution function of the Gaussian beam has the 

form 

(2) 

where p(a1,a2 ) is normalized so that 

.... 
f f da1da2P( at' a2) = l. (3) 
00 
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Using Eqs. (1) and (2) one can find a distribution function over the tune shift, f(.6 Vx ), such 

that f(Avx)dAvx gives the probability for a particle to have the tune shift Avx within the 

range dA vx ' The function f( A vx ) is given by the following integral: 

f(AvJ = J J da,da2P(al'a2)O(Avx - AvAal'a2))· (4) 
00 

Given f(AVx), the average values (Avx) and ((Avx)2) are reduced to the following 

integrals 

(Avx) = J AVxf(Avx)dAVx = J J da,da2P(a"a2)AvAal'a2), (5) 
00 

.... 
((Avxt) = J (Avx)2 f(Avx)dAvx = J J da,da2P(a"a2)Av;(a"a2), (6) 

00 

with the rms spread oVx given by 

(7) 

3 DECOHERENCE FUNCTION 

The most complete description of the decoherence process is provided by the so-called 
decoherence function that describes evolution of the beam centroid of a kicked beam. Let 

11 = xJ.Jli ' where Xc is the centroid offset and 13 is the beta function. The decoherence 
function K(N) is defined in Ref. 6 as 

K(N) = 11(N) 
AO$o' 

(8) 

where N is the number of turns, Li9 is the initial kick angle, and 130 refers to the location of 

the kick. A mathematical expression for the decoherence function that corresponds to an 
infinitesimally small initial kick has been derived in Ref. 7. For our purposes it can be 
written as follows: 
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where v,Xo is the unshifted tune of the beam. We restrict our attention here to considering 
only the modulus 9(N) of the complex integral in Eq. (9)~ it has a meaning of the envelope 
(or amplitude) of the betatron oscillations produced by the initial kick, 

o 

9(N) = J exp(2niN~vx)J(~vJd~vx 
-~ 

= 4 J J exp( -2{ a1 + aJ + 2niN~ vA al' aJ )da1da2 • 

00 

(10) 

In Eq. (10) we explicitly took into account that the beam-beam interaction produces a tune 
shift in the range -~ < ~Vx < O. It is interesting to note that the tune spread oVx (see Eq. 
(7» can be related to the second derivative of 9(N)at N = 0, 

ov = _1 ~_ d'!l( . 
,X 2n dN2 

N=O 

(11) 

4 RESULTS OF THE CALCULATIONS 

We computed the decoherence function 9(N) by two methods. In the fIrst, we numerically 

integrated Eqs. (1) and (10), which together constitute a 3-dimensional integral. In the 
second, we performed a computer simulation in which an ensemble of up to 2· lOs particles 
with an initial Gaussian distribution function has been tracked several thousand turns 
subject to a standard linear transfer map, followed by a kick due to the beam-beam 
interaction. The distribution function f( ~ v x) of the ensemble has been computed, and with 

the use of the fIrst part of Eq. (10), 9(N) has been calculated by means of numerical 
integration. Both methods agree with one another within several percent. 

The function 9(N) obtained as mentioned above is plotted in Fig. 1 as a function of the 
variable 21CN~. On the same plot we also show a scale with number of turns N 
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corresponding to g = 1.8 .1O-3-the nominal value of g for the sse with two interaction 

regions. 

Fig. 2 shows the distribution function f(~vx) found from the tracking simulations. This 

curve is not ideally smooth (as it has to be) simply because of the limited number of 
particles used in the simulations. The average values characterizing this function are 

(12) 

For comparison, we have also computed decoherence curves for large amplitudes of the 
initial kick. These curves are plotted in Fig. 3 (together with 1((N) from Fig. 1) for initial 

kicks equal to (1 and 4(1. They demonstrate the general trend of slower decoherence for 

stronger kicks. 

5 DEeOHERENeET~ 

Having found the decoherence curve we are now in a position to estimate the decoherence 
time for the decay of an initial kick. Notice that there is no unique, rigorous definition of 
the decoherence time. In this section, we present several definitions that arise in different 
beam dynamics problems. 

One can simply define the decoherence time (number of turns) Ndecoh' as the time needed 

for the amplitude to go down to half of its initial value, 1((Ndecoh) = 0.5. From Fig. 1, one 

finds the following estimate for Ndecoh so defined: 

1 
Ndecoh =~. (13) 

For the sse collider, where g = 1.8.10-3
, this gives Ndecoh = 600 turns. 

For a feedback theory, a more relevant definition is associated with the behavior of 1((N) 

in the region of small N. This is easy to justify if one takes into account that a strong 
feedback system damps the beam oscillations much more quickly before they decohere. 
This implies that only an initial phase of the decoherence process is involved in the residual 
emittance growth of the beam.4 Because 1(( N) has a quadratic dependence in the limit 
N ~ 0, an adequate definition of Ndecoh in this case is 
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N _ 1 
decoh - .,j_fYII 

""\. N=O 

1 
(14) 

so that gc(N) = 1- Y2{NjNdecoht for N« Ndecoh' Our calculations give 

N 0.95 
decoh =-g-' (15) 

which results in NdeCOh = 530 for the sse. 

Yet another Ndecoh is related to the effect of external noise acting on the beam (without 

feedback). Assume that at each tum the beam experiences random, uncorrelated kicks of 
amplitude am' Its displacement after N turns is then given by 

N 

luc(N) = LK(N -m)am • (16) 
m=! 

Let us find the average square of the displacement: 

N N 

((luJ2) = LK2(N - m)(a;,) = (a2)LK2(m), 
m=! m=! 

(17) 

where we have employed the condition of uncorrelated kicks (aman) = (a2 )Omn. Now we 

define the decoherence time Ndecoh so that 

(18) 

This gives us the relation, 

Ndecoh = 2'i:K2(m) ~ j gc2(m)dm. (19) 
m=! 0 
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In Eq. (19) we have considered that K(m) is a rapidly oscillating (with the betatron 

frequency) function, so that on the average its square is equal to half of its amplitude 
squared. Our calculations give 

N 0.81 
decoh =T' (20) 

with Ndecoh = 450 for the SSC. Our computer tracking confirmed Eqs. (18) and (19) within 

an accuracy of the statistics of the calculations. 

6 SUMMARY 

In this paper, we have calculated the decoherence function for the head-on beam-beam 
collisions. This function gives the most complete description of the decoherence process, 
allowing, for example, calculation of the tune spread associated with the beam-beam 
interaction (see Eq. (11)). Via the Fourier transform, it is directly related to the distribution 
of the particles over the tune shift !l. vx ' What is more important, this function gives us a 

natural characteristic time scale on which an initially driven betatron oscillation damps out. 
We have shown that, depending on the exact definition, the expression for Ndecoh has a 

form, Ndecoh = const/;, where ; is the beam-beam tune shift and const c:: 1. Our result 

generally agrees with the recent numerical study ofthe SSC beam decoherence.8 
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FIGURE CAPTIONS 

FIGURE 1: Decoherence function 1«(N) versus 27rNg. 

FIGURE 2: Distribution function f( ~ v x) . 

FIGURE 3: Decoherence curves for various initial offsets. 
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