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Abstract 
We present an optimized iterative formulation for di­

rectly transforming a Taylor map of a symplectic system 
into a Deprit-type Lie transformation, which is a compo­
sition of a linear transfer matrix and a single Lie transfor­
mation, to an arbitrary order. 

For a sympletic system, a one-turn map can be written 
as a composition of a linear transfer matrix and a nonlinear 
Taylor map M of the form [1] 

(1) 

be noted that we are not claiming that we are the first 
to try such a direct single Lie transformation. It is very 
likely that others may have different approach. The pur­
pose of this note is to share with colleagues the simple and 
optimized algorithm we have obtained. The algorithm is 
described as follows. 

Let us define, for each order n, a set of auxiliary vec­
tor homogeneous polynomials of degree n, {W~m)(i), m = 
1,2, ... ,n}. gn+l(i) for n = 2,3, .... are then obtained 
through order-by-order iteration given by the following 
steps: 

(5) 

which can be converted order-by-order into Lie transfor- where 
mat ions in the form of Dragt-Finn factorization [2]: (6) 

(2) and for n ~ 3, 

where i represents the canonical phase-space coordinates; 
hCi) and O. are the homogeneous polynomial and the vec­
torial homogeneous polynomial of degree i, respectively; 
: f.(i) : is the Lie operator associated with the function 
!i(Z), which is defined by the Poisson bracket operation 
: /i(i) : i = [fi(i), i'j. By means of the Campbell-Baker­
Hausdorff (CBH) formula [2], the product of Lie transfor­
mations in Eq. (2) can be combined to form a single Lie 
transformation: 

(3) 

where 
(4) 

and gl(Z) is a homogeneous polynomial of order i. Note 
that except g3(i) = fa(i), gi(i) is generally different from 
fi(i). Since obtaining a single Lie transformation from 
Eq. (2) via CBH formula is pretty tedious and one may 
need such a single Lie transformation under certain cir­
cumstances [3], we have worked out an optimized algorith­
mic formulation for obtaining this single Lie transforma­
tion directly from the Taylor map of Eq. (1) [4]. It should 
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n-1 
W~1)(i) = On(i) - L w~m)(i), (7) 

m=2 

where W~m) for 2 ::; m ::; n is given by 

-em) _ 1 n~ . . (:;'\. (m-1)(:;,\ 
Wn (i) - - L...J ·9.+2 zJ . Wn_ i zJ. 

m i=1 
(8) 

In Eq. (5), S is the antisymmetric matrix [1] and the 
superscript T denotes the transpose. 

This optimized algorithm is planned to be implemented 
in Zlib [5], a differential Lie algebraic numerical library. 

We would like to thank S.K. Kauffmann for useful dis­
cussions and S. Ohnuma for numerous encouragement. 
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