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ABSTRACT 

U sing the one-dimensional, time-independent conduction state, a constant of 
thermal heating conduction is given that brings about the known stabilization theorem 
and a closed expression for the bus bar to be cryogenically stable in superconducting 
accelerators. 

INTRODUCTION 

The superconducting bus bar cable makes the connection of every magnet in the 
ring of a superconducting accelerator. 1 This cable has very long extension and can 
suffer several perturbations during the operation of the machine. When a normal zone 
appears in this cable, the generated heat is transferred and removed by the helium 
flowing on the surface. This mechanism, the only means for the cable to recover 
its superconducting state, can be done by using a proper copper-to-superconducting 
(s.c.) ratio, A, and having passages where the helium can flow on the surface. This is 
the cryostabilization method of s.c. cables,2 which results from the Fourier conduction 
mechanism.3 In this paper, it is shown that this criterion appears in a natural way 
from a "Constant of Thermal Heating Conduction" (CTHC), which is an extension of 
the concept of constant of motion in dynamical systems.4 Using this CTHe, a closed 
expression is given for the copper-to-s.c. ratio as a function of the fraction of the 
surface wetted by the helium and the heat transfer function. Starting from the one­
dimensional, time-independent heat equation, the CTHC is deduced using the same 
approach as in Reference 5. Finally, this constant is applied to the cryostabilization 
of a s.c. bus bar cable . 
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CONSTANT OF THERMAL HEATING CONDUCTION 

Once a quench appears in a s.c. cable, the normal zone moves longitudinally with 
a speed given by the magnitude of the longitudinal quench velocity. The transverse 
dimensions of the conductor are considered small enough so that the heat propagation 
in this direction can be neglected, restricting the problem to a one dimension problem. 
The normal zone becomes resistive, and its temperature 0, at the point z and at the 
time t, changes in accordance with the heat equation: 

(8 ) 00 = ~ (k(O) (0) (0) ·2 _ P H( a) 
cp at 0 z 0 z + P J A' (1) 

where (8cp ) represents the product of the density, 8, times the specific heat, Cp , av­
eraged over all the components of the conductor; k( 0) is the thermal conductivity; 
pj2 is the Joule heating; P is the perimeter of the conductor in contact with the 
helium (liquid or gas), which has a cross section area A; H(a) is the heat transfer 
function, which depends on a = 0 - 00 , where 00 is the batch temperature (consid­
ered constant due to helium flow). A time-independent state of this system is the 
time-independent solution (oO/ot = 0, with j = I/acu =constant) of Eq. (1), which 
is given by 

.!!... (k( 0) dO) + p( O)j2 _ P H( a) = 0 . 
dz dz A 

This equation can be transformed to the dynamic system, 

and 

dO = v / k( 0) 
dz 

~~ = PH(a)/A _ p(O)j2, 

(2) 

(3a) 

(3b) 

by using the new variable v = k(O)dO/dz. A constant, K, associated to this system 
along the longitudinal direction, z, satisfies the following equation: dK / dz = 0, which 
brings about the partial differential equation 

_v_ oK (PH(a) _ (0) '2) oK = 0 
k( 0) 00 + A P J ov . (4) 

It can be solved by the characteristics method; the equations for the characteristics 
are given by 

k(O) dO/v = dv/ [PH(a)/A - p(O)j2] = dK/O . (5) 

From the first two terms of Eq. (5), a characteristic curve is obtained that can be 
used as the CTHC and is given by 

(6) 

CRYOGENIC STABILIZATION AND CLOSED EXPRESSION FOR A 

Since K is a constant, for any two points of the conductor-for example, just 
at the boundary between the s.c. state and the normal zone (z = 0), 0(0) 
Og, and v(O) = va' and the hottest point in the normal zone (z = L), O(L) = 
Omax, and v( L) = v L -the following relation is established from Eq. (6): 



~(vl- V2) = [8
mar 

[PH(( - (}o) _ p(()j2] k(() d( . 
2 9 J8 A 

9 

(7) 

The cryostability criterion, vI = v~, appears as a particular application of the 
constant (6). Assuming a cylindrically shaped bus bar s.c. cable, where a fraction, ~, 
of its perimeter is in contact with helium, its perimeter is related to its cross section 
area, A, as P = ~2J7r A. The Joule heating is due mainly to the copper matrix 
in the s.c. cable. If acu and a sc are the total cross-section areas of copper and 
superconductor in the cable (A = acu + asc ), and A = acu / asc is the copper-to-s.c. 
ratio, the cryostabilization criterion can be written as 

(8) 

Since the thermal conductivity is a positive defined function with respect to the 
temperature, it can be dropped from Eq. (13). Now, rearranging this expression with 
respect to A, it follows that 

(9) 

where q* is defined as 

(10) 

The polynomial (9) has one complex root (and its conjugate), one negative root, and 
one positive root that has physical meaning. This root is given by 

A* = 
J R;/3 - 4q; /2 

2R!/6 

where R* is defined as 

(11) 

256 ] 
1 + 27 2 . 

q* 
(12) 

Eq. (11) represents a closed analytical expression for the cryogenic stabilization. Tak­
ing a constant resistivity of p = 2 X 10-10 n m (true for Bmax < 20 K, RRR ~ 90, 
B = 0), a sc = 5.1383 mm2

, 1= 6.5 kA, and Bg = 4.5 K, Figure 1 shows the copper to 
s.c. ratio for a bus bar cable as a function of the fraction of its perimeter wetted by 
helium. (Pool cooling is assumed with heat transfer values given in Reference 2.) 



20 

15 

10 

5 

* (Jmax = 13K 

• (Jmax = 20K 

Figure 1. Copper-to-superconducting ratio A. for a bus bar cable as a function of the 
fraction of its perimeter ~ wetted by helium. 

CONCLUSIONS AND COMMENTS 

TIP-04661 

A constant of thermal heating equation was found from the one-dimensional, 
time-independent heat equation. The known cryogenic stability criterion appears as 
a consequence of this constant, and a closed expression for the copper-to-s.c. ratio was 
found for a cylindrical bus bar. The approach can be easily extended to other geome­
tries. A* is an increasing function with respect to q*: if q; < q;, then A*(q;) < A*(q;), 
which indicates the change needed in the bus bar cu:sc ratio when the parameters 0o , 

Omax, H(a), e, I, asc , and p change. 
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