
An Algebraic Approach to
Modeling in Software Engineering

Superconducting Super Collider
Laboratory

SSCL-Preprint-405
September 1993
Distribution Category: 400

G. J. Loegel
C. V. Ravishankar

SSCL-Preprint-405

An Algebraic Approach to
Modeling in Software Engineering*

G. J. Loegelt

Superconducting Super Collider Laboratory
2550 Becldeymeade Ave.

Dallas, TX 75237

and
University of Michigan
Ann Arbor, MI 48109

and

C. V. Ravishankar

University of Michigan
Ann Arbor, MI 48109

September 1993

* To appear in the proceedings of the Algebraic Methodology and Software Technology Conference (AMAST '93)
Universiteit of Twente, Enschede, The Netherlands on June 21-25,1993.

t Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

An Algebraic Approach to Modeling
Software Engineering

George J. Loegel·
C. V. Ravishankar

Electrical Engineering and Computer Science Department
University of Michigan

Ann Arbor, Michigan USA

.
In

1 Universal Algebras, Modeling and Software
Engineering

Our work couples the formalism of universal algebras with the engineering
techniques of mathematical modeling to develop a new approach to the soft­
ware engineering process. Our purpose in using this combination is twofold.
First, abstract data types and their specification using universal algebras can
be considered a common point between the practical requirements of software
engineering and the formal specification of software systems[4]. Second, math­
ematical modeling principles provide us with a means for effectively analyzing
real-world systems. We first use modeling techniques to analyze a system and
then represent the analysis using universal algebras. The rest of the software
engineering process exploits properties of universal algebras that preserve the
structure of our original model.

This paper describes our software engineering process and our experience
using it on both research and commercial systems.

We need a new approach because current software engineering practices
often deliver software that is difficult to develop and maintain. Formal soft­
ware engineering approaches use universal algebras to describe "computer sci­
ence" objects like abstract data types, but in practice software errors are of­
ten caused because "real-world" objects are improperly modeled. There is a
large semantic gap between the customer's objects and abstract data types.
In contrast, mathematical modeling uses engineering techniques to construct
valid models for real-world systems, but these models are often implemented
in an ad hoc manner. A combination of the best features of both approaches
would enable software engineering to formally specify and develop software sys­
tems that better model real systems. Software engineering, like mathematical
modeling, should concern itself first and foremost with understanding a real
system and its behavior under given circumstances, and then with expressing
this knowledge in an executable form.

·Curren' Address: Superconducting Super Collider Laboratory. 2550 Beckleymeade Avenue, DaJ.lM, TX
75237 USA email:loe,eIO:sscvxl.ssc.gov

2 Mathematical Modeling, Formal Models and
Software Development

We use the idea of a model in both the system modeling sense of Zeigler[12]
and Casti[l] and in the foundational sense of Schoenfield[lO]. Models in the
sense of Zeigler and Casti represent information about the behavior of a system,
whereas a formal model demonstrates the existence of a mathematical structure
that behaves the same as a formal system. We use equational specifications of
universal algebras as the formal notation for our model. Figure 3 shows part
of an equational algebraic specification.

Zeigler defines five domains in modeling: the real system, the experimental
/rame, the base model, the lumped model, and the computer. The real system
represents the product the customer wants, the experimental frame defines
the specific behavior the customer wants, the base model contains all of the
information about the real system, the lumped model represents a simplification
of the base model under the constraints of the experimental frame, and the
computer provides a means of simulating the system's behavior.

We observe that a successful software engineering project must produce a
lumped model that duplicates the behavior of the real system with respect
to the customer's experimental frame. One way the mathematical modeler
produces valid models is by constructing the model from components similar
to those in the real system. Zeigler calls a model that duplicates both the
behavior and constituent parts of the real system structurally valid. .

