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Tune Shift Effect Due to the Sextupole Longitudinal Periodic 
Structure in the Superconducting Dipole Magnets 

G. Lopez and S. Chen 
Superconducting Super Collider Laboratory· 

2550 Beckleymeade Ave., Dallas, TX 75237 USA 

Abstract 

Using the standard Hamiltonian perturbation theory, 
the tune shift due to the sextupole periodic pattern in the 
superconducting dipole magnets is estimated for the Su
perconducting Super Collider (SSC) machine. The result 
indicates that this effect is of the order of 10-9

• Therefore, 
this effect can be neglected in the dynamics of the beam. 

1. INTRODUCTION 

The discovery of the sextupole, dipole, and quadrupole 
longitudinal periodic structure due to the persistent
current field in the HERA superconducting magnets at 
Deutsches-Elektronen-Synchroton Laboratory (DESY) [1] 
has raised questions about the possible effects of this pat
tern on the dynamics of the beam. Experiments carried 
out suggest that this periodic pattern is due to the strand 
pitch in the superconducting cable (s.c.), and measure
ments indicate that its wavelength is approximately equal 
to this strand pitch (9.1 ± 0.5 cm for the outer coil of 
the Superconducting Super Collider (SSC) s.c. dipoles). 
The sextupole pattern has already been confirmed in a 
short 50-mm R&D dipole magnet [2], and the effect in 
the dynamic of the beam in the SSC requires a confident 
estimate, even if it is known already that the effect must 
be small. It is possible to see this effect by calculating 
the tune shift through the Hamiltonian formalism. To 
calculate the tune shift, the superconvergent Hamiltonian 
perturbation method [3] is used, applying the standard 
canonical transformations and averaging [4]. 

II. HAMILTONIAN FORMALISM 

The Hamiltonian for a synchronous relativistic 
charged particle traveling around an accelerator ring can 
be written as [?]: 

1 e 21 e 2 e 
H = -2(P#; - -A#;) + -2(Py - -Ay) - -A, + cp cp cp 

+~Kl(S)y2 - ~ ( Kl(S) - :2) z2 , (I) 

where p is the longitudinal momentum of the particle, 
P#; = p#;jp and Py = py/p are its normalized transver
sal momenta, e is the charge of the particle, c is the 

·Operated by the Universities Research Association, Inc., for 
the U.S. Department of Energy under Contract No. DE-AC35-
89ER40486. 

speed of light, p( s) is the curvature of the accelerator ring, 
K 1 (s) describes the linear lattice of the machine (with
out longitudinal oscillation pattern), and As are vector 
potential components. This Hamiltonian can be writ
ten as H(z, y, s) = Ho(x, y, s) + V(x, y, s) + U(z, y, s), 
where Ho, V = V(I) + V(2), and U are defined by 

Ho(z, y, s) = ~ (p#; + K#;(S)X2) + ~ (Py + Ky(s)y2) , 
(2a) 

V(I)(z, y, s) = - (e/cp) A. , (2b) 

V(2)(z, y, s) = - (ejcp)(P#;A#; + PyAy) , (2c) 

and 
U(z, y, s) = (e/cp)2(A; + A~)/2 . (2d) 

The longitudinal periodic structure of the magnetic field 
induces a longitudinal field component which, in turns, 
requires the three components of the vector potential. 
For tune shift calculations, it is more convenient to ex
press the Hamiltonian in the canonical variable (J, tP), 
where J and tP are the vectors J = (J1 , h) and 
tP = (tPlt tP2)' This can be accomplished through the gen
erating function 

2 

F(8,Z,y,¢) = - Ez; (tan¢; - #;/2)//3;(8), (3) 
;=1 

where /3i(8) is the beta function associated with the mo
tion of the particle in the i (z for i = 1, y for i = 2) direc
tion; #i is its derivative with respect to s, and tPi (s) is 
the betatron phase, which is related to the beta func
tion through tPi ( 8) = tPi (0) + J; du / /3i ( U ). The action, 
Ji, the coordinates and the canonical momenta are given 

by J; = -8F/8¢; = [zl + (/3;z; - .8;x;/2)2] /2/3;, 

Xi = J2J;f3i cos tPi , (3a) 

;;:;-.;--;a 1 . 
Pi = -Y 2J;j f3i (sin tPi - '2f3i cos tPi) , (3b) 

for i = 1,2, i.e., i = z,y. Furthermore, the expression 
(2a) becomes 

2 Ji 
1io = E /3.( ) , 

;=1 I s 
(4) 

and the other expressions also become functions of the 
action-angle variables. To calculate the tune shift, the 



will not be presented here. From the expressions (13c), 
(2b), (3b), and (10), the following expressions are obtained 

