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Second Order Chromaticity of the Interaction Regions in the Collider 

T. Sen and M.J. Syphers 
Superconducting Super Collider Laboratory • 

Dallas, TX 75237 

Abstract 

The collider in the SSC has large second order chromaticity 
(6) with the interaction regions (IRs) contributing sub
stantially to it. We calculate the general expression for 
6 in a storage ring and find that it is driven by the first 
order chromatic beta wave. Specializing to the interac
tion regions, we show that 6 is a minimum when the 
phase advance (lll-'IP-IP) between adjacent interaction 
points is an odd multiple of 7r /2 and both IRs are iden
tical. In this case the first order chromatic beta wave is 
confined within the IRs. Conversely, 6 is large either if 
lll-'IP-IP = (2n+ 1)7r/2 and the two IRs are very far from 
equality or if the two IRs are equal but lll-'IP-IP = n7r. 

I. TUNE SHIFT AND CHROMATICITY TO 
2ND ORDER 

Consider a storage ring and label two points on it as 1 
and 2. Let 1-'0 be the global phase advance around the 
ring and (f31, Ql, "Y1) the Twiss functions at point 1. The 
periodic transfer matrix at point 1 can be written as 

M1 = M(2 - 1)· M(l- 2) (1) 

where M(2 - 1) is the transfer matrix from point 2 
to 1 etc. Let 1-'1 and 1-'2 be the phase advances at points 
1 and 2 respectively with respect to an arbitrary reference 
point and 1-'21 = 11-'2 - 1-'11 . We now introduce two infinites
imally thin quads of strengths q1 = k1lls1 and q2 = k2lls2 
at points 1 and 2 respectively. Their perturbations to the 
transfer matrix are described by the matrices P1 and P2 
where Pi is 

Pi = [ 1 0] 
-killsi 1 

(2) 

These quad errors change the cyclic transfer matrix at 
point 1 to All 

M1 = M(2 - 1) . P2 . M(l - 2) . P1 == M1 + llM1 (3) 

Let lll-' be the change in the global phase advance around 
the ring. We scale the quad errors by an arbitrary param
eter (i.e. k1 - (kl, k2 - (k2 and expand lll-' as a power 
series in (, 

(4) 
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The new global phase advance fio = 1-'0 + lll-' is to be found 
from 

We also have 

cos fio = cos 1-'0 cos lll-' - sin 1-'0 sin lll-' 

Substituting Equation (4) into the above and equating it 
to the expression for cosfio given by Equation (5), we have 

1 . 2 • cOSI-'0(llI-'1)2] 
"2TrllM1 = -(slDl-'olll-'l -( [slDl-'olll-'2 + 2 

+0«(3). (6) 

To obtain the corrections to 1-'0 order by order, we equate 
the coefficients of like powers of ( on both sides of the above 
equation. We can generalize to N quad errors in the ring 
and then take the limit of infinitesimally thin quads dis
tributed around the ring of circumference C. In this limit, 
the 1st and 2nd order terms are, 

~ foC k(s)f3o(s)ds 

4 .1 (Ck(S)f3o(S)dsjC k(s')f3o(s') 
SlDl-'o Jo , 

x [COSI-'o - cos(l-'o - 211-'(s') -1-'(s)1)] ds' 

-~cotI-'0(llI-'1)2 (7) 

Here we have let f30 (s) denote the unperturbed f3 function 
at the point s. In the equation for ll1-'2, we convert the 
integral over part of the ring to one over the complete ring 
and obtain 

1 lC l'+C - 8 . k(s)f3o(s)ds k(s')f3o(s') 
SlDl-'o 0 , 

x cosl/-'o - 211-'(s') -1-'(s)1] ds' (8) 

Recognizing that the integral over s' is related to the ex
pression for the 1st order change in the f3 function [1], we 
obtain 

1iC 

lll-'2 = 4" 0 k(s)llf31(S)ds . (9) 

This important relation tells us that the first order dis
tortion in the f3 function propagating around the machine 
gives rise to the second order tune shift. The total phase 



shift to second order in the gradient errors is (after putting 
the arbitrary parameter ( to unity), 

1 fG 1 fG 
~J-l = '2 io k(s)/3o(s)ds + 4 io k(S)~/31(S)ds + 0(k3) . 

