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In 

1 Universal Algebras, Modeling and Software 
Engineering 

Our work couples the formalism of universal algebras with the engineering 
techniques of mathematical modeling to develop a new approach to the soft­
ware engineering process. Our purpose in using this combination is twofold. 
First, abstract data types and their specification using universal algebras can 
be considered a common point between the practical requirements of software 
engineering and the formal specification of software systems[4]. Second, math­
ematical modeling principles provide us with a means for effectively analyzing 
real-world systems. We first use modeling techniques to analyze a system and 
then represent the analysis using universal algebras. The rest of the software 
engineering process exploits properties of universal algebras that preserve the 
structure of our original model. 

This paper describes our software engineering process and our experience 
using it on both research and commercial systems. 

We need a new approach because current software engineering practices 
often deliver software that is difficult to develop and maintain. Formal soft­
ware engineering approaches use universal algebras to describe "computer sci­
ence" objects like abstract data types, but in practice software errors are of­
ten caused because "real-world" objects are improperly modeled. There is a 
large semantic gap between the customer's objects and abstract data types. 
In contrast, mathematical modeling uses engineering techniques to construct 
valid models for real-world systems, but these models are often implemented 
in an ad hoc manner. A combination of the best features of both approaches 
would enable software engineering to formally specify and develop software sys­
tems that better model real systems. Software engineering, like mathematical 
modeling, should concern itself first and foremost with understanding a real 
system and its behavior under given circumstances, and then with expressing 
this knowledge in an executable form. 

·Curren' Address: Superconducting Super Collider Laboratory. 2550 Beckleymeade Avenue, DaJ.lM, TX 
75237 USA email:loe,eIO:sscvxl.ssc.gov 



2 Mathematical Modeling, Formal Models and 
Software Development 

We use the idea of a model in both the system modeling sense of Zeigler[12] 
and Casti[l] and in the foundational sense of Schoenfield[lO]. Models in the 
sense of Zeigler and Casti represent information about the behavior of a system, 
whereas a formal model demonstrates the existence of a mathematical structure 
that behaves the same as a formal system. We use equational specifications of 
universal algebras as the formal notation for our model. Figure 3 shows part 
of an equational algebraic specification. 

Zeigler defines five domains in modeling: the real system, the experimental 
/rame, the base model, the lumped model, and the computer. The real system 
represents the product the customer wants, the experimental frame defines 
the specific behavior the customer wants, the base model contains all of the 
information about the real system, the lumped model represents a simplification 
of the base model under the constraints of the experimental frame, and the 
computer provides a means of simulating the system's behavior. 

We observe that a successful software engineering project must produce a 
lumped model that duplicates the behavior of the real system with respect 
to the customer's experimental frame. One way the mathematical modeler 
produces valid models is by constructing the model from components similar 
to those in the real system. Zeigler calls a model that duplicates both the 
behavior and constituent parts of the real system structurally valid. . 

Not all behaviorally valid models are structurally valid. This is particularly 
true of models built with software. The real world has physical laws which 
cannot be violated, whereas the software world is artificially created by the 
human mind, where only the laws of logic apply. However, software models 
which respect physical structure and physical laws have several advantages. 
First, maintaining the structure in the analysis and design of software shortens 
the semantic gap between the user and the system. Second, incorporating new 
behavior into the system becomes a matter of identifying the correspondence 
between components in the real system and the components in the software 
system. Third, testing the software system can be along the lines of the real 
system. A software system built using some arcane behavioral model only 
complicates these activities. 

We use equations and domains to specify a structurally valid model of a 
system. This kind of specification defines an initial algebra. Maintaining struc­
tural validity between two algebras (models) is equivalent to defining a homo­
morphism between models. We define the software engineering process as the 
development of an executable, structurally valid model from an initial algebra 
that represents an equationally specified model of a system. 

3 From Modeling to Algebraic Engineering 
We take a pragmatic view of the goal of software engineering as providing a 
product for a customer. Software engineering provides methods and techniques 
to deal with the complexities of software development. 

The model building process captures the traditional stages in the software 
engineering process: analysis, design, implementation, integration, and main-



tenance. In the analysis phase, the user provides an informal description of the 
system and the software engineer converts the description into a set of formal 
requirements. Similarly, a modeler starts with an informal description of a real 
system and identifies the components, observables and interactions present in 
the experimental frame. This information defines the behavior for the model. 

