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Abstract 

We study a solvable QCD-like toy theory, a generalization of the Nambu­

Jona-Lasinio model, which implements chiral symmetries of light quarks 

and heavy quark symmetry. The chiral symmetric and chiral broken 

phases can be dynamically tuned. This implies a parity doubled heavy­

light meson system, corresponding to a (0-,1-) multiplet and a (0+,1 +) 

heavy spin multiplet. Consequently the mass difference of the two mul­

tiplets is given by a Goldberger-Treiman relation and gA is found to be 

small. The Isgur-Wise function, {(w), the decay constant, fB, and other 

observables are studied. 
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I. Introduction 

In recent years, QCD applied to systems containing a singl~ very massive quark, where 

one can imagine the limit M ~ 00 to be a reasonable physical approximation, has 

been the subject of considerable attention [1-5). The pseudoscalar and vector mesons 

containing one very massive and one light quark become degenerate in the M ~ 00 

limit, due to a heavy quark spin symmetry again valid to 11M. Moreover, Isgur and 

Wise [1) pointed out that transition amplitudes, such as weak decays, involving heavy 

quarks are described by a flavor independent function of the invariant difference in 

4-velocities, {(v' . v), and therefore a heavy quark spin-flavor symmetry, SU(2NJ) 

exists, valid to order 1 1M. Georgi has given a useful field theoretic construction of 

this limit (5), and has studied the consequences and phenomenological applications of 

the theory, such as the computation of the QCD anomalous dimension which controls 

the perturbative evolution of {(v'. v) with scale for v' . v < 1. 

For many purposes one must also implement the chiral symmetries of the light 

quarks, in addition to the heavy quark symmetry. The heavy quark (HQ) and chiral 

light quark (LQ) symmetries together control the interactions of heavy-light (HL) 

mesons with pions and K -mesons, etc. Several authors have written down model 

independent chiral Lagrangians which involve these symmetries at the meson level 

[6-12]. A number of studies of the phenomenological applications of these chiral 

Lagrangians have been undertaken, such as the computation of the chirallog radiative 

corrections to {(v' . v), (7) associated with SU(3) x SU(3) breaking terms, the study 

of radiative and meson decays of heavy mesons [11], and chiral dynamics including 

the effects of excited heavy mesons [12]. 

The chiral Lagrangian introduced by Wise [6] represents a straightforward imple­

. mentation of tJte..heavy_quark and .. light flavor symmetries in the nonlinear cun-ent 

fonn. In this form one need only identify the linear flavor symmetries, like isospin or 

SU(3), and the chiral effective Lagrangian, to leading order in the momentum expan­

sion, is automatically determined, up to an unspecified axial vector coupling constant 

gAo This effective Lagrangian is then manifestly invariant under the usual global flavor 
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symmetries, and the full set of chiral transformations are local gauge-like transfor­

mations which are functionals of the pions. The underlying chiral representations of 
the heavy mesons need never be specified. Model independent approaches are clearly 

the most reliable way in which to minimally implement the physical symmetries. 

We may wish, however, to go closer to the underlying chiral dynamics than the 

model independent appro~hes allow. We may pose additional questions within dy­

namical models which can reveal additional physical consequences to the real world. 

For example, is there a more primitive chiral form of the Lagrangian in which the ex­

plict chiral representations of the heavy mesons are identified? A related question in 

the broken phase is: what is the analogue of the Goldberger-Treiman relation in the 

heavy meson system, i.e., what receives mass from the chiral condensate's mass gap? 

In the case of the nucleon:-meson system we can similarly write the chiral Lagrangian 

in the nonlinear current form, never having to specify the precise chiral representa­

tions of nucleons. However, if we ask for the linear chiral form we also know the 

answer: the left:"handed (right-handed) nucleon is assigned to a (0, l), «l,O» repre­

sentation under SU(2)R x SU(2)L. Most of the nucleon mass arises from the chiral 

condensate, ~r the VEV of E which is (i, i). We know this because the Goldberger­

Treiman relation yields the pion-nucleon coupling constant in terms of the nucleon 

mass 9NNft ~ mN/fft, and GA ~ 1. 

