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The combined use of chiral SU(3) and heavy quark symmetries allows one to relate the 

hadronic form factors for the decay B ~ Ke+e- to those for B ~ 7re-v. We investigate 

departures from the symmetry limit which arise from chiral symmetry breaking. The 

analysis uses chiral perturbation theory and the heavy quark limit to compute the relevant 

hadronic matrix elements. We estimate the size of SU(3) corrections by computing, at one 

loop order, the leading nonanalytic dependence on the light quark masses. The calculation 

is trustworthy only in the portion of the Dalitz plot in which the momentum of the kaon 

or pion is small. We find the corrections to be '" 40%. 
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Flavor changing neutral transitions are suppressed in the standard model of elec

troweak interactions, because they do not occur at tree level, and at one loop because of 

the GIM mechanism. In s -+ d transitions GIM cancellations are very effective for diagrams 

involving virtual u and c quarks, while virtual t diagrams are doubly Cabibbo suppressed 

relative to the transitions mediated by u and c. By contrast, in b -+ S transitions it is 

those diagrams involving virtual u quarks which are doubly Cabibbo suppressed; then the 

GIM cancellation is rather ineffective, as it involves the very heavy t quark against the 

light (by comparison) c quark. 

Hence processes involving b -+ S flavor change are interesting because, although rare, 

they are well within experimental reach. In fact, the first measurement of such a process 

was recently reported by the CLEO collaboration, who observe the process B -+ K*, 

with a branching fraction of (4.5 ± 1.9 ± 0.9) x 10-5 [1]. More importantly, however, 

processes involving b -+ S flavor change are interesting because, being rare, they are a 

quite sensitive probe of departures from standard expectations. There exist several studies 

of the effect of extensions to the standard model on the rates for this class of processes 

[2]. Predictions of exclusive event rates are uncertain, however, because they require the 

calculation of nonperturbative hadronic matrix elements. Inclusive rates, although they 

may be calculated more reliably, are considerably more difficult to measure. 

In this paper, we will investigate the form factors which describe the rare decay B -+ 

Ke+e-. Isgur and Wise [3] have used heavy quark spin and flavor symmetries to relate 

the form factors for B -+ Ke+e- to those for semileptonic D meson decay. Burdman 

and Donoghue [41 have instead related B -+ Ke+e- to semileptonic B meson decay. This 

approach may seem reasonable, since it avoids the use of the heavy quark flavor symmetry, 

in particular the question of whether the heavy quark limit is a good approximation for 

charm. But the analysis invokes, as compensation, chiral SU(3) symmetry. It is the 

purpose of this letter to investigate the validity of this latter approximation in this process. 

We will compute violations to the SU(3) symmetry limit, which arise from the light 

quark masses m q , by means of a phenomenological lagrangian which displays simultane

ously explicit chiral and heavy quark symmetries. This lagrangian is non-renormalizable, 

and in order to control the higher dimension terms, we consider only the portion of the 

Dalitz plot in which the momentum of the kaon or pion is small. We will compute one-loop 

expressions for the relevant form factors, retaining only terms, such as those of the form 

mq In m q , which depend nonanalytically on the symmetry breaking parameters. These 
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terms dominate the corrections in. the theoretical limit of very small quark masses, and 

they cannot be reabsorbed into counterterms at higher order in the effective lagrangian. 

With all these limitations, what is the interest in this computation? Although the 

validity of the symmetry relations between B -+ Ke+e- and B -+ 7re-ii form factors will 

not be fully established, we will gain confidence in them if the nonanalytic corrections 

are small. Alternatively, large (order 100%) corrections would be an immediate indication 

of the breakdown of the relations. In this regard it is useful to keep in mind the case 

of the relation between kaon decay and the parameter B K, which is invalidated by large 

corrections of precisely this sort [5]. 