We start our process with the customer's informal description of the product. 
The informal description is in terms of the behavior and functionality that the 
customer wants. The software engineer analyzes the customer's description of 
the components and their behavior in the experimental frame, and generates 
an analysis model. This yields a signature for the proposed system, and the 
behavior of the system in the experimental frame defines a basic set of a%ioms 
for interpreting the functions. In our approach, the software engineer uses 
a universal algebra to represent this information in the analysis model. The 
signature defines the domains used in the algebra, and the axioms define the 
equivalences between terms. The signature and axioms define an initial algebra 
that formally describes the functional behavior of the system. The software 
engineer then verifies the analysis model with the customer after describing the 
components, domains, and functions in the initial algebra. The names used for 
these entities should be derived from the customer's original description. For 
example CreatelevAccount would be better understood by the customer than 
AddRovToDatabase. Figure 3 shows a signature for a document storage system. 
Once the customer is satisfied with the analysis model, the design stage begins. 

The design stage represents the same activity for both a software engineer 
and a system modeler. In modeling, the design phase identifies the import­
ant components of the real-world system and simplifies the behavior of these 
components without compromising model validity. Similarly, for software en­
gineering, we use techniques that maintain structural validity with respect to 
the base model. Poor quality software results from simplifications that affect 
validity. Our method provides a better means of identifying what kinds of sim­
plifications make sense during the design phase. We only permit simplifications 
that maintain structural validity. Since components and functions embody the 
structure of a system, we require that the process producing a lumped model 
define a homomorphism from the original model. That is, all of the objects and 
functions in our analysis model still exist in the design model, but the design 
model may contain new components and functions to realize a particular beha­
vior. The design model does not destroy the structural validity of the analysis 
model. Structural validity encourages both encapsulation and inheritance dur­
ing the design stage. New components and functions should be associated with 
a particular component from the analysis model. New components that appear 
to be shared by higher-level components need to be further analyzed. They 
may simply represent multiple instances of the same component or they may 
indicate an oversimplification. In the latter case, there should be a means of 
specializing each object from a more general component. There are two parts 
to the design phase. First, the designer (modelers or software engineer) selects 
a set of abstract states[l] to represent information carried by the system, and 
then develops a particular representation for the states and components of the 
lumped model. For an algebraic model, design represents a refinement of the 
initial algebra which introduces hidden functions[ll] and sorts representing the 
states and their transition functions. Hidden functions permit finite represent­
ations for algebraic models that cannot otherwise be finitely represented. 



After selecting abstract states and hidden functions, the design phase fur­
ther refines the analysis model by selecting the concrete data structures and 
algorithms. Preserving structural validity requires that the refinement map 
components into components and functions into functions. 

The algebraic model is used indirectly in implementation, integration and 
maintenance, which are the remaining stages of the software process. The 
implementation phase translates the data structures and algorithms into state­
ments in a programming language. The number of components and functions 
in the model converted to software modules can be used to measure progress. 
After implementation, the product and the model both undergo verification; 
the algebraic model can be used to isolate discrepancies between program be­
havior and the desired model behavior. Finally, the maintenance stage must 
permit the adding of new behaviors to the system. An algebraic model can 
help here in locating which components are affected by a change. 

Our work exploits the methods and techniques of mathematical modeling 
and the structure of algebraic systems to define a new approach to the soft­
ware engineering process. The software engineer encodes the desired behavior 
into a structurally valid model of the system under analysis and then homo­
morphically transforms the resulting universal algebra into a product. Our use 
of modeling techniques avoids software engineering methods that can abstract 
away constraints imposed by the real system. Our powerful human ability to 
abstract within logical systems like programming languages tempts us to ab­
stract away all details. This tendency is particularly evident when the software 
engineer is unfamiliar with the customer's domain. The discipline of mod­
eling uses validity to help select the important components and interactions 
in a system. The refinement of universal initial algebras shows what kind of 
homomorphisms maintain structural validity. 

4 Case Studies 

We have used this algebraic approach in several systems. The first, described 
in the 1984 POPL[7], used an algebraic description of attribute grammars to 
generate Pcode from Pascal. Our goal in this project was to duplicate the 
Pascal-to-Pcode compiler from ETH Zurich[8] using an attribute grammar sys­
tem developed by L. Paulson[9]. In Paulson's system, the components were the 
productions in the Pascal grammar, and the attribute propagation rules served 
as axioms. Each attribute belonged to a particular sort, and each constructor 
function belonged to the signature. 