In the case of heavy mesons, however, it is clear that the meson mass arises 

primarily from the mass of the heavy constituent quark, such as the b-quark, and the 

chiral mass gap is a perturbation. Our question then is related to the outcome of a 

gedanken experiment: what happens to the heavy-light meson spectrum if we could 

somehow restore the chiral symmetry, maintaining the other features of confining 
QeD? While the nucleon mass go~ to zero in this gedanken limit, leaving degenerate 
(approximately) massless left- and right-handed states, the heavy meson masses must 

remain (approximately) unaffected. Yet, the explicit linear chiral symmetry SU(2)L x 

SU(2)R must somehow be realized in the heavy meson mass spectrum in this limit. 

This leads to the conclusion that the ground4;tate must become doubly degenerate 

with even and odd parity mesons Bl and B2 respectively, and these must form the 
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SU(2)L X SU(2)R representations in the linear combinations (Bl ±B2) f J2. Therefore, 

the breaking of the chiral symmetry leads to a mass gap between these parity partners 

and associated pionic transitions between parity partners will occur (In Appendix 

B(ii) we give a brief schematic discussion of parity doubling). 

It is difficult to imagine that a simple potential model can capture this phe­

nomenon. The chiral symmetry limit is relativistic, and the chiral symmetry breaking 

is a dynamical rearrangement of the vacuum. Thus, the naive picture of a heavy me­

son as a boundstate of a heavy quark and a constituent quark will miss those aspects 

of the physics which involve the necessary mixing of the parity doubled states. This 

will show up in the present analysis in the meaning and quantitative estimate of gA, 

and the analogue to the Goldberger-Treiman relation. 

Thus, to better unde~tand these issues it is interesting, if not essential, to study 

simple, solvable, strongly coupled toy field-theoretic models in which both heavy 

quark and chiral symmetries are present at the fundamental quark level, and the 

dynamics of chiral symmetry breaking is made explicit. We consider presently the 

simplest such scheme. We emphasize at the outset that this toy model is unrealistic 

and is intended only to convey the schematics of QeD chiral dynamics in heavy­

light mesons (although we will brazenly attempt a fit to data). The simple model we 

consider is based upon a local gluonic current-current interaction Lagrangian: 

(1) 

where the (i, j) sums extend over all of the fundamental fermion flavors, both heavy 

and light, and we sum over the octet color index A. We view eq.(1} as essentially a 

QeD-inspired generalization of the Nambu~Jona-Lasinio model. For small g eq.(1) 
corresponds to the iow-energy perturbative interaction generated by the exchange of 

a "massive gluon" of mass AI v12. We propose to study this model using the technique 

of the large-N expansion, or equivalently, the fermion bubble approximation, with a 

cut-1>ff at A. The model is exactly solvable in leading order. 
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Solving the theory in the leading large-N approximation is equivalent to factoriz­

ing eq.(I) into auxiliary fields describing the composite pions and heavy-light mesons, 

at the scale A and integrating out the heavy and light quarks to generate the effective 

Lagrangian at a scale p. < A. The hadrons in our model, both light and heavy, appear 

as dynamically generated boundstates. In the light quark, meson sector we recover 

the chiral quark model of Manohar and Georgi [13] (with g~ = 1). In the heavy me­
son sector we produce various boundstates of the heavy quark and the light quarks, 

and the full effective Lagrangian of these heavy meson boundstates coupled to light 
mesons is determined. The effective Lagrangian is manifestly heavy quark-spin and 

chirally symmetric. 

