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Proton-Proton Scattering Contribution to Emittance Growth 

T. Garavaglia 
Superconducting Super Collider Laboratory" 
2550 Beckleymeade Ave., Dallas, TX 75237 

Abstract 

Proton-proton scattering contributes to the emittance 
growth of the SSC. A formulation is given and used to esti
mate the mean scattering angle, which is used to determine 
the contribution to SSC emittance growth resulting from 
elastic pp scattering. The method is based upon Lorentz 
invariants, and it permits the determination of the cross
section for scattering in the center of mass (c.m.) system, 
as well as scattering from a fixed target (f.t.). Also an ex
ample is given for the case of electromagnetic pp scattering, 
which results from single virtual photon exchange. 

1. INTRODUCTION 

The contribution from pp elastic scattering to transverse 
emittance growth is determined for the SSC. Elastically 
scattered protons with a small scattering angle will remain 
within the Collider proton beam. These scattered par
ticles contribute to the growth of the beam's transverse 
emittance. Numerical results for emittance growth result
ing from pp scattering and other sources are given in [1]. 
In this paper, a summary is given of the analytical meth
ods that are used to determine the mean scattering angle 
resulting from pp elastic scattering. Lorentz invariants and 
cross-sections are defined in Appendix A. 

II. PROTON-PROTON ELASTIC 
SCATTERING 

The contribution-to transverse emittance growth, for one 
degree of freedom, resulting from pp elastic scattering is 
given by 

where f3; and £i are, respectively, the beta function and 
the luminosity at the ith interaction point. In this expres
sion N B is the number of protons per bunch, M is the num
ber of bunches, Uel is the pp elastic scattering cross-section, 
and J< 8; > is the rms value of the pp elastic scattering 
angle in the center of mass system, which is projected onto 
the transverse x-direction. A similar expression occurs for 
the transverse y-direction. The mean scattering angle can 

be estimated from the differential elastic scattering cross
section 

( duel) == ~ (dUel) (2.2) 
dO c.m. 411' dT c.m.' 

where S and T are Lorentz invariants. These invariants, 
defined in (AI), are S:::::: 2Ec.m ., and T:::::: -Ssin2(8/2):::::: 
-S(8~ + 8;)/4. The invariant differential cross-section for 
pp elastic scattering is [2J 

dUel _ Uf (1 + p2)ebT 
dT ..... 1611' ' 

(2.3) 

where UT is the total pp cross-section, b is the slope param
eter, and p ~ 0 is the ratio of the real part to the imaginary 
part of the scattering amplitude. Assuming that the slope 
parameter is a constant, one can integrate the differential 
cross-section to obtain b :::::: uf/I611'uel' With the approxi
mation Uel :::::: (I/4)UT, one finds h ~ uT/411'. 

Using the approximations above, the differential cross
section in the c.m. system becomes 

where 
U8" == ...j < 8~ > == (bS/2)-1/2. (2.5) 

This is the expression to be substituted into (2.1) to find 
d€:&/dt. For colliding proton beams with VS == 40 TeV and 
UT ~ 130 mb, one finds b ~ 26.6 GeV- 2 and 

Uti., == J < 8; > == 6.9.u rad. (2.6) 

In the above, the value of the total pp scattering cross
section is determined from 

2 VS 
UT = 38.5+ 1.331n (lOGeV)' (2.7) 

which is obtained from cosmic ray data [3]. Theoretical 
models giving values for the total and elastic pp cross
sections can be found in [4]. 

U sing the above techniques, one can estimate the rms 

scattering angle J < 02 > for the scattering of a proton in 
a 20 TeV beam from a fixed proton. The scattering angle 
in the c.m. system for high energy pp scattering is found 

'Operated by the llniversities Research Association, Inc., for from 
the U.S. Department of Energy under Contract No. DE-AC3.5-
89ER40486. 

