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Abstract 

It was found that any homogeneous polynomial can be 
written as a sum of integrable polynomials of the same 
degree by which Lie transformations can be evaluated ex
actly. By utilizing symplectic integrators, an integrable
polynomial factorization is developed to convert a sym
plectic map in the form of Dragt-Finn factorization into a 
product of Lie transformations associated with integrable 
polynomials. A small number of factorization bases of in
tegrable polynomials enables one to use high-order sym
plectic integrators so that the high-order spurious terms 
can be greatly suppressed. A symplectic map can thus be 
evaluated with desired accuracy. 

1. INTRODUCTION 

In large storage rings, high-intensity beams are required 
to circulate for many hours in the presence of nonlinear 
perturbations of multipole errors in magnets. Extensive 
computer simulations are thus necessary to investigate the 
long-term stability of beams. The conventional approach 
in which trajectories of particles are followed element by 
element through accelerator structures is, however, very 
slow in these situations. A substa.ntial computational as 
well as conceptual simplification is to study the stability 
of particles by using one-turn maps. 

While finding a closed analytical form of a one-turn map 
is impossible for a large-storage ring with thousands of el
ements, a truncated Taylor expansion of a one-turn map
the Taylor map-can be easily obtained. Even though 
some successes have been reported using the Taylor maps, 
the truncation inevitably violates the symplectic nature 
of systems and consequently leads to spurious effects if 
the maps are used to study the long-term stability [1]. A 
reliable long-term tracking study with the Taylor map is 
therefore possible only if its nonsymplecticity effect can be 
eliminated without much reduction in the tracking speed. 

In order to eliminate the nonsymplecticity, the Taylor 
map is usually converted into Lie transformations with 
Dragt-Finn factorization [2]. A map in the form of Lie 
transformations is guaranteed to be symplectic, but gen-
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erally cannot be used for tracking directly because evalu
ating a nonlinear map in such a form is equivalent to solv
ing nonlinear Hamiltonian systems which cannot be done 
in general. Several methods, such as jolt factorization [3] 
and monomial factorization [4], have been proposed to deal 
with this difficulty by converting the Lie transformation 
from its general the form into special forms that can be 
evaluated directly. While these methods seem promising, 
their applications lead to considerable theoretical and com
putational complexities, chief of which is unpredictability 
of high-order spurious terms that may lead to a less than 
accurate evaluation of the map. 

Since a general Lie transformation corresponds to a non
integrable system that cannot be evaluated exactly, the 
challenge here is how to evaluate a Lie transformation ap
proximately without violating the symplecticity and with 
a controllable accuracy. One way is to divide the noninte
grable system into subsystems that are integrable individu
ally. The set of subsystems of minimum number is the most 
promising one to serve as the zeroth-order approximation 
because it would generate less high-order error and be a 
better starting point for higher-order treatments. For Lie 
transformations associated with homogeneous polynomi
als, we have shown [5] that any polynomial can be written 
as a sum of integrable polynomials by which Lie trans
formations can be evaluated exactly. Since the number 
of integrable polynomials can be much smaller than the 
number of monomials, a factorization based on the inte
grable polynomials will have many fewer terms so that a 
higher order factorization becomes practical. In order to 
achieve an optimization between a desired accuracy and a 
fast tracking speed, we have proposed a factorization on 
the integrable polynomials with symplectic integrators [5]. 
The advantage of the factorization with symplectic inte
grators is the suppression of high-order spurious terms to 
a desired accuracy [6-8]. 

II. INTEGRABLE POLYNOMIAL 
IN LIE TRANSFORMATION 

A polynomial in i is called an integrable polynomial if its 
associated Hamiltonian system is integrable, i.e., its asso
ciated Lie transformation can be evaluated exactly. Let 
{g~k)lk = 1,2, .'" N g } denote a set of integrable polynomi
als of degree i. In what follows, we shall show that any 
polynomial in i can be expressed as a sum of integrable 
polynomials of the same degree, i.e., 
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phase-space vector Z = (Zl, PI, Z2, P2, Z3, P3) and a(u)s are where (i, j, k) goes over all cyclic permutations of (1,2,3). 
constant coefficients. After factorizing it as a product of 
Lie transformations associated with integrable polynomi
als, exp (: Ii :) z can be therefore evaluated directly. Since 
the minimum number of integrable polynomials N g is much 
smaller than the number of monomials, the accuracy of fac
torization with {g~k)} as bases can be carried to a desired 
order with the use of symplectic integrators. 

Homogeneous polynomials of degree 3 in 6-variables con
sist of 56 monomials, which can be grouped under 8 inte
grable polynomials of degree 3, {g~n)ln = 1,2, ... , 8}: 

(1) c(l) Z3 + C(l) z2p + c(l) Z3 g3 1121 1 32 

+c~1) Z~P2 + c~l) Z~ + c~l) Z~P3, (2) 
(2) = c(2)p3 + c(2)p2z + c(2)p3 g3 11 211 32 

+c~2)p~Z2 + C~2)p~ + c~2)p~Z3' (3) 
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g3 = (5+i) 
Pih2 (Zj,Pj,Zk,PIc), (5) 

where (i,i,k) goes over all cyclic permutations of(1,2,3), 
h~n)s are homogeneous polynomials of degree 2 in 4-
variables, and c~) is the coefficient of the correspond
ing monomial in /3. It should be noted that the decom
position of Ii into integrable polynomials is not unique. 
g~1) and g~2) can be further combined into a single in
tegrable polynomial since the Hamiltonian system with 
H = _(g~l) + g~2)) is integrable. We chose two separate in
tegrable polynomials instead of the combined one because 
the solution for the latter cannot be written in a closed 
form and directly used in tracking. 

