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Abstract 

The Korteweg-de Vries equation (KdVE) is a classical nonlinear partial differential equation (PDE) originally 
formulated to model shallow water flow. In addition to the applications in hydrodynamics, the KdVE has 
been studied to elucidate interesting mathematical properties. In particular, the KdVE balances front 
sharpening and dispersion to produce solitons, i.e., traveling waves that do not change shape or speed. In 
this paper, we compute a solution of the KdVE by the method oflines (MOL) and compare this numerical 
solution with the analytical solution of the KdVE. In a second numerical solution, we demonstrate how 
solitons of the KdVE traveling at different velocities can merge and emerge. The numerical procedure 
described in the paper demonstrates the ease with which the MOL can be applied to the solution of PDEs 
using established numerical approximations implemented in library routines. 

*To appear in RECENT TRENDS AND APPLICATIONS IN THE NUMERICAL SOLUTION OF OR­
DINARY DIFFERENTIAL EQUATIONS, special issue of Computers and Mathematics with Applications. 

tOperated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract 
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1 The KdVE 

The classical KdVE is [Strang (1986)] 

Ut + 6uux + Uxxx = 0, (1) 

where subscripts in t and x denote partial derivatives with respect to these independent variables, e.g., 
Ut = au/Ot, U xxx = a3u/ax3 ; t is an initial value variable and x is a boundary value variable. Therefore, 
eq. (1) requires one initial condition and three boundary conditions. 

Eq. (1) has the exact solution 

(2) 

which is the equation for a soliton traveling from left to right with velocity e and height te. 
We take as the initial condition for eq. (1) 

(3) 

which follows directly from eq. (2) with t = O. 

The boundary conditions required by eq. (1) are not used in the calculation of the numerical solution. 
Rather, we choose an interval in x that is essentially infinite (but, of course, is finite when used in the 
computer code). Specifically, we use in place of the infinite interval -00 ::; x ::; 00 the finite interval 
-30 ::; x ::; 70. Since the computed solitons do not closely approach these finite boundaries, i.e., x = -30 
and x = 70, the imposition of boundary conditions is not required. (Thus, we have the somewhat unexpected 
situation that a numerical solution is easier to compute for an infinite interval than for a finite interval.) 

2 MOL Solution of the KdV 

The essential features of a MOL solution of eqs. (1) and (3) are [Schiesser (1991)]: 

1. The discretization of the spatial derivatives, Ux and Uxxx , in eq. (1). 

2. The integration of the temporal derivative, Ut, in eq. (1), which requires the integration of a system 
of ordinary differential equations (ODEs) in t as a result of the spatial discretization of feature 1. 

We focus attention on feature 1, and accomplish feature 2 with an established ODE integrator, RKF45 
[Forsythe, et al (1977)]. 

The derivative U x is computed by finite differences in two ways [Schiesser (1991)]: (1) five-point biased up­
wind approximations implemented in library subroutine DSS020 and (2) five-point centered approximations 
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implemented in library subroutine DSS004. The derivative U xxx is computed from a seven-point centered 
approximation reported by Fornberg (1992), which is implemented in subroutine UXXX7C. 

A subroutine for calculating the MOL ODE temporal derivatives is listed in Program 1: 

SUBROUTIIE DERV 
IMPLICIT DOUBLE PRECISIOI (A-H,O-Z) 
PARAMETER (IG=400) 
COMMOI IT IT, ISTOP, IORUI 

1 IYI U(O:IG) 
2 IFI UT(O:IG) 
3 lSI UX(O:IG),UXXX(O:IG), X(O:IG) 
4 ICI XL, XR, C, SRC 
5 III IP 

C .. . 
C ... U 
C... X 

IF(IORUI.EQ.1)CALL DSS020(XL,XR,IG+1,U,UX,1.0DO) 
IF(IORUI.EQ.2)CALL DSS004(XL,XR,IG+1,U,UX) 

C ••• 
C .•• U 
C... XXX 

CALL UXXX7C(XL,XR,IG+1,U,UXXX) 
C ••• 
C... ODES 

DO 10 I=O,IG 
C ••• 
C... PDE 

UT(I)=-6.0DO*U(I)*UX(I)-UXXX(I) 
10 COITIIUE 

RETURI 
EID 

Program 1: Subroutine DERV for the Calculation of the Temporal Derivatives of Eq. (1) 

The following points can be noted about subroutine DERV (reading from top to bottom): 

1. The number of spatial intervals in x, NG, is 400. 

2. u is in array U(O:NG) in COMMONlY f. 