We will make certain further simplifying assumptions, keeping only terms in the 

renormalized effective Lagrangian that are - 0(1) or - O(p.ln(A/p.)/A), while drop­

ping subleading terms - O(p./ A). This is a drastic approximation from the point 
of view of the quantitative application of the model, but adequate for capturing the 

schematic of the chiral dynamics. We emphasize that we have in mind, presently, 

a hierarchy of scales, p. < A < < M, where M is the heavy quark mass scale. The 
inomentum-space loop integrals will extend from p. to the cut-off A. We view in the 

context of the model A to be a physical scale below which the theorY is nonpertur­

bative in g, but above which an effective softening of the point-like approximation 

due to the perturbative l/q2 gluon propagator takes place. While it is tempting to 

identify A with - AQCD, we would hope that A-I GeV emerges from a fit to the 

physical quantities derived in the model. In fact, the simplest attempt at a fit to fs 
and ff( yields A - 1.35 GeV, and most of the light sector observables are obtained 
within a factor of two. J.I. is an infrared cut-off which we would like to identify with 
the scale of light constituent quark masses. " 

"In the unbroken chir8.1 symmetry phase the model produces the necessary dE. 

generate parity doubling of the threshold spectrum of heavy mesons. In addition 
to the usual pseudo-scalar and vector HL mesons (the B and B* mesons which 
form a (0-,1-) heavy quark symmetry multiplet), there is necessarily a scalar and 

pseudo-vector HL meson boundstate generated, which is a consequence of the chiral 
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symmetry. This is identified with the si' = ~ - p-wave radially excited mesons (in 

the D-system this is distinct from the observed (D2) states which are s;' = 1-, (see 

Ming-Lu et.al. [14]). Unfortunately, these states have not -been observed and will be 

fairly broad resonances, but their effects may ultimately be detectable [12]. Techni­

cally, in the symmetric phase we must hold /J fixed at a nonzero value to protect from 

infrared singularities. 

While the HQ symmetry maintains the degeneracy within the (0-,1-) and (0+,1 +) 

multiplets, unbroken chiral symmetry implies the degeneracy of the two multiplets 

themselves. As we vary the model's coupling parameter to dynamically induce the 

chiral symmetry breaking, the theory develops a mass gap. This leads to a calculable 

mass splitting, elevating the (0+,1+) HQ multiplet and depressing the (0-,1-). The 

mass gap between the groundstate mesons and the resonances is constant in the M -+ 

00 limit and is given essentially by '" gfff. This is the analogue of the Goldberger-

7reiman relation of the theory, and is probably more general than our specific toy 

model result. Moreover, as a general result of the parity doubling, the axial vector 

coupling constant gA is not necessarily expected to be close to unity. In fact, gA tends 

to be small based upon our fit, R: 0.32 (see Appendix B(ii); it occurs here as a term 

of order In(A/IJ)/A, which is subleading to 1). This is a prediction which is thus far 
consistent with the upper limit in processes like D* -+ D + 7r, though a measurement 

of the full D* width is still lacking to date. In the limit of very low q2 pion emission 

we can decouple the heavier parity doubling states to return to the effective chiral 

Lagrangian for the (0-,1-) groundstate mesons of ref.[6]. There remain in the low 

energy effective Lagrangian potentially important effects of the heavy resonances in 

chiral perturbation theory [12]. 

Thus, a key result we find is that the chiral mass gap, and hence an analogue 
. Goldberger-Treiman relation, refers to the splitting between parity conjugate heavy 

meson multiplets in a heavy-light meson theory, i.e., heavy meson chiral theory is 

a parity doubled implementation of chiral symmetry. There are other issues of the 

applicability of the chiral theory and its consequences which the present analysis will 
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attempt to address. Though not entirely realistic, the model is completely solvable 

for various observables. fB is determined in terms of the short distance cut-off on 
the theory and the Isgur-Wise function is computed. The Isgur~Wise function result 

in the preSent model involves issues of going beyond the chirallogs, which arise also 
in matching composite mesons onto QeD. We will discuss this issue which is related 

to consideration of reparameterization invariance [14-16]. 

