
SISSY: An Example of a
Multi-Threaded, Networked,
Object-Oriented Databased

Application

Superconducting Super Collider
Laboratory

SSCL-Preprint-321
May 1993
Distribution Category: 400

B. Scipioni
D. Liu
T.Song

To be published in Supercollider 5 SSCL-Preprint -321

SISSY: An Example of a Multi-Threaded, Networked,
Object-Oriented Databased Application·

B. Scipioni, D. Liu, and T. Song

Superconducting Super Collider Laboratory t
2550 Becldeymeade Ave.

Dallas, TX 75237

May 1993

*Presented at the Fifth Annual International Symposium on the Super Collider, May 6-8, 1993 San Francisco, CA.
tOperated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

SISSY: AN EXAMPLE OF A MULTI-THREADED, NETWORKED,

OBJECT-ORIENTED DATABASED APPLICATION

ABSTRACT

B. Scipioni, D. Liu, and T. Song

Physics Computing Department
Superconducting Super Collider Laboratory*
2550 Becldeymeade Avenue
Dallas, TX 75237

The Systems Integration Support SYstem (SISSY) is presented and its capabilities and
techniques are discussed. It is a fully automated data collection and analysis system supporting
the SSCL's systems analysis activities as they relate to the Physics Detector and Simulation
Facility (PDSF).l, 2 SISSY itself is a paradigm of effective computing on the PDSE It uses
home-grown code (C++), network programming (RPC, SNMP), relational (SYBASE) and
object-oriented (ObjectStore) DBMSs, UNIX operating system services (IRIX threads, cron,
system utilities, shell scripts, etc.), and third party software applications (NetCentral Station,
Wingz, DataLink) all of which act together as a single application to monitor and analyze the
PDSE

INTRODUCTION

Using networks of computers as a single system, that is, to perform tasks in a parallel or
distributed fashion, has created a need for support services similar to those found on single
computer systems. Systems administrators, systems integrators, developers and users all have
need for certain information concerning the functioning and performance of a system of
computers. SISSY is an automated tool which provides this information in a timely way and
which relies upon UNIX standards in a heterogeneous environment.

MOTIVATION

There are two reasons for the choice of architecture for SISSY. First, it was desired to
easily develop software which was maintainable, high performance, and makes maximum use
of commercial applications. This was expected to result in fast development time and very low

*Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under
Contract No. DE-AC35-89ER40486.

manpower for development and maintenance. Second, one of the goals of the computing group
is to promulgate and infuse modem software technology and engineering techniques into the
HEP computing community at the SSCL. SISSY is a vehicle for demonstrating these
techniques.

REQUIREMENTS

The POSF, 1 Figure I, is in its second phase of operations with Phase ill in procurement
and Phase I having been a prototype and testing ground for hardware and software integration
techniques. It was mandatory, then, that all aspects of subsystem perfonnance be monitored so
systems analysis activities could provide directions for future computer acquisitions. This is an
ongoing process with overall and detailed system perfonnance and utilization reviewed on a
weekly basis. The data required for this analysis effort includes average and peak utilization of
all CPU, network, disk and tape systems throughout the POSE These hardware systems
represent the bulk of the monetary resource invested and, therefore, a measure of effectiveness
and efficiency of the facility is required. This analysis also points out hot spots and bottlenecks
to guide future architectural changes and additions. In addition, both aggregate and individual
user statistics need to be provided to the main groups of users, in particular the detector
collaborations, so they may plan their current and future computing activities. The following
list represents current requirements on weekly reporting, but it is only a part of the data
collected and flltered: 2

• % CPU utilization daily on a 24 hour basis, and weekly average for each cluster of
compute servers, each data server, and each support computer (database and console
multiplexers).

• Maximum and average data rates (KB/s) for each FDOI network every hour
throughout the week. Maximum data rate (Kb/s) and packet rate (packets/s)
separately for input and output for each computer and router network interface
throughout the POSF.

• Weekly average disk and tape storage in use, available and change from previous
week.

• Hourly traces of the total number of distinct users with processes on the PDSF and
within individual computing clusters.

• Total weekly CPU utilization (in minutes) consumed by each user, on each
architecture and grouped by user organization. A list of all processes with more than
one CPU minute for each user.

• Total CPU utilization for the week (in minutes) on each architecture broken down by
user organization and location (infout of the lab).

.:un.20 c.sn.2l C!lsn.22 cssn23 c:asn24 . .-.. _.-. . .-.. _ ..

MUX

LANIWAN

Figure 1. Physics Detector Simulation Facility (PDSF) Architecture.