The rare decay B -+ K e + e - occurs via the quark level transitions b -+ s"{ and 

b -+ s e+e-. These in turn are induced by loop processes at the weak scale, appearing 

at low energies as local nonrenormalizable operators with coefficients in which the leading 

logarithms have been resummed [6]. The three operators which will be relevant here are 

(1) 

assembled into an effective interaction Hamiltonian 

(2) 

The total rate for the decay B -+ Ke+e- is calculated from the matrix elements of these 

operators. The part of the computation which involves the leptons is perturbative and 

straightforward; however the same may not be said for the matrix elements of the flavor

changing quark operators between external hadron states. These typically must be param

eterized in terms of a Lorentz-covariant decomposition, 

(K (p K ) 1 s"{" b 1 B (p B)} = f + (p B + P K)" + f - (p B - P K)" , 

(K(PK) I sO'"lIb I B(PB)} = ih [(PB + PK )"(PB - PK t - (PB + PK t(PB - PK )"1, 
(3) 

in which the form factors f+, f- and h are scalar functions of the invariant momentum 

transfer PK· pB. The differential partial decay width at fixed oS = (Pe+ + Pe_)2 /m~ is then 
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given by 

(4) 

The coefficients c7(mb), cS(mb) and c9(mb) depend on short-distance physics and are dis

cussed in detail in ref. [6]. 

The form factors f+ and h which are needed for eq. (4) involve nonperturbative strong 

interactions and are in general incalculable. However the fact that the bottom quark is 

very massive compared to scales typical of QeD affords some simplifications, 

f f -1/2 
+ + - - mb , 

h_f+-f-
- 2mb ' 

(5) 

For completeness, we have included the scalar form factor s, which parameterizes the 

matrix element (K (p K ) I s b I B (p B)). Hence, in the simultaneous limits of chiral symmetry 

and mb -+ 00, the form factors for the decay B -+ Ke+e- are given simply in terms of the 

form factor f+ which describes B --+ 7re-v. 

If we now restrict ourselves to that portion of the Dalitz plot in which the leptons 

are emitted back to back, and the kaon is very soft, we will be able to compute the 

hadronic matrix elements (3) in terms of two phenomenological parameters. These are the 

decay constant fB of the B meson, and the axial coupling 9 of the pion to the (B,B*) 

doublet. These constants appear as coefficients in a nonrenormalizable low-energy effective 

lagrangian in which both heavy quark and chiral SU(3) symmetry are explicit. This is a 

framework within which the relations (5) arise naturally, and which also will allow us to 

compute the leading nonanalytic corrections which test the validity of SU(3) symmetry in 

this process. 

We begin with a brief synopsis of the formalism of heavy hadron chiral perturbation 

theory [7]. In the limit mb -+ 00, the B and the B* mesons are degenerate, and to 

implement the heavy quark symmetries it is convenient to assemble them into a "superfield" 

Ha(v): 
1 +, [-*1£ - 5] Ha(v) = 20 Ba 11£ - Bal (6) 
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Here ull is the fixed four-velocity of the heavy meson, and a is a flavor SU(3) index 

corresponding to the light anti quark. Because we have absorbed mass factors y'2m B into 

the fields, they have dimension 3/2; to recover the correct relativistic normalization, we 

will multiply amplitudes by y'2mB for each external B or 1i* meson. 

The chiral lagrangian contains both heavy meson superfields and pseudogoldstone 

bosons, coupled together in an SU(3)L x SU(3)R invariant way. The matrix of pseudo

goldstone bosons appears in the usual exponentiated form e = exp(iM/ I), where 

1 0 1 

( 

y'27r ~ ../61] 
M = 7r-

K-
(7) 

and f is the pion (or kaon) decay constant. The bosons couple to the heavy fields through 

the covariant derivative and axial vector field, 

D~b = 8ab81l + V~ = 8ab81l + ~ (et8ll e + e81lettb ' 

A~b = ~ (et8ll e - e8llet)ab = -y8ll Mab + O(M 3
). 