Not all behaviorally valid models are structurally valid. This is particularly
true of models built with software. The real world has physical laws which
cannot be violated, whereas the software world is artificially created by the
human mind, where only the laws of logic apply. However, software models
which respect physical structure and physical laws have several advantages.
First, maintaining the structure in the analysis and design of software shortens
the semantic gap between the user and the system. Second, incorporating new
behavior into the system becomes a matter of identifying the correspondence
between components in the real system and the components in the software
system. Third, testing the software system can be along the lines of the real
system. A software system built using some arcane behavioral model only
complicates these activities.

We use equations and domains to specify a structurally valid model of a
system. This kind of specification defines an initial algebra. Maintaining struc­
tural validity between two algebras (models) is equivalent to defining a homo­
morphism between models. We define the software engineering process as the
development of an executable, structurally valid model from an initial algebra
that represents an equationally specified model of a system.

3 From Modeling to Algebraic Engineering
We take a pragmatic view of the goal of software engineering as providing a
product for a customer. Software engineering provides methods and techniques
to deal with the complexities of software development.

The model building process captures the traditional stages in the software
engineering process: analysis, design, implementation, integration, and main-

tenance. In the analysis phase, the user provides an informal description of the
system and the software engineer converts the description into a set of formal
requirements. Similarly, a modeler starts with an informal description of a real
system and identifies the components, observables and interactions present in
the experimental frame. This information defines the behavior for the model.

We start our process with the customer's informal description of the product.
The informal description is in terms of the behavior and functionality that the
customer wants. The software engineer analyzes the customer's description of
the components and their behavior in the experimental frame, and generates
an analysis model. This yields a signature for the proposed system, and the
behavior of the system in the experimental frame defines a basic set of a%ioms
for interpreting the functions. In our approach, the software engineer uses
a universal algebra to represent this information in the analysis model. The
signature defines the domains used in the algebra, and the axioms define the
equivalences between terms. The signature and axioms define an initial algebra
that formally describes the functional behavior of the system. The software
engineer then verifies the analysis model with the customer after describing the
components, domains, and functions in the initial algebra. The names used for
these entities should be derived from the customer's original description. For
example CreatelevAccount would be better understood by the customer than
AddRovToDatabase. Figure 3 shows a signature for a document storage system.
Once the customer is satisfied with the analysis model, the design stage begins.

The design stage represents the same activity for both a software engineer
and a system modeler. In modeling, the design phase identifies the import­
ant components of the real-world system and simplifies the behavior of these
components without compromising model validity. Similarly, for software en­
gineering, we use techniques that maintain structural validity with respect to
the base model. Poor quality software results from simplifications that affect
validity. Our method provides a better means of identifying what kinds of sim­
plifications make sense during the design phase. We only permit simplifications
that maintain structural validity. Since components and functions embody the
structure of a system, we require that the process producing a lumped model
define a homomorphism from the original model. That is, all of the objects and
functions in our analysis model still exist in the design model, but the design
model may contain new components and functions to realize a particular beha­
vior. The design model does not destroy the structural validity of the analysis
model. Structural validity encourages both encapsulation and inheritance dur­
ing the design stage. New components and functions should be associated with
a particular component from the analysis model. New components that appear
to be shared by higher-level components need to be further analyzed. They
may simply represent multiple instances of the same component or they may
indicate an oversimplification. In the latter case, there should be a means of
specializing each object from a more general component. There are two parts
to the design phase. First, the designer (modelers or software engineer) selects
a set of abstract states[l] to represent information carried by the system, and
then develops a particular representation for the states and components of the
lumped model. For an algebraic model, design represents a refinement of the
initial algebra which introduces hidden functions[ll] and sorts representing the
states and their transition functions. Hidden functions permit finite represent­
ations for algebraic models that cannot otherwise be finitely represented.

After selecting abstract states and hidden functions, the design phase fur­
ther refines the analysis model by selecting the concrete data structures and
algorithms. Preserving structural validity requires that the refinement map
components into components and functions into functions.

