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INTRODUCTION 

Recent measurements of superconducting particle accelerator magnets made of multi­
strand Rutherford-type cable have shown that the magnetic field and its main harmonics 
oscillate along the magnet axis with a wavelength nearly equal to the cable transposition 
pitch length.1,2 It was also observed that, at low transport current, the periodic magnetic 
field patterns can persist without any significant decay for more than 12 hours. 1 

The coincidence of the wavelength of the magnetic field oscillations with the cable 
transposition pitch suggests that slowly decaying current loops exist in the cable even at 
zero transport current) These loops consist of currents flowing along the cable through one 
set of strands and returning through another set of strands. In this paper, we consider the 
process of current loop decay in a Rutherford-type cable. 

MODELLING OF A RUTHERFORD. TYPE CABLE 

The inner (outer) cables used in SSC 5-cm aperture dipole magnets consist of 30 (36) 
strands, twisted together, and shaped into a flat slightly keystoned cable. Due to the 
twisting, each strand goes successively from the inner edge of the cable to the outer edge, 
and back to the inner edge, over a distance, lp, given by 

lp = "-i 4w2 + Pc2 (1) 

where wand Pc designate the width and the transposition pitch length of the cable. 
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Over the distance lp, the strand crosses over and has electrical contact with all the 
other cable strands. Estimate of the cross-over resistance between two cable strands, Rc, 
varies from 1 to 100 J.1n.4 The electrical contact between a given strand and the rest of the 
cable can thus be characterized by a transverse conductance per unit length, Gb given by 

G 
_ 2(N-l) 

t - Rc lp (2) 

where N designates the number of cable strands. For lp := 100 mm, Rc := 5 J.1n and N = 30, 
we have Gt := 108 n-Im- I. 

Figure 1. Rutherford-type cable: (a) strand geometry, (b) model describing the process of current 
redis~bution between a given cable strand and the rest of the cable. 

As shown in Fig. l(a), the SSC strands consist of an inner core and an outer sheath of 
pure copper, surrounding an annular superconducting multifilamentary composite. The 
filaments of the composite are twisted, with a twist pitch, Pf, different from Pc. While in the 
superconducting state, the current is confined within the helicoidal filaments. Such a 
current distribution produces a longitudinal field, Hsl. in the strand inner core, and a circular 
field, Hsc, in the strand outer sheath.S Calculating the magnetic energy associated with Hsi 
and Hsc allows one to estimate their contributions, Lsi and Lsc, to the strand self-inductance. 
These contributions can readily be expressed per strand unit length as 

(3a) Lsc = -In-J,l{) (ro) 
21t rm 

(3b) 

where J.1o is the magnetic permeability of vacuum, rm is the average radius of the strand 
multifilamentary area and ro is the strand outer radius. For ro:= 0.4 mm, rm := 0.3 mm, and 
Pf:= 15 mm, we have LsI := 2 10-9 HIm and Lsc := 6 10-8 HIm. 

In this paper, we shall assume that the process of current redistribution between a 
given strand of a Rutherford-type cable and the remaining (N - 1) strands of the cable can 
be described by the model given in Fig. 1 (b). Here, G t is the transverse conductance 
calculated above, and Ls and Lr are two effective inductances per unit length defmed as 

(4a) (4b) 

CURRENT REDISTRmUTION AT LOW TRANSPORT CURRENT 

Applying Faraday's law to the circuit of Fig. l(b) we get 

L dIs E dIr _ 1.. d2Is 
S dt + S - 4 dt - Er - G

t
dx2 

(5) 



where Is (resp., Ir) and Es (resp., Er) are the current and the electric field in the given strand 
(resp., the remaining (N - 1) strands). Let us now assume that Is and Ir can be written 

Is = I* + al , (6a) I r = (N - 1) 1* - aI (6b) 

where 1* is constant and uniform and al «/*. If /* is much less than the strand critical 
current, Ie, we have: Es = Er = 0, and Eq. (5) becomes 

(L ') deal) _ l d2(al) 
s + LJt dt - Gt dx2 (7) 

With the boundary conditions Ol(x=O,t) = Ol(x=l,t) = 0, where I is the strand length, the 
solution of Eq. (7) can be written as a sum of time-decaying waves 

~ :J21tX). t 
al(x,t) = £.J ho sit\ T exp(--) 

k=1.2.... 'Zk 
(8) 

where lto is the initial wave amplitude, and lk and 1k are given by 

(9a) (9b) 

It follows from Eqs. (9) that the larger the wavelength, the longer the time constant. 
This can be understood if one considers that in our model, the inductances are directly 
proportional to the wavelength, while the transverse resistance is inversely proportional to 
lk. The largest possible wave corresponds to k = 1. With the values of Gto Ls and Lr 
calculated above, and 1 = 103 m, we have 't'l = 7 105 s. 

CURRENT REDISTRffiUTION AT LARGE TRANSPORT CURRENT 

Let us know consider the case when r is close to the strand critical current, Ie. In this 
case, we need to take into account the influence of the longitudinal electrical field. For a 
superconducting multifilamentary strand, it is well known that 

E = Eo exp( / I:e) , (10) 

where Eo and 10 are two constant parameters. (For sse inner strands, Eo = 10-5 Vlm,lo = 
Id30, and le(4.3 K,5 T) = 500 A.) If aI « 10, it can be shown that 

Es = R* (/0+ aI) (lla) * ( a1) Er=R IO- N _ 1 • 

where R* is a resistance per unit length given by 

R* - Eo (1* -Ie) - 10 exp 10 . 

Introducing the above expressions of Es and Er into Eq. (5) yields 

(Ls + 4) d(al) = l d
2
(al) - ~ R* aI 

dt Gt dx2 N-l 

(lIb) 

(12) 

(13) 

Once again, the solution of Eq. (13) can be written as a sum of time-decaying waves 



M(x,r) = L ho si{2;:)exp(- L)exp(- ~) 
k=1,2.... 1k 

(14) 

where 

i" - (N-l)(Ls + 4) 
- NR* (15) 

If I* > 3Id4, then R* > to-10 fUm. With the values of Ls and Lr calculated above, we 
have -r* «-rl. For long waves and at large transport current, the time constant of current 
redistribution is thus -r*, which does not depend on the wavelength. Fig. 2 presents a plot of 
-r* as a function of the cable transport current, It = N I*. For this computation, we assumed 
Ic = Ic(4.35 K,B), where B = to-3 It corresponds to the field on the pole turn of the inner coil 
of sse 5-cm-aperlure dipole magnet. It appears that, for It > 6500 A, the characteristic time 
of the current redistribution process decreases sharply. 
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Figure 2. Dependence of ,,* on cable transport current for the pole tum of SSC dipole magnet. 

SUMMARY 

We have shown that the time constant of current redistribution between one strand of a 
Rutherford-type cable and the rest of the cable depends on the transport current. At low 
transport current, the process is dominated by the transverse conductance, resulting in a long 
time constant, while at large transport current, the series resistance forces the current to 
redistribute much faster. 
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