(8) 

Lower case roman indices correspond to flavor SU(3). Under chiral SU(3)L x SU(3)R' 

the pseudogoldstone bosons and heavy meson fields transform as e -+ LeUt = UeRt, 

All -+ U AIlUt, H -+ HUt and (Dil H) -+ (DP H)Ut , where the matrix Uab is a nonlinear 

function of the pseudogoldstone boson matrix M. 

The chiral lagrangian is an expansion in derivatives and pion fields, as well as in 

inverse powers of the heavy quark mass. The kinetic energy terms take the form 

(9) 

where E = e2 • The leading interaction term is of dimension four, 

(10) 

where 9 is an unknown parameter, of order one in the constituent quark model. The 

analogue of this term in the charm system is responsible for the decay D* -+ D7r, from 

which one may derive the limit g2 < 0.5. 

The quark bilinears ]Jl = s,Jlb and ]JlV = suJlVb, whose hadronic matrix elements we 

must compute, may be matched onto operators in the chirallagrangian written in terms 

of the meson fields. Heavy quark symmetry and the SU(3)L x SU(3)R transformation 
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properties of chiral currents dictate that this matching must to leading order take the 

uni versal form 
qaLrb ~ CL Tr[rHb(V)eta] ' 

qaRrb ~ CR Tr[r Hb( V)eba] , 
(11) 

for left- and right-handed light quark fields, where r is an arbitrary Dirac matrix. Then 

the two conditions 
(0 I qa,J.',5b I Ba(P») = ifBpJ.' , 

(7I"(p') I <la,J.',5b I Ba(P») = 0, 

are sufficient to determine CL and CR, 

(12) 

(13) 

As we are working in the SU(3) limit, the decay constant fB is flavor symmetric. Note 

that the first of the conditions (12) is merely the definition of fB, while the second reflects 

the invariance under parity of the strong interactions. 

Decomposing the bilinears JJ.' and JJ.'v into chiral components, it is straightforward to 

perform the matching onto interactions in the effective lagrangian. We find the operators 

OJ.' = ~ fBv'mB {Tr [,J.' Hb(V)(e t + e)ba] + Tr [,5,J.' Hb(v)(e - €)ba]} 

OJ.'v = ~fBvmB {Tr [uJ.'v Hb(V)(et + Oba] + Tr [,5 U J.'V HbeV)ee - €)ba]} 
(14) 

For the operators JJ.' and JJ.'v, which carry strangeness, we take a = 3. Each of these 

relations is corrected at higher order in the chiral derivative expansion. Note that the first 

terms in (14) yield vertices with an even number of pseudogoldstone bosons, while the 

second terms yield those with an odd number. 

We are now in a position to compute the hadronic matrix elements (3) in the effective 

theory. 1 The tree level Feynman diagrams are shown in fig. 1. There exist both pole 

graphs, fig. l(a), in which a kaon is emitted via the interaction (10) and the virtual B: 
meson is absorbed by one of the effective operators, and direct graphs, fig. l(b), in which 

the effective operator both absorbs the B and emits the K. The former are induced by 

the first terms in eqs. (14), while the latter are induced by the second terms. 

1 A recent preprint [8] has come to our attention, which also considers the process B - J(e+e

in this theory. However the authors compute only the contributions of the operator 07, and they 

do not address the issue of SU(3) violating corrections. 
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It is extremely straightforward to compute the desired amplitudes. For the vector and 

tensor currents, respectively, we find for the pole graphs 

AI' _ gfBmB 1 ( I' I' 
pole - - f P K . V + ~ P K - P K . vv ), 

A
l'" _ gfBmB 1 . ( I' II II 1') 
pole - - f A 1 PKV - PKV , PK'V+U 

(15) 

where ~ = mB; - mB, and PK . v is the kaon energy in the B rest frame. For the point 

amplitudes, we find 

A I' _ fBmB I' 
point - - f v, 

Al'" - 0 point - • 

We may now solve for the form factors f+, f- and h, obtaining 

(16) 

(17) 