Treating the grammar and propagation rules as a formal specification of a 
Pascal-to-Pcode translator, we improved on the ETH system in several ways. 
First, we produced a more compact and understandable description of the 
Pascal-to-Pcode translation than the corresponding compiler from ETH Zurich. 
Second, the modular construction made integration easier because we could test 
a single production for the proper behavior. The modular independence also 
allowed us to add some local optimizations that were not present in the original 
compiler. Figure 1 shows a DOMAIN definition and a typical production 
rule. The 1 and i notation represents inherited and synthesized attributes, 
respectively. 

Our success with the modularization and notation in the Pcode system led 



DOMAIN 
TYPE = scalarType [SIZE x RANGE x SCALAR-ID] 

+ realType [SIZE] + arrayType[SIZE x TYPE x TYPE] + ... 
RULE 
command (! env, ! cmdEnv, 1 cmdEnv2, 1 pcode) = 

• • case' • expression(! env, ! cmdEnv, ! caseVal, 
1 model, 1 cmdEnv1, 1 pcode} •• of' • 

caseList(! env, ! cmdEnvO, ! typel, ! label, ! minmax, ! jumpTable, 
1 minmax2, 1 jumpTable2, 1 cmdEnv2, 1 pcode2} 

pcode2 = • 'UJP", arg1 
label1: 
"CUI" , arg3, arg4 
"LDCI" , arg3 
"IJMP" , arg2 
label2: 

Figure 1: Pcode Specification 

to further use and refinement of our method. A second system, the Capture 
Storage Element (CSE) ofthe Optical Digital Image Storage System (OOlSS)l 
took further advantage of our approach. In this system, our development of 
an algebraic model led us to a better implementation which proved valuable 
during the subsequent phases of the project. 

ODISS is a distributed document image storage system consisting of scan­
ners, printers, workstations, optical disks, and intermediate storage subsystems. 
ODISS was developed by Systems Development Corporation to digitize and 
store Civil War documents for the National Archives and Records Administra­
tion (NARA) of the United States of America. Hooton describes the system 
from an archivist's point of view in his OIS paper[5]. 

The original design for ODISS used DeMarco's[2] Data Flow Diagrams 
(DFDs). The CSE provided intermediate storage for documents before they 
were written to optical disk. Every other component of ODISS accessed the 
CSE. After getting the high-level DFDs for the CSE, our team used algebraic 
modeling for the detailed design. We started by identifying the objects in the 
system. From the DFDs shown in Figure 2, it appeared that the CSE was a 
page-oriented device, since the basic unit of data manipulation was a page. 

However, when we developed the first algebraic model for the CSE from 
Figure 2, where each data flow defines a command, we noticed. that all the 
commands had a document as an argument. 

We decided, based on this analysis, that the algebraic model for the CSE 
should use documents composed of pages, as shown in Figure 3. Every other 
subsystem in ODISS followed the DFDs more closely and simply used pages. 
The different approaches resulted from using a simple, behavioral design based 
on the DFDs, and a model-based design based on our algebraic description. We 
justified our model by recognizing that the manual system was document-based 
because all requests were for documents. No one ever requested a single page. 
Similarly, ODISS workers would work with entire documents throughout the 

lThia work performed under NARA contra.ct NAOOA86ASSEB285 



Create Document 

Add Paae(document,imaae) 

Archive Document (document) 

Move Page (document,from,to) Status 

Delete Paae (document,page) 

CAPTURE 
STORAGE 
ELEMENT Pa..,. 

Retrieve Page (document,paae) 

Delete Document (document) 

Figure 2: CSE Data Flow Diagram 

DOMAIN 
DOCUMENT = document-id x num-pages x images 
SIGNATURE 
createDocument () --+ document-id 
addPageToDocument(num.ber.image) --+ document' 
movePageInDocument (trom. to) --+ document' 
retrievePageFromDocument(number) -+image 
archiveDocument(document-id) --+ images 
RULE 
addPageToDocument(number. image) = 

if number:::; numpages+2 then ins ertIaage ( ) 
else return tail 

Figure 3: CSE Model Specification 

... 

indexing, quality control and storage process. The basic work unit for both the 
manual system and ODISS further justified our model choice. 