2T 
cos(8) :::::: S + 1. (2.8) 



The scattering angle for a proton of energy w = S/2m from 
a proton at rest is found from 

- 2sin2(0/2) 4 
cos(O) ~ 1 - (S/m2) - (S/m2)2' (2.9) 

two. The invariant differential cross-section for this case is 
now found to be 

dO'ee 1I"e
4 

[( 
dT (ab - cd) = 64S(S/4 _ 1) AS, T, U) + A(S, U, T) 

Using cosO ~ 1 - (1/2) sin2 0, the fixed target scattering -B(S, T, U) - 8(S, U, T)]. (3.4) 

angle is related to the c.m. scattering angle 0 through The invariant functions are 

(
02(w/m) ) 

4 + 1 . (2.10) 

For the scattering of a 20 Te Y proton from a proton 
at rest, the rms scattering angle in the c.m. system is 
found from (2.5),with ..;s = 193 GeY, O'T = 50.2 mb and 
b ~ 10.3Gey-2, to be ../< 02 > ~ 2.3 mrad. The corre
sponding angle in the fixed target system is found to be 

V< 02 > ~ 67 J.uad. 

III. PROTON-PROTON 
ELECTROMAGNETIC SCATTERING 

In this example, pp scattering is treated as an electro
magnetic event, and the scattering of two fermions of initial 
four-momenta a and II to a final state of four-momenta c 
and d results from the exchange of a single virtual photon. 
The system of units h = c = m = 1 is used. Since both 
the initial and final states involve identical particles, these 
states must be antisymmetrical. The initial state II) and 
the final state IF) are represented as 

II) = lab) ~Iba) IF) = led) ~Ide) (3.1) 

The matrix element for this process is 

(FIMII) = [(cdIMlab) - (cdIMlba)+ 

(dctMlba) - (dcIMlab)]/2 

= e2(P'(d, b)D",v(a - e)JV(e, a) - (d ...... c)], (3.2) 

where the fermion current is J"'(c,a) = ue"Y"'ua . The pho
ton propagator is D,.,,(a - e) = 411"g,.,,/«a - e)2 + if). We 
use the fermion density matrix Pij (a) = UaiUaj, which has 
the property Trp(a) = 2. 

The invariant differential cross-section for this process is 

dUel 
JT 

1 
~. ",... "M(S,T), 
0 ... ;r i \ .:J, tl, u) 

(3.3) 

where M(S, T) = I(FIMIIW. For the scattering of un
polarized fermions when the polarization of the final state 
fermions is not observed, the initial state spin density ma
trices for a and b are of the form po(a) = (~ + 1)/2. For 
the final states Ie) and ld), which include a summation over 
the final spin states, the density matrices are multiplied by 

A(S,T,U) = ;2T"'V(d,b)T",v(c, a) (3.5) 

B(S,T,U) = T~T"'V",v(b,c,a,d), (3.6) 

where 
T"'V(c, a) = Tr[(,C + Ih"(~ + IhV

], (3.7) 

T"'VAt1(b, c, a, d) = Tr[")''''(} +lhv (j +lhA(~ +lht1 (jI +1)]. 
(3.8) 

Upon evaluation of the traces, the invariant functions be-
come 

32 
A(S, T, U) = T2 [S2 + U2 + 8T - 8] (3.9) 

B(8, T, U) = - :~ [82 
- 88 + 12)]. (3.10) 

In the high energy limit when 8 becomes large, one finds 

dUel (b d) 211"e
4 

--a -c ~--dT T2 . (3.11) 

The rms value of the c.m. scattering angle associated 
with (3.11) can be found using (2.8) in the form 

< cosO >~ 1- < 02 > /2 = 2 < TI8 > +1, (3.12) 

where rT .... % 

< T >= iT",;" T(due/dT)dT/ue , (3.13) 

and O'e = J(du~JdT)dT. The rms value of the scattering 
angle is written in terms of the projections on the trans-

verse directions as v< 02 > = V« 8~ > + < 6; »/2. 
The integration limits are found from T :::::: 62 /4, where 
Oma:z: is found from the condition that the proton is scat
tered from the beam, and where 6min is found from the 
uncertainty principal, A2ubeamAB :::::: hlp. One finds 
V< O~ >:::::: 1.1' rad. 