Note that in the form factors f ±, the pole amplitudes dominate the direct ones by a factor 

mB/(PK . v + ~), so f± --. =fgfBmB/2f(~ + PK . v) as mb --. 00. Substituting f+ and h 

into eq. (4), we may now com pu te the partial decay rate. It is convenient to normalize to 

the semileptonic width reB --. Xce-v), after which we obtain 

1 dr B --. Ke+e- = a 2 
g2 f1 1 

r( B --. X ce-v) ds ( ) 811"2 4J1. CE K + Li)2 

[ ]

3/2 
x (l-mk)2-2s(l+mk)+s2 

x [IC8(mb)i+(s) + 2C7(mb)\2 + \C9(mb)i+(s)\2] , 

(18) 

where mk = mk/m1, Li = ~/mB and 

EK = EK /mB = (1 + mk - 8)/2, 

i+ = 1- EK + (EK + Li)/g. 
(19) 

Our results so far assume an exact SU(3) chiral symmetry among the light quarks. 

The virtue of this effective lagrangian formalism is that it allows us to make some estimate 

of the size of SU(3) violating corrections. Of course, the leading corrections typically 
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involve new terms in the clurallagrangian, whose coefficients must be fixed. Unfortunately, 

the current paucity of data on heavy meson interactions with pseudogoldstone bosons 

precludes any experimental determination of these coefficients. However, there are certain 

nonanalytic corrections, such as those of the form m; In m;, which are independent of such 

new terms. These corrections are determined uniquely by loops in the flavor-conserving 

effective lagrangian, in which the SU(3) violation enters indirectly via the pseudogoldstone 

boson masses. While such chirallogarithms are in fact dominant in the limit of very small 

light quark masses, for the physical pions and kaons this is unlikely to be the case. Still, we 

may hope that such loops at least indicate the magnitude of SU(3) violation, even if they 

do not provide us with precise quantitative information. In particular, if the nonanalytic 

corrections are large (I'V 100%), we will certainly know not to trust the results (17) and 

the extrapolation of matrix elements from B ~ 7r to B ~ K. However, if they are small 

we may gain some additional confidence that what we have done is sensible. In any case, 

this is the spirit in which we shall proceed. 

Since we expect the largest corrections to come from the large K and TJ masses, it is 

appropriate to simplify the calculation by making two approximations. First, we shall set 

mll'% = mll'0 = mll' and mK% = mKo,"K' = mK. Second, we shall set all mass splittings 

between the various flavor and spin states of the B mesons to zero when they appear 

in loops. (Note that we do not ignore the splitting ~ when it appears in a pole, as in 

eq. (15).) In order to focus on SU(3) violation, we will compute separately the corrections 

to the matrix elements for B- ~ 7r- and B- ~ K-. For each nonvanishing graph, we 

will present the nonanalytic dependence on the pion masses and on the momentum of the 

external pion or kaon, giving the answer as a fractional correction to the tree level result. 

At the end we will assemble the various pieces and provide a numerical estimate of the 

size of these leading nonanalytic contributions to the violation of chiral SU(3) symmetry. 

It will be convenient to express the results in terms of a few general Feynman inte

grals. After applying dimensional regularization to the ultraviolet divergences, there will 

be nonanalytic dependence not only on the pion masses and the external momenta, but 

on the renormalization scale J1. as well. Since it is precisely this behavior in which we are 

interested, we will drop any additional constants which may appear. 

The first two integrals have no Lorentz dependence. They are 

. J d4
-

E 
P 1 1 

1 (27r)4-E p2 _ m2 = 167r2 Il(m) + ... , 

. J d4
-

E 
P 1 1 1 

1 (27r)4-E (p2 _ m2)(p. v _ ~) = 167r2 ~ I2(m,~) + ... , 
(20) 
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where 
Il(m) = m21n(m2 //-,2), 

I2(m,~) = -2~21n(m2 //-,2) - 4~2 F(m/~). 
(21) 

The function F( x) will appear frequently. It is most convenient to write it in a form where 

the smooth transition between the regimes x < 1 and x > 1 is apparent: 

{ 
vh-x2 tanh-1 y'1-x2 , 

F(x) = 
- y' x2 - 1 tan -1 y' x 2 - 1 , 

x~1 

x~1 

The third integral is a two-index symmetric tensor: 

where 
2 4 

Jl(m,~) = (_m2 + 3~2) 1n(m2 / p.2) + 3(~2 - m2)F(m/~), 

8 4 
J2(m,~) = (2m2 - 3~2)ln(m2 / p.2) - 3(4~2 - m2)F(m/~). 