The customer also provided us with an experimental frame that allowed us 
to make simplifications in the design model. For example, 80% of the docu­
ments would be twenty pages or less, so we designed a page descriptor that 
would fit at least twenty descriptors into a single sector of storage. The math­
ematical modeler would call this kind of lumping coarsening since we do not 
need a "generalized document storage system", but only a storage system for 
Civil War personnel documents. Further, since most of the document pro­
cessing (high-speed scanning, indexing, quality control and archiving) involved 
sequential access to the pages in a document, our concrete data structures 
made sequential access easy. In fact, our first implementation of the CSE could 
handle a maximum of thirty-two pages, but this was sufficient for most of the 
integration phase. 

Our model also allowed us to introduce parallelism into the system, since 
all documents were independent of each other. Parallelism was also necessary 
to meet the performance requirements of ODISS. 

The algebraic description provided the basis for the programmer interface 
documentation and the implementation. During the fifteen months of devel­
opment and integration, only one integration error occurred due to misunder-



standing of notation, and only one serious error was found after delivery. The 
CSE served as a major debugging tool during the integration phase of the 
project. Every other subsystem performed single page operations making it 
difficult to determine the overall system state. Only the CSE maintained the 
state of documents, making it possible to determine what other components 
had done. After delivery, one of the first enhancements to ODISS requested by 
the customer was the ability to query document status, and this capability was 
easily added. 

These systems show various applications of algebraic software engineering, 
all of which started with a model of the application described using a universal 
algebra. Each of these systems began the software engineering process by using 
algebraic specifications to represent the design of the system. Our use of mod­
eling techniques to develop structurally valid specifications made it easier to 
communicate our design to the customer. Further, our models were invariably 
better models because they were structurally valid. 

The work in subsequent phases depended on these descriptions. In the 
implementation phase, the algebras provided unambiguous communications 
between programmers, and a simple measure for progress based on the num­
ber of functions coded. The use of algebraic specifications also benefited the 
integration phase, since the models made it easier to identify complete com­
ponents for test purposes and what hidden components could be "stubbed" or 
ignored for initial integration work. Further, the abstract states identified in the 
specification could be used to track system behavior during integration. The 
specification also simplified maintenance work by again providing unambigu­
ous communication, and simplifying the identification of components involved 
in changing the system's behavior. The algebraic specification provided not 
only design information, but also made it easier to track progress, perform 
integration and maintain these systems. 

5 Conclusions 

In addition to the benefits described in our case histories, our work leads to 
several other interesting conclusions. First, by emphasizing models based on 
"real" system objects we encourage the reuse of software. For example, most 
organizations build specialized products, so specialized software models provide 
leverage for future systems with similar components. General purpose libraries, 
such as NIHCL[3] and the GNU C++ Library[6]' provide a wider range of 
applicability, but the components represent very high-level abstractions. 

The basic principles of our approach are (1) that the analysis of a systems 
benefits from developing structurally valid models consisting of components, ob­
servables and their interactions, (2) that algebras not only provide a natural way 
of representing the results of the analysis phase, but can be useful throughout 
the software engineering process, and (3) that homomorphic transformations of 
algebraic specifications provide a valuable paradigm for the software engineer­
ing process. Our analysis phase produces a structurally valid model contain­
ing static information about the system. The design phase homomorphically 
transforms the analysis specification, defines the hidden components, and de­
termines the data structures and algorithms. The implementation phase builds 
and tests each component, and the integration phase combines the components. 



Our method produces a more reliable, flexible and easily maintained product. 
Further, a product developed using our algebraic modeling approach to soft­
ware engineering provides the basis for developing abstract models that foster 
high levels of software reuse. 

From a software engineering viewpoint, our method produces a working 
system at some level of abstraction early, which also allows system integration 
to start early in a project. We found that in both large and small projects, 
the software modules were usually short enough so that bugs could be easily 
identified even after returning to a particular program module after some time. 
Our approach works in group projects because most of the problems and idio­
syncrasies turn up at integration time, and the ability to quickly "rewire" a 
software module to adapt to circumstances further speeds up the integration 
process. 

Our case studies show how structurally valid models based on universal 
algebras benefit a wide variety of systems differing both in kind and size. 
A model-based algebraic approach provides a sound software engineering ap­
proach to the problem of designing software systems. 
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