3. Ut is in array UT(O:NG) in COMMON/F /. 

4. U x and U xxx are in arrays UX(O:NG) and UXXX(O:NG), respectively, in COMMON/Sf. 

5. U x is computed by a call to DSS020 for the first solution (NORUN = 1) or a call to DSS004 for the 
second solution (NORUN = 2). 

C ..• 
C... U 
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C... x 
IF(IORUI.EQ.1)CALL DSS020(XL,XR,IG+1,U,UX,l.0DO) 
IF(IORUI.EQ.2)CALL DSS004(XL,XR,IG+1,U,UX) 

The details of these routines are given elsewhere [Schiesser (1991)]. 

6. U xxx is then computed by a call to UXXX7C. 

C ... 
C... U 
C... XXX 

CALL UXXX7C(XL,XR,IG+1,U,UXXX) 

Subroutine UXXX7C is listed in Appendix A to illustrate: (a) the use of a tabulated finite difference 
in a MOL differentiation routine; in this case, a seven-point finite difference for U xxx given by Fornberg 
(1992), and (b) the programming for an infinite interval in x that does not require the imposition of 
specific boundary conditions. 

7. Ut is calculated in DO loop 10. 

C ... 
C... ODES 

DO 10 I=O,IG 
C ... 
C... PDE 

UT(I)=-6.0DO*U(I)*UX(I)-UXXX(I) 
10 COITIIUE 

This coding illustrates one of the positive features of the MOL, the close resemblance between the 
PDE(s), in this case eq. (1), and the coding. Also, the coding is very compact considering the 
complexity and nonlinearity of the PDE. 

8. The 401 ODE temporal derivatives are sent to the ODE integrator, RKF45, through COMMON IF I, 
and the 401-dependent variables are returned to DERV through COMMONlY I for use in the pro­
gramming of the MOL approximation of the PDE. 

The numerical and analytical solutions are printed and plotted in an output routine. The plotted output is 
given in Figure 1 for c = 1 (unit velocity) and NORUN = 1, which shows the solitons traveling left to right for 
t = 0 (centered at x = 0),5,10, ... 35 (centered at x = 35). This comparison of the solutions is particularly 
interesting at the peak of the solitons (for x = ct in eq. (2», which, from eq. (2), has the value t. This 
comparison is given in Table 1, which lists the numerical and analytical solutions at x - ct = -0.25,0,0.25 
for t = 0 and 30. 

DSS020 (NORUI = 1) 

I T X(I) X(I)-T ABS(UN) ABS(UE) DIFF 

119 0.00 -0.25 -0.250 0.49227 0.49227 O.OOOD+OO 
120 0.00 0.00 0.000 0.50000 0.50000 O.OOOD+OO 
121 0.00 0.25 0.250 0.49227 0.49227 O.OOOD+OO 

3 



CONSERVATION OF MASS = 2.0000 
CONSERVATION OF ENERGY = 0.3333 
WHITHAM CONSERVATION = 0.4000 

I T X(I) X(I)-T ABS(UN) ABS(UE) DIFF 
239 30.00 29.75 -0.250 0.49245 0.49227 0.186D-03 
240 30.00 30.00 0.000 0.49923 0.50000 -0. 765D-03 
241 30.00 30.25 0.250 0.49054 0.49227 -0. 172D-02 

CONSERVATION OF MASS = 1.9990 
CONSERVATION OF ENERGY = 0.3323 
WHITHAM CONSERVATION = 0.3979 

DSS004 (NORUN = 2) 