Finally, we have an integral which can be derived from JI"~, 

J d4-t p p/Jo p" 
K/Jo II ( ~ ~) -' 

m, 1, 2 - 1 (27r)4-t (p2 _ m2)(p. v - ~1)(P' V - ~2) 

(22) 

(23) 

(24) 

= 16~2 [Kl (m, ~1, ~2)gI'JI + K2(m, ~1, ~2)V/JoV"] + ... (25) 

_ ~ 1 ~ [J/JoII(m, ~1) - J/JoII(m, ~2)] . 
1 - 2 

We will need only the limit K(m,~) = Kl(m,~, 0), which takes the simple form 

(26) 

and we note that K(m,O) = -I1(m). 

With these integrals in hand, we now turn to the set of Feynman graphs which we must 

compute. The diagrams fall into three classes: those which correct the pole amplitudes 

Apole , those which correct the point amplitudes Apoint, and those which correct both. In 

the last class is the wavefunction renormalization of the B- meson, depicted in fig. 2. This 

graph is universal, independent of the external pion momentum or flavor. The result may 
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be obtained from ref. [9]. For both Apole and Apoint, we find a fractional correction to the 

tree amplitude of 

(27) 

There are two nonzero graphs which correct the point amplitude Apoint, depicted in 

fig. 3. Although we have seen that the form factors of interest are actually dominated 

by the pole amplitude, we will include these diagrams for completeness. The diagram in 

fig. 3(a) yields a fractional correction to the matrix element for B- -+ -rr- of 

(28) 

while for B- --+ K- the result is 

(29) 

The graph in fig. 3(b) requires a two-pion interaction which arises from the V~ part of the 

heavy meson kinetic energy term (9). It also depends on E7r = P7r . v, the energy of the 

external pion (or kaon) in the rest frame of the B-. For B- --+ -rr- , we find 

(30) 

For B- --+ K- we obtain 

(31) 

The diagrams in fig. 3( c) and fig. 3( d) vanish. 

There are four nonzero graphs which correct the pole amplitude Apole , depicted in 

fig. 4. The diagram in fig. 4(a) is simple, since it is independent of the external pion 

momentum. For B- --+ -rr- we find the fractional correction 

(32) 

while for B- --+ K- we obtain 

(33) 

9 



The graph in fig. 4(b) is equally straightforward. The correction to B- ..... 7r- is given by 

(34) 

while for B- ..... K- it is 

(35) 

The diagrams in fig. 4( c) and (d) actually consist of two graphs. Since the interaction term 

(10) contains a F-F-7r coupling as well as F-B-7r, the heavy meson line can take either 

the form B-B*-B-B* or the form B-F-F-B*. In fig. 4(c) the second possibility 

gives twice the former. We find a somewhat more complicated dependence on the external 

momentum P7r . v, which is expressed in terms of the integral JI1I1. However, we can resum 

this contribution into the denominator of the B* propagator, at which point it is consistent 

with our approximations to subtract the term which renormalizes the meson mass. This 

procedure introduces the limit K(rn,~) of the general integral KI1I1. For B- ..... 7r- we 

then find the correction 

(36) 

and for B- ..... K- we obtain 

(37) 

In fig. 4( d), the second possibility gives minus twice the first. The momentum dependence 

enters through the limit K(rn,~) of the general integral KI1I1. The fractional correction 

to B- ..... 7r- may then be written 

(38) 

while for B- ..... K- we obtain 

(39) 