II. Toy Model Field Theory with Chiral and Heavy Quark Symmetry 

(i) The Light Quark Chiral Dynamics 

Let us write the effective Lagrangian in the light quark sector, including the 

current-current form of the light fermion interaction Lagrangian of eq.(l): 

_ g2_ .,\..4 _ .,\..4 

.c = t/J(il! - mq)t/J - A2 t/J'Y#A2"t/Jt/J'Y#A2"t/J (2) 

For concreteness we will take. t/J = (u, d), .,\..4 are color matrices, and in the limit that 

the quark mass matrix mq -+ 0, we have an exact chiral SU(2)L x SU(2)R invariant 

Lagrangian. This is a single gluon exchange potential, generated by a fake, mas­

sive gluon of mass A/..J2. We treat the physics on scales rl < A2 using eq.(2), in a 

fermion bubble approximation, imposing a UV loop momentum cut-off of A. Well 

above the scale A we would imagine the potential to soften into a 1/ rl perturbative 
gluon exchange, hence A plays the role of a matching scale between strong infra-red 

physics and weak ultraviolet QeD. Finally, the "theory" in the light sector consists 

of integrating out the fermions down to an infrared scale II, keeping induced terms 
of order A2, and In(A/p) in the unrenormalized Lagrangian (we will discard pertur­
bative terms that are finite, thus subleading, in the infinite A limit as a simplifying 
approXimation). This generates an effective Lagrangian of composite particles. This 

is our essential approximation to the infra-red strong coupling behavior of QeD, or 

the "brown muck" of heavy-light physics. Overall, this is certainly a drastic approxi­
mation. Truncating on dim = 6 operators is, in a sense, a pure s-wave approximation 
to QeD, and cannot dynamically confine the quarks and discarding the subleading 
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terms will limit the quantitative reliability of the model (the model could easily be 

improved). The physical value of A is determined in principle by fitting to the derived 

phenomenological parameters. The theory will contain the dynamical chiral symme­

try breaking, and will determine a chiral Lagrangian of the heavy-light ·system. 

Upon Fierz rearrangement it is seen that the interaction Lagrangian of eq.(2) 

contains the Nambu-Jona-Lasinio model. The subsequent analysis is standard. We 

can factorize eq.( 2) into a Yukawa theory with a static auxiliary field E = i( 0' + i1rG r') 
on the scale I-' "-J A and then integrate out the fermions to determine the effective 

Lagrangian at scales I-' < A. The field E is 2 x 2 complex at this stage, which implies 

parity doubling of the 1r and the parity partner of 0', the fJ is also present. This 

analysis is summarized in Appendix B. 

The light sector effeCtive Lagrangian at scales I-' < A can be identified with a 

linear O'-model: 

£L = 'f/J(i' - mq)'f/J - g'f/JLE,.'f/JR - g'f/JRE!'f/JL 

+ Tr(8,.E!8PE,.) - m! Tr(E!E,.) + ICTr{mqE,. + h.c.) 

+,X Tr(E!E,.E!E,.) (3) 

E,. describes the renormalized composite light mesons. We have written the renor­

. malized effective Lagrangian, so that 9 = 9 /.fZ2. Z2 = (g2 N / 161r2) In( A 2/1-'2) is the 

finite, induced wave-function renormalization constant of the E field. 

A (TrEtE,.)2 term could be included in eq.(3), though it is subleading in Nc , 

and for SU(2) x SU(2) with (0',1r) real this is equivalent to the quartic term we have 

included. The theory can be tuned by choosing sufficiently large coupling 9 to develop 
a ,chiral symmetry .breaking condenSate,. thus generating a constituent quark mass. 
The chiral symmetry breaking lifts of the isovector, 0+ (Im(1r)) states The Re(1r) 0-

pion, becomes the Nambu-Goldstone mode. In QeD the residual U(l) symmetry is 

broken by anomalies and the effects of instantons. This generates additional terms 

such as an extra 't Hooft determinant, det E + h.c. term, which elevates 1m( 0') = fJ. 
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Any additional necessary Wess-Zumino terms should be incorporated as well. 