The algebraic model is used indirectly in implementation, integration and
maintenance, which are the remaining stages of the software process. The
implementation phase translates the data structures and algorithms into state­
ments in a programming language. The number of components and functions
in the model converted to software modules can be used to measure progress.
After implementation, the product and the model both undergo verification;
the algebraic model can be used to isolate discrepancies between program be­
havior and the desired model behavior. Finally, the maintenance stage must
permit the adding of new behaviors to the system. An algebraic model can
help here in locating which components are affected by a change.

Our work exploits the methods and techniques of mathematical modeling
and the structure of algebraic systems to define a new approach to the soft­
ware engineering process. The software engineer encodes the desired behavior
into a structurally valid model of the system under analysis and then homo­
morphically transforms the resulting universal algebra into a product. Our use
of modeling techniques avoids software engineering methods that can abstract
away constraints imposed by the real system. Our powerful human ability to
abstract within logical systems like programming languages tempts us to ab­
stract away all details. This tendency is particularly evident when the software
engineer is unfamiliar with the customer's domain. The discipline of mod­
eling uses validity to help select the important components and interactions
in a system. The refinement of universal initial algebras shows what kind of
homomorphisms maintain structural validity.

4 Case Studies

We have used this algebraic approach in several systems. The first, described
in the 1984 POPL[7], used an algebraic description of attribute grammars to
generate Pcode from Pascal. Our goal in this project was to duplicate the
Pascal-to-Pcode compiler from ETH Zurich[8] using an attribute grammar sys­
tem developed by L. Paulson[9]. In Paulson's system, the components were the
productions in the Pascal grammar, and the attribute propagation rules served
as axioms. Each attribute belonged to a particular sort, and each constructor
function belonged to the signature.

Treating the grammar and propagation rules as a formal specification of a
Pascal-to-Pcode translator, we improved on the ETH system in several ways.
First, we produced a more compact and understandable description of the
Pascal-to-Pcode translation than the corresponding compiler from ETH Zurich.
Second, the modular construction made integration easier because we could test
a single production for the proper behavior. The modular independence also
allowed us to add some local optimizations that were not present in the original
compiler. Figure 1 shows a DOMAIN definition and a typical production
rule. The 1 and i notation represents inherited and synthesized attributes,
respectively.

Our success with the modularization and notation in the Pcode system led

DOMAIN
TYPE = scalarType [SIZE x RANGE x SCALAR-ID]

+ realType [SIZE] + arrayType[SIZE x TYPE x TYPE] + ...
RULE
command (! env, ! cmdEnv, 1 cmdEnv2, 1 pcode) =

• • case' • expression(! env, ! cmdEnv, ! caseVal,
1 model, 1 cmdEnv1, 1 pcode} •• of' •

caseList(! env, ! cmdEnvO, ! typel, ! label, ! minmax, ! jumpTable,
1 minmax2, 1 jumpTable2, 1 cmdEnv2, 1 pcode2}

pcode2 = • 'UJP", arg1
label1:
"CUI" , arg3, arg4
"LDCI" , arg3
"IJMP" , arg2
label2:

Figure 1: Pcode Specification

to further use and refinement of our method. A second system, the Capture
Storage Element (CSE) ofthe Optical Digital Image Storage System (OOlSS)l
took further advantage of our approach. In this system, our development of
an algebraic model led us to a better implementation which proved valuable
during the subsequent phases of the project.

ODISS is a distributed document image storage system consisting of scan­
ners, printers, workstations, optical disks, and intermediate storage subsystems.
ODISS was developed by Systems Development Corporation to digitize and
store Civil War documents for the National Archives and Records Administra­
tion (NARA) of the United States of America. Hooton describes the system
from an archivist's point of view in his OIS paper[5].

The original design for ODISS used DeMarco's[2] Data Flow Diagrams
(DFDs). The CSE provided intermediate storage for documents before they
were written to optical disk. Every other component of ODISS accessed the
CSE. After getting the high-level DFDs for the CSE, our team used algebraic
modeling for the detailed design. We started by identifying the objects in the
system. From the DFDs shown in Figure 2, it appeared that the CSE was a
page-oriented device, since the basic unit of data manipulation was a page.