APPENDIX A: Kinematics and Cross-Sections 

In this appendix, the kinematical variables and cross
sections used in the analysis are given. Particles charac
terized by four-momenta a and b interact elastically to 
yield particles characterized by four-momentum c and d. 
For this process, energy-momentum conservation is repre
sented as a+b = c+d, where a typical four-vector is repre
sented as a = (aO, a), such that a2 = (aO)2 -a.a = m~. The 



interaction channels are defined according to the Lorentz 
invariants 

of the relative velocity IvCl - vbl in the c.m. system. The 
flux becomes F = p/2(s,a,b)/2£CI£6. 

S=(a+b)2, T=(a-c)2, U=(a-d?, 

which satisfy (S + T + U) = a2 + b2 + c2 + d2
. 

(AI) Particular differential cross-sections may now be ob-

In the c.m. system, one finds the invariant expressions 
for energy, momentum, and scattering angle 

(A2) 

£6 = E(S, h, a), Ee = £(S, c, d), Ed = E(S, d, c), 

lal = Ibl = [/(S, a, b)p/2, lei = Idl = [/(S, c, d)p/2, 
4S 4S 

(A3) 
and 

(A4) 

with 

(A5) 

In the fixed target system, the corresponding relations 
are 

WCI = w(S.a, b) = (S - a2 - b2)/2m6, 

W6 =m6,Wc = -w(U,C,b),Wd = -w(T,d,b), (A6) 

lal = 11/2(S, a, b)/2m6, Ibl = 0, 

lei = 11/2(U, c, b)/2m6, Idl = 11/2(T, b, d)/2mb, (A7) 

and 
cos 8C1e = [2b2 (T - a 2 

- c2
) 

-(S - a2 - b2)(U - b2 - c2)]/(f(S, a, b)/(U, c, bW/2. (AS) 

The differential cross-sections are found from the defini
tion of the invariant total cross-section for the interaction 
of two particles initially in the states la >, and Ib > and the 
subsequent production of an n-particle final state, where 
each particle is characterized by a momentum state IPi >. 

This cross-section is defined as 

n n 

II 6(PI - mr>0(Pi) x S(a + b - L p;)M(S, T, U), (A9) 
;=1 ;=1 

with 8(p) = [(pD/w) + Il!2,w = (lpl2 + m2
)1/2, and 

M(S,T, U) = I < 11M la, b > 12, 

where< IIMla, b > is the transition amplitude from the 
initial to the final state. In (A9), one uses an invariant 
definition of the flux, which is represented as the magnitude 

tained from (A9). Of special interest is the differential 
cross-section defined formally as 

du 
dT = u(S, T)6[T - (a - C)2]. (AID) 

For scattering into the solid angle dOClc, one finds for elastic 
scattering in the c.m. system 

~ __ 1_ 1/2 1/2 du 
dOe.m. - 41rS' (S,a,b)! (S,c,d)dT' (All) 

The corresponding differential cross-section in the f.t. sys
tem may be found from (AS) and (AID) to be 

du _2P/2(S, a, b)P/2(U, c, b) du 
dO/. t = 1rg(S,T,I,m,l,m) dT' 

(AI2) 

For the elastic scattering of a particle of unit mass with a 
particle of mass m, one finds the expression 

g(S, t, 1, m, 1, m) = 12$m2[(S/4)2+ST/16-(S/4)(m2+1)/2 

-(T/4)(m2 -1)/4 + (m2 ...,.1)2/16]. (AI3) 

The integration indicated in (A9) and (AlO), when there 
is a two-particle final state characterized by four-momenta 
c and d, is performed in the c.m. system using the 
momentum-space measure 

to find 
du 1 
dT = 16;rf(S,a,b)M(S,T). (AIS) 
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