Since the light sector dynamics is not our principal concern in the subsequent 

analysis, we will henceforth assume that the fields (O',,ra) Comprising E are real, so 

E henceforth contains only the 0- ,ra isotriplet and the real 0' isosinglet. Therefore, 

eq.(3) becomes a linear version of the chiral quark model ala Georgi, Manohar, and 

Holdom [14]. Nonetheless, we can dynamically put the model either in a symmetric 

phase, m~ > 0, by choosing rT N /47r2 < 1, or in a chiral symmetry breaking phase 

m~ < 0 with g2 N /47r2 > 1. The critical bare coupling corresponds to m~ = 0 as 

IJo -+ o. For further discussion of the light quark sector see Appendix B. 

{ii} The Heaf11J-Light Quark Dynamics 

Now we focus on the dynamics of mesons containing one light and one heavy quark. 

The model produces one boundstate per channel in the fermion bubble approximation. 

We can conveniently solve the theory by factorizing the heavy-light (HL) interaction 

into auxiliary background interpolating fields with Yukawa couplings to heavy and 

light quark vertices. The original four-fermion interaction is recovered when the 

auxiliary fields are integrated out. Upon integrating out the quarks on scales A to 

1', the auxiliary fields acquire induced kinetic terms on the scale I' and thus become 

dynamical heavy-light mesons ("B-mesons"). In this way we derive the effective 

Lagrangian for the HL mesons coupled to the dynamical pions. 

The heavy-light fermion sector interaction Lagrangian, together with the HQ 

kinetic term, involves the HL cross-term of eq.(I) and can be written as: 

_ 2g2 _ ,.\,A _ ,.\,A 

L,HL = Q(i' - M)Q - A2 Q'YI'TQ tP'Y'"'TtP (4) 

Here we may-generally take- Q = (t,b,c .. ) to be a multiplet of NH heavy quarks, 

and M the heavy quark mass matrix. We will presently consider, however, just a 

single heavy flavor in the following discussion. 9 should be viewed as the effective 
coupling at the scale A in both the light sector and the HL sector of our model. (In 

a more detailed discussion one might wish to distinguish the coupling constant in the 
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heavy-light effective action from that of the light-light action at A; we ignore this 

possibility in the present paper). 

Upon Fierz-rearrangment of the interaction, again keeping only leading terms in 

l/Ne and writing in terms of color singlet densities, eq.(4) takes the form: 

g2. . 
£HL = Q(i' - M)Q + A2 (ct1/JitPQa - ct'Y51/JitP"y"Qa 

(5) 

where i are the isospin indices, and a the heavy flavor indices. 

In the heavy quark limit we introduce a projection onto a heavy quark field with 

a well defined four-velocity v". Presently we rewrite the full theory identically in 

terms of a single four-velocity sector, corresponding to the four velocity of the heavy 

constituent quark or equivalently the boundstate heavy mesons: 

Q ~ 1 ~' exp( -iMv. x)Q(x)" (6) 

Note that (1 + , )Q,,/2 = Q", i.e., the field Qv always carries an implicit factor of 

(1 +, )/2. The HQ kinetic term then takes the form: 

(7) 

The Isgur-Wise flavor symmetry is just the group of SU(NH) rotations on Q:, and 

is now a manifest symmetry of our Lagrangian. We will consider just a single heavy 

flavor in the following. 

We now rewrite the terms of eq.(5) in a manifestly heavy spin symmetric form, 

. 'letting Q ~ Q" and.Iurther~rearranging 'Y-matrices. Then, eq.(5) takes the form: 

Q"iv"o"Qv + i~2 (Q"1/JitiJQ,, - Q,,'Y51/JitiJ'Y5Qv 

- 1-, ~1-, - 1-, ~ 1-, ) 
-Q,,'Y"-2-1/Ji1/J -2-'Y"Q" + Qv'Y"-2-'Y5¢i¢ 'Y5~'Y"Qv (8) 
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We have now brought the interaction to a form which can be factorized by introducing 

heavy static auxiliary fields, (B, B'). To do so we must introduce four independent 
fields, B (B5) are 0+ (O-) scalars, while BI£ (B~) are 1- (1+) vectors. These form a 

minimal complete set of auxiliary fields needed to factorize eq.(8) in the HQ limit. 