The diagrams in fig. 4( e )-(g) vanish identically. 
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Finally, for both Apole and Apoint we must include the wavefunction renormalization 

of the external pseudogoldstone boson, as shown in fig. 5. The pion self-interaction is 

induced by the kinetic energy term (9). For B- -+ 7r- we find the fractional correction 

(40) 

while for B- -+ K- we obtain 

(41) 

We now assemble these various amplitudes into an estimate of the size of SU(3) 

corrections in this process. We begin with the pole amplitudes, because they dominate the 

observable form factors in the limit mb -+ 00. Although one could simply add together the 

diagrams in fig. 2, fig. 4 and fig. 5, it is more reasonable to absorb some of the corrections 

into a renormalization of the heavy meson decay constant lB. Since in Apole the pion or 

kaon is emitted before the flavor-changing operator Olio or OISV acts, it is either IBd. (for 

B- -+ 7r-) or lB. (for B- -+ K-) which is relevant to the amplitude. In fact, this would 

be precisely the combined effect of fig. 4( a) and half of fig. 4( c ), if the momentum of the 

external pion or kaon were set to zero. The relation between the bare parameter I B and 

the renormalized decay constants, computed in the same chirallogarithmic approximation, 

is given by [9] 

IB = IBd. {I + 16:2 j2 (~+ ~g2) [~Il(m1r) + I1(mK) + ~Il(m,,)l} , 

IB = fB. {I + 16:2 j2 (~+ ~g2) [2Il(mK) + ~Il(m,,)l} . 

(42) 

Similarly, it is appropriate to renormalize the pseudogoldstone boson decay constant f to 

f1r or fK' for which we have [10J 

f = f1r { 1 - 16:2 J2 [2I1(m 1r ) + Il(m K)]} , 

1= IK {1- 16:2 j2 [~Il(m1r) + ~Il(mK) + ~Il(m,,)]} . 

(43) 

Note that in the amplitudes Apole and Apoint, f appears in the denominator. 

In estimating the diagrams, we take the masses m1f = 140 MeV, mK = 490 MeV, and 

m" = 550 Me V. Since the largest corrections are come from the K and TJ masses, we take 
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the pseudogoldstone boson decay constant f to be fK ~ 165 MeV. To be conservative, we 

take the renormalization scale J.L = 1 Ge V, since this choice magnifies the effect of the chiral 

logarithms. For the same reason we choose the coupling 9 to be as large as possible; since 

from the width for D* -+ D7r we have g2 ~ 0.5, we take g2 = 0.5 in our estimates. 2 Finally, 

when they appear we take the external pseudogoldstone boson energies to be equal to their 

masses, E7r = m 7r • This is consistent with the soft pion limit in which we are working, and 

simplifies our estimates. 

Assembling the corrections as we have described, and replacing fB -+ fB,l' f -+ f7r 

in B- -+ 7r- and fB -+ fB., f -+ fK in B- -+ K-, we obtain a residual correction 

to the dominant pole amplitudes Apo1e , for B- -+ 7r- of -13% and for B- -+ K- of 

-51 %. Hence, in this approximation where we keep only the nonanalytic dependence on 

the masses, we find SU(3) violation at the level of '" 40%. For the point amplitudes 

Apoint, we must include the diagrams in fig. 2, fig. 3 and fig. 5, plus the decay constant 

redefinitions (42) and (43). We then find a correction of 1 % to the amplitude for B- -+ 7r-, 

while the correction to B- -+ K- is 13%. 

Finally, we may use our results to estimate the SU(3) corrections to the coupling 

constant 9 which multiplies the interaction term (10). This is given by the graphs in 

fig. 4(b) and (d), plus the wavefunction renormalization on the external meson (fig. 2(a)) 

and pseudogoldstone boson (fig. 5(a)) lines. The only new piece is the B6 wavefunction 

renormalizationj like that for the B-, it may be obtained from ref. [9], and is given by 

(44) 

The tree level amplitude due to the interaction (10) is proportional to 9 / fi at one loop, 

for an external pion this will become 9 7r / f 7r, and for an external kaon 9 K / f K. Hence we 

must also include the correction (43) in computing g7r and gK. Assembling the results, we 

find g7r ~ 1.14 9 and gK ~ 1.21 g. This effect is in part SU(3) symmetric; SU(3) violation 

appears at the level of only'" 7%. As we have noted, however, the SU(3) conserving 

correction has an impact on the extraction of the parameter 9 from the decay D* -+ D7r. 