(10) 
The gradient perturbations of interest here are those seen 
only by particles off the design momentum. The chromatic 
error introduced by the quads is then corrected by placing 
sextupoles at places of non-zero dispersion. Assuming that 
only the horizontal dispersion Dx is non-zero, the effective 
quadrupole strengths in the horizontal and vertical planes 
for a particle with relative momentum deviation 6 = ~p/po 
are respectively, 

/(x(s, 6) + S(s, 6)Dx(s, 6)6 

/(y(s, 6) - S(s, 6)Dx(s, 6)6 ( 11) 

As functions of 6, /(s,6) = /(o(s)/(1 + 6) and S(s,6) = 
So(s)/(1 + 6), where /(0 and So are the nominal quad and 
sextupole strengths experienced by a particle on momen
tum. We expand D and /3 as power series in 6, 

D(s,6) 

/3(s,6) 

Do(s) + ~Df(s)6 + ~Df(s)62 + ... (12) 

= /30(s)+~/3f(s)6+~/3f(s)62+ ... (13) 

where the superscript C denotes a chromatic expansion. 
Hence the gradient error in the horizontal plane for the 
off-momentum particles is 

Substituting into Equation 10 and writing the tune shift 
in terms of the first and second order chromaticity 6 
and 6 respectively, 

we obtain 

~ fG /3o(s)[So(s)Do(s) - /(0] ds 
47r io 

8~ foG [So(s)Do(s) - Ko]~/3f(s) ds 

+~ fC /3o(s)So(s)~Df(s) ds - 6 
47r io 

(16) 

The first order changes in /3 and D are given by 

~/3f(s) 
/3o(s) 

~Df(s) 

1 18

+
G 

= 2 -:- [So(s')Do(s') - Ko(s')]/3o(s') 
SlllJ-lo • 

x cosfJ.to - 21J-l(s') - J-l(s)1l ds' 

= -J/3o(S)r+G~) [So(s')Do(s'}--Ko(s')] 'J8 SIn J-lo 

xDo(s') cos[~o -IJ.I(s'}--J.l(s)1l ds' (17) 

Ignoring the phase factors for the moment, we see that 
~f3f which contains factors of /3( s) rather than J /3( s) 

(as occurs in ~Df) will dominate the contribution to the 
second order chromaticity. This situation can change if we 
choose the phase advances between the major chromatic 
error sources appropriately. For example, two sources of 
equal strength 7r /2 apart in phase will produce /3 waves 
exactly out of phase so there will be no resultant /3 wave. 
The dispersion waves produced by the same two sources 
will add in quadrature. Alternatively, if we want to cancel 
the net dispersion wave, the two sources should be 7r apart 
in phase. In this case the /3 waves will add exactly in phase. 

Hence to reduce the second order chromaticity, the first 
order changes in /3 and also in the dispersion D should. 
be minimized. Conversely, the regions where ~/31 is large 
(e.g. the triplets in the IRs) will contribute the most to 
the second order chromaticity. The above expression also 
exhibits the variation of 6 with the global tune. Since 
the first order /3 wave diverges at integer and half-integer 
tunes, 6 will be amplified as Vo approaches 0 or 0.5 and 
will be a minimum at vo=0.25 . 

II. CHROMA':'ICITY DUE TO IR TRIPLETS 

The total chromaticity of an IR includes contributions from 
the triplets, the quads in the M = - I section and the vari
able strength quads in the tuning section [2]. The triplets 
alone contribute 76% of this chromaticity at collision. Con
sequently we will consider the tune shift due to the chro
matic error of the 4 IR triplets only and ignore the effect 
of other quadrupoles and sextupoles. Let 

Qi/3i == 1 K/3 ds . 
ith triplet 

Then to 2nd order in the momentum deviation 6, the 
phase shift due to these 4 triplets is 