However, when we developed the first algebraic model for the CSE from
Figure 2, where each data flow defines a command, we noticed. that all the
commands had a document as an argument.

We decided, based on this analysis, that the algebraic model for the CSE
should use documents composed of pages, as shown in Figure 3. Every other
subsystem in ODISS followed the DFDs more closely and simply used pages.
The different approaches resulted from using a simple, behavioral design based
on the DFDs, and a model-based design based on our algebraic description. We
justified our model by recognizing that the manual system was document-based
because all requests were for documents. No one ever requested a single page.
Similarly, ODISS workers would work with entire documents throughout the

lThia work performed under NARA contra.ct NAOOA86ASSEB285

Create Document

Add Paae(document,imaae)

Archive Document (document)

Move Page (document,from,to) Status

Delete Paae (document,page)

CAPTURE
STORAGE
ELEMENT Pa..,.

Retrieve Page (document,paae)

Delete Document (document)

Figure 2: CSE Data Flow Diagram

DOMAIN
DOCUMENT = document-id x num-pages x images
SIGNATURE
createDocument () --+ document-id
addPageToDocument(num.ber.image) --+ document'
movePageInDocument (trom. to) --+ document'
retrievePageFromDocument(number) -+image
archiveDocument(document-id) --+ images
RULE
addPageToDocument(number. image) =

if number:::; numpages+2 then ins ertIaage ()
else return tail

Figure 3: CSE Model Specification

...

indexing, quality control and storage process. The basic work unit for both the
manual system and ODISS further justified our model choice.

The customer also provided us with an experimental frame that allowed us
to make simplifications in the design model. For example, 80% of the docu­
ments would be twenty pages or less, so we designed a page descriptor that
would fit at least twenty descriptors into a single sector of storage. The math­
ematical modeler would call this kind of lumping coarsening since we do not
need a "generalized document storage system", but only a storage system for
Civil War personnel documents. Further, since most of the document pro­
cessing (high-speed scanning, indexing, quality control and archiving) involved
sequential access to the pages in a document, our concrete data structures
made sequential access easy. In fact, our first implementation of the CSE could
handle a maximum of thirty-two pages, but this was sufficient for most of the
integration phase.

Our model also allowed us to introduce parallelism into the system, since
all documents were independent of each other. Parallelism was also necessary
to meet the performance requirements of ODISS.

The algebraic description provided the basis for the programmer interface
documentation and the implementation. During the fifteen months of devel­
opment and integration, only one integration error occurred due to misunder-

standing of notation, and only one serious error was found after delivery. The
CSE served as a major debugging tool during the integration phase of the
project. Every other subsystem performed single page operations making it
difficult to determine the overall system state. Only the CSE maintained the
state of documents, making it possible to determine what other components
had done. After delivery, one of the first enhancements to ODISS requested by
the customer was the ability to query document status, and this capability was
easily added.

These systems show various applications of algebraic software engineering,
all of which started with a model of the application described using a universal
algebra. Each of these systems began the software engineering process by using
algebraic specifications to represent the design of the system. Our use of mod­
eling techniques to develop structurally valid specifications made it easier to
communicate our design to the customer. Further, our models were invariably
better models because they were structurally valid.

The work in subsequent phases depended on these descriptions. In the
implementation phase, the algebras provided unambiguous communications
between programmers, and a simple measure for progress based on the num­
ber of functions coded. The use of algebraic specifications also benefited the
integration phase, since the models made it easier to identify complete com­
ponents for test purposes and what hidden components could be "stubbed" or
ignored for initial integration work. Further, the abstract states identified in the
specification could be used to track system behavior during integration. The
specification also simplified maintenance work by again providing unambigu­
ous communication, and simplifying the identification of components involved
in changing the system's behavior. The algebraic specification provided not
only design information, but also made it easier to track progress, perform
integration and maintain these systems.