The Lie transformations associated with integrable poly
nomials can be converted into simple iterations [51: 
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where superscript T denotes the transpose and r is a 4-
dimensional antisymmetric matrix: 
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Similarly, 126, 252, and 462 monomials of homogeneous 
polynomials of degree 4, 5, and 6 in 6-variables can be 
grouped into 20, 42, and 79 integrable polynomials of de
gree 4, 5, and 6, respectively (5]. 

III. SYMMETRIC INTEGRABLE
POLYNOMIAL FACTORIZATION 

With integrable polynomials, a symplectic map in the form 
of the Dragt-Finn factorization can be rewritten as 

- . (n). _ 
(

N. ) 
U.(Z) = Rg exp ~. gj . Z, (18) 

where R denotes the linear transformation and Ni is the 
number of integrable polynomials of degree i. By means of 
Campbell-Baker-Hausdorff (CBH) formula (2], one can, in 
principle, convert the Lie transformation associated with a 
sum of integrable polynomials into a product of Lie trans
formations associated with integrable polynomials. 

Since those integrable Lie transformations of the same 
order are, in general, not commutable, such nonsymmetric 
separation will cause spurious errors on the next and higher 
orders. We therefore propose that symplectic integrators 
(6-8] be properly used to achieve symmetric seperation of 
integrable Lie transformations so that spurious errors can 
be as much suppressed as desired. 

For i ~ 5, since (: g~n,) : g~n')) is a homogeneous poly

nomial with degree higher than 7, a factorization with up 



to the 7th order is easily obtained by directly using the 
first-order integrator, 

(

N. ) N. 
exp ?;: g~n): = 11 exp (: g~n) :) + f(2i - 2), (19) 

where i ~ 5 and f(2i - 2) represents the truncated terms, 
which are homogeneous polynomial with degree higher 
than 2i - 3. For i = 5 and 6, the lowest-order truncated 
term is a homogeneous polynomial of degree 8 and 10, re
spectively. 

For homogeneous polynomials of degree 4, we use the 
2nd-order integrator and obtain a 7th-order symplectic 
map 

( 
20 ) (20 ) 20 n . .1 (n.). .1 (21-".). 

exp E: g~ ): = n e·,g· . n e·,g· . + f(8), 
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(20) 
where (nl, n2, ... , n20) is any permutation of (1, 2, ... , 20). 
The lowest-order truncated term in Eq. (20) is a homoge
neous polynomial of degree 8. 

In order to obtain a 6th-order symplectic map, we have 
to use the 4th-order integrator [6-8] to factorize exp(: fa :), 
which yields a product of 73 = 343 Lie transformations 
associated with integrable polynomials: 

( 
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Dij/c is an integrable polynomial of degree 3 that can be 
chosen according to the following pattern: 

i = even 

i = odd 

. { k = even, J = even 
k = odd, 

j = odd { k = even, 
k = odd, 

. { k = even, 
J = even 

k = odd, 

j = odd { k = even, 
k = odd, 

Dijk = g~ntl 
D ijk = g~n,) 

Dijk = g~n3) 
Dijk = g~n.) 

Dijk = g~n.) 
D ijk = g~n6) 

where (nl,n2,n3,n4,n5,n6,n7,nS) is any permutation of 
the first eight digits, (1, 2, 3, 4, 5, 6, 7, 8). The lowest
order truncated term in Eq. (21) consists of homogeneous 
polynomials of degree 7. 

IV. CONCLUSION 

We have shown that any polynomial can be written as 
a sum of integrable polynomials of the same degree. 
The number of optimized integrable polynomials is much 
smaller than the number of monomials. For homogeneous 
polynomials of degree 3 to 6, we were able to group 56, 126, 
252, and 462 monomials into 8, 20, 42, and 79 integrable 
polynomials, respectively. All Lie transformations asso
ciated with these integrable polynomials were translated 
into simple iterations that can be directly used in tracking. 
By utilizing the symmetric symplectic-integrators, we have 
developed a factorization scheme based on the integrable 
polynomials in which Lie transformations associated with 
homogeneous polynomials are converted into a product of 
Lie transformations associated with integrable polynomi
als. A much smaller number of integrable polynomials not 
only serves a more accurate set of factorization bases but 
also enables us to use high-order factorization schemes so 
that the truncation error can be greatly suppressed. The 
map in the form of Lie transformations associated with in
tegrable polynomials could, therefore, be a reliable model 
for studying the long-term behavior of symplectic systems 
in the phase-space region of interest. 
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