I T X(I) X(I)-T ABS(UN) ABS(UE) DIFF 
119 0.00 -0.25 -0.250 0.49227 0.49227 O.OOOD+OO 
120 0.00 0.00 0.000 0.50000 0.50000 O.OOOD+OO 
121 0.00 0.25 0.250 0.49227 0.49227 O.OOOD+OO 

CONSERVATION OF MASS = 2.0000 
CONSERVATION OF ENERGY = 0.3333 
WHITHAM CONSERVATION = 0.4000 

I T X(I) X(I)-T ABS(UN) ABS(UE) DIFF 
239 30.00 29.75 -0.250 0.49230 0.49227 0.325D-04 
240 30.00 30.00 0.000 0.50020 0.50000 0.196D-03 
241 30.00 30.25 0.250 0.49212 0.49227 -0. 148D-03 

CONSERVATION OF MASS = 2.0000 
CONSERVATION OF ENERGY = 0.3333 
WHITHAM CONSERVATION = 0.3999 

Table 1: Comparison of the Numerical and Analytical Solutions to Eq. (1) near x = ct. 

We can note the following points about the output in Table 1: 

1. At t = 0, the solution is 0.50000 at x = 0, as expected (in accordance with eq. (2». This peak value 
is then maintained by the solution when x = ct in accordance with eq. (2), e.g., for c = 1, x = t = 30, 
the analytical solution is again 0.50000. 

2. The solutions of eq. (1) satisfy an infinity of conservation principles. Here we illustrate the calculation 
of three: 

(a) Conservation of mass, defined as 

(4) 
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(b) Conservation of energy, defined as 

100 1 
U2(t) = -00 '2 u2(x, t)dx; (5) 

(c) Conservation proposed by Whitham [Strang (1986)), defined as 

U3(t) = 1: 2u3(x, t) - u;(x, t)dx. (6) 

Integrals Ul(t), U2(t), and U3(t) were evaluated numerically by Simpson's rule. From the numerical 
output, we see Ul(O) = 2, U2(0) = i, and U3(0) = 0.4 

In using the five-point biased upwind approximations in DSS020, errors accumulated with increasing 
t so that the three integrals of eqs. (4), (5), and (6) were correct to approximately three figures at 
t = 30, i.e., ul(30) = 1.990, u2(30) = 0.3323, and u3(30) = 0.3979. 

In using the five-point centered approximations in DSS004, errors accumulated with increasing t so that 
the three integrals of eqs. (4), (5), and (6) were correct to four figures at t = 30, i.e., ul(30) = 2.000, 
u2(30) = 0.3333, and u3(30) = 0.3999. 

Thus, the centered approximations in this case performed better than the biased upwind approxima­
tions, even though the solution of eq. (1) appears to be "strongly convective" as suggested by Figure 1, 
and therefore one would expect that some upwinding would lead to better results. 

3. The better performance of the centered approximations is also evident in the numerical solutions. For 
the biased upwind approximations, the differences between the numerical solution, un(x, t), and the 
analytical solution, ue(x, t), that is ~(x, t) = un(x, t) - ue(x, t), are 

Biased upwind (DSS020): 

~(29.75, 30) = 0.000186 
~(30.00, 30) = -0.000765 
~(30.25, 30) = -0.00172 

Centered (DSS004): 

~(29. 75,30) = 0.0000325 
~(30.00, 30) = 0.000196 
~(30.25, 30) = -0.000148. 

The centered approximations gave substantially smaller errors than the biased upwind approximations. 

A second MOL solution was computed for an initial condition consisting of the sum of two "sech" pulses, 
i.e., pulses of the form given by eq. (3): (a) a pulse centered at x = -15 with c = 2 and (b) a pulse centered 
at x = 15 with c = 0.5, as plotted in Fig. 2a. The left pulse has a higher velocity (and therefore also height) 
so that it overtakes and merges with the right pulse, as indicated in Figs. 2b and 2c. The faster pulse then 
emerges to the right of the slower pulse, as indicated in Figs. 2d and 2e. Eventually, the two original pulses 
(at t = 0) reappear, e.g., at t = 35, as indicated in Fig. 2f, and continue to travel with their original shape. 
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3 Summary 

The MOL has been used to compute a solution to the KdVE with modest programming. Different approxi­
mations could easily be used by switching between library routines (i.e., DSS020 vs. DSS004). The temporal 
integration of the 401 ODEs was easily accomplished with a library explicit integrator, RKF45 (although 
the use of an implicit integrator might generally be required if the ODEs are stiff). Based on this experience 
and that of many previous studies, we can recommend the MOL as a convenient method for the numerical 
integration of PDEs. 