5 Conclusions

In addition to the benefits described in our case histories, our work leads to
several other interesting conclusions. First, by emphasizing models based on
"real" system objects we encourage the reuse of software. For example, most
organizations build specialized products, so specialized software models provide
leverage for future systems with similar components. General purpose libraries,
such as NIHCL[3] and the GNU C++ Library[6]' provide a wider range of
applicability, but the components represent very high-level abstractions.

The basic principles of our approach are (1) that the analysis of a systems
benefits from developing structurally valid models consisting of components, ob­
servables and their interactions, (2) that algebras not only provide a natural way
of representing the results of the analysis phase, but can be useful throughout
the software engineering process, and (3) that homomorphic transformations of
algebraic specifications provide a valuable paradigm for the software engineer­
ing process. Our analysis phase produces a structurally valid model contain­
ing static information about the system. The design phase homomorphically
transforms the analysis specification, defines the hidden components, and de­
termines the data structures and algorithms. The implementation phase builds
and tests each component, and the integration phase combines the components.

Our method produces a more reliable, flexible and easily maintained product.
Further, a product developed using our algebraic modeling approach to soft­
ware engineering provides the basis for developing abstract models that foster
high levels of software reuse.

From a software engineering viewpoint, our method produces a working
system at some level of abstraction early, which also allows system integration
to start early in a project. We found that in both large and small projects,
the software modules were usually short enough so that bugs could be easily
identified even after returning to a particular program module after some time.
Our approach works in group projects because most of the problems and idio­
syncrasies turn up at integration time, and the ability to quickly "rewire" a
software module to adapt to circumstances further speeds up the integration
process.

Our case studies show how structurally valid models based on universal
algebras benefit a wide variety of systems differing both in kind and size.
A model-based algebraic approach provides a sound software engineering ap­
proach to the problem of designing software systems.

References
[1] Casti, J. Alten&lde Ret&/itie.: MAthemAtiCIJI Model. of NAture A",d MA"', Wiley­

Interscience, 1989
[2] De Marco, T. St",cturetl A"'A/.,.i. A",d S.,.tem SpecijiCIJtio",., Yourdon, Inc., 1978
[3] Gorlen, K. E. Orlow, S. M. and Plexico, P. S. DAtA Ab.tractio", A",d Object-Oriented

Programmi",g in C++, John Wiley & Sons, 1990
[4] Gougen, J. A. Thatcher, J. W. Wagner, E. G. and Wright, J. B. "Initial Algebra Se­

mantics and Continuous Algebras", JACM, v. 24, no. I, pp. 68-95, 1977
[5] Hooton, W. L. "ODISS-opticaldigital image storage system - the U.S. National Archives'

optical digital image project" in Proceedings of the Sixth Annual Conference on Optical
Information Systems (OIS International), pp. 171-173,1989

[6] Lea, D. U.er'. Guide to the GNU C++ LibrAry, Free Software Foundation, 1990
[7] Milos, D. Pleban, U. and Loegel, G. "Direct Implementation of compiler specifications,

or: The Pascal P-compiler revisited" , Conference Record of the 11th Annual ACM SIG­
PLAN/SIGACT Symposium on Principles of Programming Languages, 1984,pp. 196-207

[8] Nori, K. V., Ammann, U., Jensen, K., Nageli, H. H., Jacobi, C. The PA.cAI (p)-Compi/er
: ImplementAtion Note. (Revised Edition), ETH Zurich, Institut fur Informatik, 1976

[9] Paulson, L. A Compiler GenerAtor Jor SemAntic GrAmmArs, Ph.D. dissertation, Stanford
University, 1982

[10] Schoenfield, J. R. MAthemAticAl Logic, Addison-Wesley, 1967
[11] Thatcher, J. W., Wagner, E. G. and Wright, J. B. "Data Type Specification: Paramet­

erization and the Power of Specification Techniques", ACM TOPLAS, v. 4, no. 4, pp.
711-732,1982

{12] Zeigler, B. P. Theory of Modelling And SimulAtion, Wiley-Interscience, 1976