2 In fact, we would be justified in using the amplitudes in fig. 2 and fig. 4(b)-(d) to correct the 

prediction for D· -+ D7r and extract experimentally a "renormalized" g. Doing this would tighten 

the experimental upper limit on 9 by approximately 15%; instead of the limit g2 < 0.5, we would 

have g2 < 0.4. However, to be conservative, we do not include this additional restriction here. 
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The violation of SU(3) symmetry at the 40% level which we have found is substan

tial, but not necessarily so much so that we would consider the entire computation to be 

untrustworthy. Indeed, we do not find nonanalytic corrections at the level of 100%, such 

as plague other processes. Of the 40% correction, half of it comes from resolving the flavor 

ambiguities in the decay constants via the replacements (42) and (43). Of course, we should 

stress that by itself the computation of the nonanalytic corrections proves nothing, since 

the analytic corrections due to higher order terms in the phenomenological lagrangian 

could still be large and spoil the desired relations. Rather, we view our calculation as 

helping to build confidence that using SU(3) symmetry to compute the form factors for 

B --. Ke+e- may indeed be a sensible treatment of the nonperturbative matrix elements. 

A. F. and B. G. acknowledge the support of the Department of Energy, under contracts 

DE-AC03-76SF00515 and DE-AC35-89ER40486, respectively. 
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Figure Captions 

Fig. 1. Tree level amplitudes for B ~ K. The solid line represents the heavy meson, the 

dashed lines pseudogoldstone bosons. The solid square indicates the insertion of 

the flavor-changing operator 0'" or 0"'''. (a) the pole amplitude Apole ; (b) the 

point amplitude Apoint. 

Fig. 2. Diagrams contributing to the wavefunction renormalization of the external B-. 

( a) correction to Apole ; (b) correction to Apoint. 

Fig. 3. Diagrams which correct the point amplitude Apoint. 

Fig. 4. Diagrams which correct the pole amplitude Apole • 

Fig. 5. Diagrams contributing to the wavefunction renormalization of the external pseu

dogoldstone boson. (a) correction to Apole ; (b) correction to Apoint. 

15 



.. I ... I .. , 
I I 
I I 
I I 
I (a) (b) I 

Fig 1 

- - - -~ , ~ , 
I \ I \ ... « ... .. I 

I I 

I I 

I I 

(a) I (b) I 

Fig 2 



~ 
-, 

I \ 

I 
, 

I I 
\ I --", 

" \ I / \ 

I I 

I I 

I I (b) 
(a) 

I I 

- - .,..-- ..... ", 

" ", " / \ / , 
> I > I > I 

I I 
I I 

I I 
(c) I (d) I 

Fig 3 



,-, ,-, 
I \ I \ , \ , \ 

I I I I 
\ I \ I 
\ I \ I .. .. tilt. I .. • 

I I 

I I 

I (a) I (b) 

I I 

--" , - -" , 
/ \ / \ .. ' .. I :.' .. • 

I I 
I I 
I (c) I (d) 

I I 

--" , - -" , 
/ \ / \ .. , .. I .. • =- I =- .. • 

I I 
I I 

(e) 
I I (f) 
I I 

- -" , 
/ \ 

I 
I 
I (g) 
I 

Fig 4 



.. I .. • 
1 1 
1 1 
1 1 
1 1 1 __ ... 1 __ ... 
1 ~..... , , 1 ~..... , , 
I I I I 
I' .; I' ~ , ... __ ..... , ..... 1 1 ... _-

1 1 
1 1 
1 1 
1 1 

(a) (b) 

Fig 5 