A complete, documented Fortran code for the solution of the KdVE, including all of the library routines 
discussed in this paper, is available on request from the author on a DOS-formatted l.4-mb, 3.5-in. diskette. 
This code can be used to investigate variants of the KdVE, e.g., 

Ut + 6u"u", + u"''''''' = 0, (7) 

which undergoes substantial changes in the solution for n ~ 4 [Taha, et al. (1993)]. Also, the code can be 
modified for the solution of other PDEs. 
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5 Appendix A - Subroutine UXXX7C 

Subroutine UXXX7C is listed below to illustrate how existing approximations for spatial derivatives can be 
used within the MOL. 

SUBROUTINE UXXX7C(XL,XU,N,U,UXXX) 
C .. . 
C ... DOUBLE PRECISION CODING IS USED 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
C .. . 
C ... VARIABLE DIMENSION ARRAYS 
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DIMENSION U(N), UXXX(N) 
C ••. 
C ... GRID SPACING, 1/(8*(DX**3» 

DX=(XU-XL)/DFLOAT(I-1) 
R8DX=1.0DO/(8.0DO*(DX**3» 

C .. . 
C ... COMPUTE THIRD SPATIAL DERIVATIVE 

DO 1 1=1,1 
C ••• 
C. . . AT THE LEFT EID, UXXX = 0 

IF(I.LT .4)THEI 
UXXX(I)=O.ODO 

C ... 
C... AT THE RIGHT EID, UXXX = 0 

ELSE 
+ IF(I.GT.(N-3»THEN 

UXXX(I)=O.ODO 
C ... 
C... IITERIOR POIITS (SEVEI POIIT CEITERED APPROXIMATIOI; SEE FORIBERG, 
C. . . B, "FAST GEIERATIOI OF WEIGHTS IN FIIITE DIFFERENCE FORMULAS", II 
C... RECEIT DEVELOPMEITS II IUMERICAL METHODS AID SOFTWARE FOR ODES/ 
C... DAES/PDES, G. D. GYRNE AID W. E. SCHIESSER (EDS.), WORLD SCIEIT-
C... IFIC, RIVER EDGE, IJ, 1992, FIG. 3, P114. 

C .. . 

ELSE 
UXXX(I)=R8DX* 

1 (1.D+OO *U(I-3) 
2 -8.D+OO *U(I-2) 
3 +13.D+OO *U(I-1) 
4 +O.D+OO *U(I) 
5 -13.D+OO *U(I+1) 
6 +8.D+OO *U(I+2) 
6 -1.D+OO *U(I+3» 

EID IF 

C ... IEXT GRID POIIT 
1 COITINUE 

RETORt 
EID 
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Fig. 1: MOL Solution to Eq. (1) with Initial Condition Eq. (3) 

Fig. 2a: Two-pulse Initial Condition for Eq. (1) 

Fig. 2b: Two-pulse Solution at t = 10 

Fig. 2c: Two-pulse Solution at t = 15 

Fig. 2d: Two-pulse Solution at t = 20 

Fig. 2e: Two-pulse Solution at t = 25 

Fig. 2f: Two-pulse Solution at t = 35 
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Fig. 2a: Two-pulse Initial Condition for Eq. (1) 
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Fig. 2h: Two-pulse Solution at t = 10 
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Fig. 2c: Two-pulse Solution at t = 15 
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Fig. 2d: Two-pulse Solution at t = 20 
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Fig. 2e: Two-pulse Solution at t = 25 
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Fig. 2f: Two-pulse Solution at t = 35 
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