Eq.(8) then becomes: 

(9) 

Upon integrating out the B fields in eq.(9) we reproduce eq.(8). (Note that the B 
fields do not yet have canonical dimension of heavy meson fields; see Appendix A). 

Eq.(9) is a heavy-spin symmetric form. We c~n assemble the auxiliary fields into 

complex 4 multiplets under 0(4) = SU(2)h x SU(2)" where SU(2)h (SU(2),) is the 

little group of rotations on Q" (1/J and gluons) which preserves vI£' One heavy spin 4 

multiplet consists of the 0+ scalar together with the abnormal parity (1+) vector as 
(B, B51£) (the four-velocity label", and isospin i indices are understood): 

(10) 

The other 4 multiplet consists of the usual 0- scalar and a 1- vector (B5, BI£): 

8 = (i"l~ + 'YI£BI£) (1 ~.,) (11) 

'Under heavy spin '0(4) =SU(2)h x 'SU(2), rotations the (B,B51£) mix analogously 

to (B5, BI£). Note that VI£BI£ = 0 always. We have introduced the caligraphic B and 
8' with the explicit projection factors. Falk has previously written similar effective 
"superfields" for excited mesons in model independent analyses; he includes an extra 
factor of "15 (relative to us) in his writing of effective fields for the (0+, 1 +) multiplet 
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in a model independent approach [12J; for us the field B' has overall odd parity while 

8 is even. 

The factorized heavy-light interaction Lagrangian then takes the compact form: 

£HL = Q"itl'8,..Q" + gQ" (-iIF,5 + 8') ,pi + h.c. 

+A2 [Tr(BB} + Tr(BS}] (12) 

Notice that the combination _i,5B'i + Bi is coupled. We emphasize that eq.(12) is 

exactly equivalent to the full four-fermion theory in the heavy quark symmetric and 

leading large-N limit eq.(4). The theory forces a parity doubling of the heavy mesons 

upon us because the chiral symmmetry is controlled dynamically by g. For weak 9 

the linear chiral invariance is realized and the theory must contain parity rloubled 

meson states. Heavy spin symmetry organizes the parity partners into heavy spin 

4-multiplets. The effect of chiral symmetry breaking on the spectrum can now be 

investigated by solving the theory and choosing the broken phase. 

See Appendix A(iii) for a discussion of normalization conventions. 

III. Full Effective Lagrangian 

We now proceed to "solve" the theory. The full effective Lagrangian for the 

heavy mesons is derived by integrating out the heavy and light quarks in eq.(12} 

over momentum scales p. < k < A, keeping th~ leading induced terms. Details 

of the explicit calculations are given in Appendix A. We begin the discussion with 

the use of the linearly realized chiral symmetry form, 1: = i(O' + i1r . 7"), and we 

derive the nonlinear realization subsequently below. The loop integrations result in 

·;an unrenormalized effective-'Lagrangian. By performing a conventional wave-function 
renormalization and several field redefinitions we arrive at the full effective action valid 
to O(p./ A)2: 

1 - 1-
L,LH = -i2 Tr(Bv . aB) - i2 Tr(B'v· as} 
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-~ [Tr(BuB) - Tr(B'u8') + Tr(B'1I"· 1'B) + Tr(B1I" . 1'8')] 

+ ~ [Tr(B(u2 + 1I"2)B) + Tr(B'(u2 + 11"2)8')] 

+ 4f7r Tr [B,),5(,1I". 1')B - B,')'5('1I". 1')8' - B,')'5('q)B - B,),5(,q)8'] 

+ a [Tr(BB) + Tr(B'B')] (13) 

The light quark PCAC masses are contained in the "shifted" q field, if = q + 
2mqvz;./ g. The parameters of this Lagrangian are determined as: 

gr 
L... h _ 2g2VZ2A. 