DESIGN

MUX

NETWORlt
LEGEND

DAS-FODI
.11.11.11.11

SAS-FDDI

ETHERNET

RS232

There is a particular software design strategy implicit in the hardware architecture of the
Physics and Detector Simulation Facility (PDSF) at the Superconducting Super Collider
Laboratory (SSCL).2 In particular, the many nodes which comprise the compute servers on the
PDSF are intended, by design, to be able to both compute and perform UO to network, disk and
tape independently, or in parallel. In addition, the data servers act as a collection point for mes
common to applications running in parallel on the clusters of nodes, and as launch points for
jobs executing on the compute servers. For this reason Symmetric Multi-Processing (SMP) is
required for the data servers. Any application which takes maximum advantage of this
architecture will be both multi-threaded and networked. In the case of SISSY there is a
collector process on each data server, which is a multi-threaded object. Each thread executes a
(non-blocking) Remote Procedure Call (RPC) to collect data from one of the compute servers
of the associated cluster, as shown in Figure 2. In this way the RPCs can be used as a parallel
network program, and all nodes in the system can be polled simultaneously rather than visited
in series. This results in both higher data consistency and an increase in performance by more
than an order of magnitude. The polling schedule and type of information requested is
maintained in a database and queried by the collectors in order to determine when to execute
data collection. This schedule can be changed asynchronously, and take immediate effect by a
database update. Each compute server throughout the PDSF collects the requested information
in parallel, usually by executing a UNIX command, then filters and packages the result in SQL
and ships it back to appropriate collector. Here at the collector, along with information from the
other nodes in the cluster, it is inserted over the network into the database. Scripts can be
executed at any time to query the latest information in the database, but normally this is done

weekly by an automated procedure. Every Thursday morning a process awakens and executes
all the database scripts, feeds the resulting tables to a spreadsheet application running in batch
mode and automatically pipes the output view graphs and tables to a color printer for
presentation.

MUlti-threaded RPC Clients

execute (command)
! ... ·T······~

~lli ,
~i

r.1
. .,
! i
I i

kemote I
proceduF
I I
! I
i t
1 ' \ \
! .. __ __ i

OLL
ERVER 1

ia.J

r.'l I I
~ :
t :
t :

~emote 1
procedu*e
i ;
! ~
i :
! ;
1. __ 1

OLL
ERVER 2

COLLECTOR

;r.'l;
: I

~ !
; I

1remote I
procedu*"e

I I
: j

: I
l)

OLL
ERVER 3

Figure 2. Threaded RPCs.

IMPLEMENTATION

r.'1 1 ~

Lemote I
procedu~e

! l
I 1
t :
~ :
t _ ... _~

POLL
SERVER D

All software written for SISSY is written in C++. The polling data are kept in Object Store
object oriented database management system (OO-DBMS). An DO-DBMS is used because
the polling process is a continuous loop through the collector objects. So the procedural logic of
the queries and the repetitive nature of the polling benefit greatly from the features of the
OO-DBMS. This ensures that the appropriate data persists in the program's data structures,
reducing traffic and simplifying code. The actual systems data, however, is returned as SQL
statements and inserted into two R-DBMS (Sybase) on two database workstations. The data
entities were designed using both Software Through Pictures (IDE) and ERdraw (LBL), and
the SQL create table statements (and design) were then generated automatically. The collector
programs are instances of the same C++ class with all the functional details of the RPCs hidden
away in the object methods. Each collector object invokes a public threaded method which then
calls the RPC by invoking a private method. The threads mechanisms is provided through the
SOl m_ * library routines. These require the shared data to be global to the threaded function,
which is natural.fo.r data which are static object members. There are only two tricks to get this to
work correctly. First the RPC clients must be created in series because of the way they use

operating system resources. This goes fast and is put into the class constructor. Second, the
threaded function must be of static storage class and visibility with its shared data global to the
module. This allows the same copy of the method to be shared by all objects of the class and
inhibits the compiler from putting in an extra pointer to the method and thus confusing the
threads library routines. Some of the network data is collected by NetCentral Station network
management software through the SNMP daemons executing on all computers and routers in
the systems. NetCentral is implemented on top of Sybase which makes for a seamless
integration of commercial and homegrown tools residing on a single database. The report
generation is provided by WINGZ using its hyperscript batch capability and then printed on a
Tektronix Phaser II color printer.

FAULT TOLERANCE AND UPGRADE

Currently higher fault tolerance and a natural language interface are being incorporated
into SISSY. Since there are two database computers, either can pick up the data collection of the
other if it is down. This up/down information on each node in the system will be maintained in
the database by a program which attempts a remote execution. Since each computer has a
minimum of two network interfaces (Ethernet and FDDI) if a data server is down severing the
FFDI connectivity another data server can pick up the task over Ethernet. Design is complete
and implementation underway. Also the natural language interface development has just begun
using Natural Language from Natural Language, Inc. as a conversational English database
interface.

CONCLUSION

SISSY is a portable, automated, high performance, systems analysis and maintenance
tool based upon homegrown and commercial software, which is low in manpower
requirements and provides the necessary information to successfully operate a parallel,
distributed, computing environment. It is also a successful example of simple software
development techniques which may be useful in production physics code running on the PDSF
and other HEP computing facilities.

REFERENCES

1. G. Chartrand. L. Cormell, R. Hahn, D. Jacobson, H. Johnstad. P. Leibold. M. Marquez, B. Ramsey, L.
Roberts, B. Scipioni, N. Shivapuja, G. Yost, "Physics and detector simulation facility specifications,"
SSCL-275. Attachment A, July (1990).

2. B. Scipioni. "Physics and detector simulation (PDSF) architecture/utilization", IISSCS(these proceedings).