V(l) = (e/pc) 23/2v [(K1.8d3/2 cos3 ¢1 

-3(K1.8d1/2 K2.82 cos ¢1 cos2 ¢2] ,and (14a) 

G(l) = - (e/cp) 23
/
2 {K~/2 t (3) cos3

-
p ¢1 sinP ¢1 gil (s) 

P=O P 

25x 

qi1'1 1 ' 
QU;2 

3 qU;l 
3 

qU62 
Qt2;1 
Q12 12;1 
Q10 12;2 
Q12 

Table 1 
Numerical Integration 

I COLLIDER I HEB 
-1.546 X 1015 -5.555 X 1012 

-8.926 X 1014 -1.734 X 1012 

-8.500 x 1014 +11.477 x 1015 
-3.363 x 1014 +8.616 X 1015 
-9.072 x 1014 -1.719 X 1012 

-2.057 X 1011 +2.141 X 1010 

-1.546 X 1015 -5.479 X 1012 

-7.227 X 1010 +1.158 X 1010 

-3Ki/
2 
K2 t t (~) cosO ¢1 sinP ¢1 cosu ¢2 sinP ¢2 gi~(s)} , 

p=Op=O p 

12;2 
>"1 
>"2 
t:..vt!a'J. 

+5.660 X 1017 +1.422 x 1017 

+1.895 X 1017 + 7 .805 X 1016 

2.7 x 10 ·14 6.82 X 1O-l'J. I (14b) 
where (J' = 1 - p, tT = 2 - p, and the functions gf1 and 
gfg are given by 

(15a) 

and 

gfg(s) = l' v({).8i/2({).82({) coso 01 sinP 01 COS
U 02 sinP 02d{ 

(I5b) 
where 0; is defined as o,(s,{) = 1Pi(S) - 1P,({) , i = 1,2 . 
Doing the partial differentiations of (14s), calculating the 
obtained average values, and making some rearrange
ments, it follows that 

< 1{u >= - C~ r {Kf [27qh;1 - 9qfl:l] 

+K1K2 [-9Q~g;1 + 18Qg;1 - 9qt1;2 - 9qrl;2 + I08Q~b] 

+K~ [27Qig;2 - 9Qib] } , (16) 

where the following definitions have been used: 

qi1;1 = 2~ 1e 
v(s)~/2(s)gf1(S) ds , (17a) 

Qil'2 = -2
1 

fe v(s){3:12(s){32(s)gil (s) ds , 
, 7r Jo 

(17b) 

Qf~;l = 2~ 1e 
v(s)~/2(s)gig(s) ds , (17c) 

and 

Qfg'2 = 21 fe v(s).8;/2(s){32(S)gfg(s) ds . (17d) 
, 7r Jo 

Thus, the tune shift is given by the partial derivation 
of this expression with respect to the action variables: 

(t:..Vj)Ki=fN/2-( = r,,£N>"j/mc2;3, j = 1,2, (18) 

where >"1. >"2 are defined as >"1 = -27dll + 9qfll + 
~Q~gl - 9Qg1 + ~qf12 + Jqf12 - 54Q~~2' >"2 = 9Q~gl -

t:..v2/a2 9.1 x 10-15 3.74 X 10-12 

18Qg1 + 9Qt12 + 9Qr12 - 108Qn2 - 27Q}g2 + 9Qg2' Table 
1 shows the results of these integrations along the Collider 
and High Energy Booster (HEB) machines of the SSC. 

As can be seen from these numerical values, the dynam
ics of the beam are not affected by the longitudinal sex
tupole oscillation patter in the s.c. magnets. It is pointed 
out that the values shown in the table can change by one 
order of magnitude, since the integration depends on the 
wavelength of the longitudinal oscillation pattern. 

Higher-order multiples have smaller contributions than 
the sextupole and can be neglected as well. However, there 
is also a longitudinal quadrupole oscillation pattern in the 
s.c. dipole magnets, but since the quadrupole multiple is 
not a symmetry allowed in the dipole magnets, the ampli
tude, a, of this oscillation is expected to be random from 
magnet to magnet. To calculate the contribution to the 
tune shift of the quadrupole longitudinal oscillation pat
tern, a simple first order in perturbation theory can be 
done obtaining a contribution l1v/a = ±10-5, where a 
must be given in Gauss/ cm. 