~J-l = ~J.l16 + ~J-l262 + 0(63) (18) 

where ~J.l1 = -1/22:;=1 Qi/3i and 

3 4 

L L Qi/3~Qj/3j [COSJ.lO - cOS(2J.1ji - J.lo)] 
i=lj=i+l 4SlllJ.lO 

1 2 
-~J.ll - 2cotJ.lO(~J.lI) (19) 

J.lji is the phase advance from the ith triplet to the 
jth triplet and Vo = J.lo/27r is the global tune of the ring. 
The first order chromaticity is independent of phase ad
vances between the triplets. However the second order 
chromaticity depends crucially on the relative phase ad
vances between the triplets. If the phase advance between 
the IPs is ~J.lIP-IP, then the relative phase advances have 
the following values, 

J.l21 = 7r, J.l31 = ~J.lIP-IP' J.l41 = ~J.lIP-IP + 7r 

J.l32 = ~J.lIP-IP - 7r, 1'42 = ~J.lIP-IP, J.l43 = 7r (20) 

With these values, the second order contribution reduces 
to 



where ~P2Q is the contribution from terms second order 
in the quad strengths, 

4tanpO~Jt2Q = (Q1.81 + Q2.82)(Q3.83 + Q4.84) 

x {I _ cos(2~f1.[p_[P - flo)} 
cOSf1.o 

- ~(Qd31 + Q2(32 + Q3.83 + Q4fJ4)2 (22) 

For arbitrary Po, the term in curly braces is a maximum 
and hence ~f1.2Q is a minimum if 2~f1.IP-IP = (2n + 1)11'. 
Conversely ~P2Q is a maximum if 2~J1.IP-IP = 2n1l'. The 
large .8 functions in the triplets ensures that Cl.P2Q com
pletely dominates the contribution to ~fl2. Hence choosing 
Cl.PI P-I P = (2n + 1)11'/2 minimizes the 2nd order chro
maticity of the IRs. This is due to the fact that the chro
matic .8 waves from the IRs are exactly out of phase and 
interfere destructively. The following discussion will as
sume this choice of Cl.PIP_IP. 

An exact cancellation of the /3 waves occurs if the two 
IRs have the same /3peak' In this configuration, the repet
itive symmetry across the two IRs implies Q3/33 = Ql/31, 
Q4/34 = Q2/32. ~Jt2Q vanishes as a consequence of the fact 
that the /3 wave is zero outside the triplets. The entire 2nd 
order phase shift is 

(23) 

For this case alone, ~Jt2 is independent of the global 
tune 110. 

In the following table, we evaluate the 2nd order chro
maticity due to the triplets in three different configurations 
and at two tunes. 

Table 1 : 2nd order chromaticity due to the triplets 

Case 6 
110 = 0.285 Vo = 0.4 

I) Equal IPs 
(3'"=0.25m 154.0 154.0 
/3'"=0.50m 77.0 77.0 

II) Unequal IPs 
fJ*=0.25m, /3"=O.50m 1156.4 6524.8 

III) One IP 
/3*=O.25m, /3*=8.00m 3977.5 24132.6 

For all cases except the first, the second order chromatic
ity is a minimum at 110 = 0.25 and will be significantly 
amplified as Va - 0.5 . 

The chromaticity correction scheme proposed for the IRs 
is discussed in [3]. Briefly, sextupoles are placed in 24 arc 
cells adjacent to the cluster containing the two IRs. The 
third case in Table 1 at tunes (123.435,122.416) has large 
6 and requires nonlinear correction. For this configura
tion, Figure 1 shows the chromatic /3 wave (at 6=0.0003) 
through the cluster and adjacent cells without the nonlin
ear correction. Figure 2 is the corresponding figure after 
the nonlinear chromaticity is corrected. The .B beat in the 

-50 
1- CLUSTER ---t 

-10 0 10 20 
Wavelengths from 1st IP 

Figure 1. Horizontal Chromatic /3 beat without nonlinear 
chromaticity correction 
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Figure 2. Horizontal Chromatic /3 beat with nonlinear 
chromaticity correction 

arcs is reduced from 75% in Figure 1 to 2% in Figure 2. 
This clearly illustrates the connection between the chro
matic (3 wave and the nonlinear chromaticity. 
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