IV. CONCLUSIONS 

The expected tune shift due to the longitudinal os
cillation sextupole component pattern is of the order of 
10-9 • Therefore, this pattern is not relevant for the dy
namics of the particles for the SSC Collider or the HEB 
machines. 
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average of the Hamiltonian along the whole machine, C, 
and all over the betatron phases must be determined: 

< 1l >= 2171' 1
e 

ds (2:)21
27r 

127r d<Pld<P2 1l(s, <p, J) . 

(5) 
Hence, the partial derivation of this quantity with re
spect to the action brings about the tune of the machine, 
Vi = {) < 1l > /{)Ji ,i = 1,2, which is mainly given by 
the average of the term (4). The other terms, (2b) to 
(2d), give the tune shift of this value. This expression 
represents the first order in perturbation strength. The 
sextupole component of the magnetic field does not in
duce tune shift of a first order in perturbation strength. 
To calculate its tune shift effect, it is required to go to the 
second order in perturbation. 

To go to a second-order perturbation theory, a new 
canonical transformation must be made, (4), K). This 
canonical transformation is close to the identity (the orig
inal action-angle transformation (3» and is characterised 
by the generating function 

2 

Fnew(s, <p, K) = :L Ki<Pi + G(s, <p, K) , (6) 
i=1 

where G is a function to be determined. The rela
tion between the new variable (4), K) and the old ones 
(<p, J) is given by the expressions Ji = {)Fnew/{)<P = 
Ki + G~. and 4>; = {)Fnew/{)Ki = <Pi + GK" where 
the subindex means partial differentiation. In addition, 
the new Hamiltonian, ii(s, 4>, K), is given by 

2 2 

il = :L K;/f3i(S) + :L ({)G/{)<Pi)/f3i(S) + {)G/{)s + 
i=1 ;=1 

Doing a Taylor expansion of the last two terms on the 
right hand side of (8), it follows 

i=l 

2 

+ :L ({)G/{)<Pi)/f3i(S) + {)G/{)s + V + 
i=l 

2 

+:L[VK;G~i-V<I>;GKJ+U(s,4>,K)+ ... , (8) 
i=l 

where a possible quadrupole term in (2) has been ex
tracted from V and put together with the first-order zero 
average terms, first line in (8), and the term U has been 
put together with the second-order terms, third line in (8). 
In this expression, it is possible to make 

(9) 

"legally" deleting the term V from the Hamiltonian. The 
soluion of this partial differential equation brings about 
the following expression for G (see Reference [5]): 

G(s, <P, J<) = -1$ V(~, <P - tP(s) + tP(~), K) d~, (10) 

where the components of the function tP are defined 
by tPi (s) = I; du / f3i (u). Using this expression in (8), the 
full second-order approximation can be solved, neglect
ing higher-order terms. Consequently, the second order in 
perturbation Hamiltonian can be written as 

where Jill, Ji12, and Ji 22 are given by 

(12a) 

and 

(12c) 

where, using (2b) and (2c), the decomposition V = 
V(l) + V(2) has been made, and G(i) for i = 1,2 is de
fined as G(O = - Ios 

V(i) (~, <P - tP(s) + tP(e), K) de. 

III. SEXTUPOLE TUNE SHIFT 

The components of the vector potential resulting from 
the sextupole longitudinal oscillation pattern in an s.c. 
dipole is given by [7]: 

A~3) = _(3z2 y2 - y4)v/5 , 

A~3) = +(3z3y - zy3)v /5 , 

A~3) = _(Z3 _ 3zy2)v , 

(13a) 

(13b) 

(13c) 

where v(s) is the function responsible for the longitudinal 
oscillation pattern (v is its differentiation) and is given 
by v(s) = (b3 + asinll:s)/3, where b3 represents the sys
tematic component, a represents the amplitude of the os
cillation pattern, and II: denotes the wavelength n~mber of 
the longitudinal periodic pattern. The contribution of the 
systematic sextupole component average value, b3 , is well 
known, and it will be ignored in the calculations. 

It is not difficult to see from (13), (2), (3a), (10), and 
(12) the following order of dependence in the action for 
the second-order terms of the Hamiltonian, O(Ji ll ) '" K2, 
O(Ji12) ....., K 3, and O(Ji22) '" K4. Therefore, the terms 
(12b) and (12c) are expected to be very small, and they 