- VZ2' r - ZI ' 

a - ;. (A2 - ZI(A + ,.,,)/211") (14) 

where: 

(15) 

The parameters defined above arise from the loop calculations of Fig.(I) and Fig.(2) 
and are presented in Appendix A. The gr, hr and kr are dimensionless. They are 
determined in principle by fitting the observables of the model as in Section IV. We 
'will generally take,." to be of order the light quark constituent mass, and it will 

henceforth be neglected in the expression for Zl. Note that terms like 6,),5(q,q)B 
are potentially induced, but they are subleading as ,..., O(I/ln(A/ ,.,,», relative to the 

termS we keep. 

We now identify the chiral representations of the composite fields in the effec­
tive theory. This can easily be done by return.ing to eq.(12) and examining which 

heavy meson linear combinations couple to tPL and tPR. If we define the following 
combinations: 

, 1 
Bl = v'2 (B - i8') ~ = ~(B+i8') (16) 
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inspection of eq.(12) reveals that 8 1 (82) couples to 'f/JR = (1 + ,,(5)'f/J/2 ('f/JL = (1 -

,,(5)'f/J/2). Thus, the chiral representation of 8 1 (~) must be (O,~) ((i,O)). Writing 

in terms of E = ~(u + i1r • r) (we will henceforth ignore the mq contribution which 

can easily be restored by shifting u -+ if), the effective Lagrangian becomes: 

1 - 1--i'2 Tr(81v· a8d - i'2 Tr(82v. a~) 

-~ [Tr(B1EtB2) + Tr(~EBl)] 

+ (~+ ~E.tE) [Tr(B18 1) + Tr(~B2)] 
+ ~~ [Tr(8n5(,Et)82) - Tr(~"(5('E)Bd] (17) 

Inspection ofthe effective Lagrangian (as well as eq.(12)) confirms that it is manifestly 

invariant under SU(2) x SU(2) provided the fields transform as: 

(18) 

We now see that indeed, eqs.(13, 17) have a structure analogous to that of a parity 

doubled nucleon theory, with B '" (n,p)p=+h the normal even parity nucleon doublet, 

and 8' '" (n,p)p=-l the odd parity doubling partner. We give a brief synopsis of such 

a syStem in Appendix B(iii). The essential results are that the axial vector current 

couples only through the perturbative kr term and describes transitions between 

parity partners, and the parity degeneracy will be lifted by (u). 

Note that eqs.(13, 17) describe the heavy meson dynamics in either a broken or 

an unbroken phase, i.e., it is simply a linear u-model form. In the spontaneously 
broken phase of-the heavy meson theory we can pass to the the nonlinear realization 
by replacing E with a unitary matrix field which is a function of angular pion fields, 

and u is now decoupled. Thus, the nonlinear realization is: 

E = ~/II' exp(i1r' r/ III') (19) 
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We can pass to the current form by performing the chiral field redefinitions: 

(20) 

We then have the Lagrangian: 

1 - 1 --2 Tr(Bl v. (ia + .7dB1) - 2 Tr(B2v· (ia + .7R)~) 

grffr [- - ] --4- Tr(Bl~) + Tr(~Bl) + h.c. 

+~r [Tr(B1B1) + Tr(~~)] 

-i~ [Tr(BI151,.A"~) + Tr(~151,.A"Bl)] (21) 

where: 

( 
hr 2) ~r = ~ + 4Aftr (22) 

and the chiral currents are: 

1 
V,. = 2(.7,.,R + .7,.,d 

(23) 

As usual the .7 .. are matrices acting on the isospin indices of meson fields. The mass 

matrix of the chirally redefined heavy mesons is at this stage non-diagonal. We should 

mention that if an extra 15 were included in the definition of the parity partner, then 

the axial current components of the .7,.,L and .7,.,R terms would carry 15 factors, while 

no 15 would occur in the kr term. 

Note that the fields 8 1 and 8 2 are of m~ed parity. The mass matrix can readily 

be diagonalized now that the Lagrangian is written in -the· current form: 

- I 8'= -(Bl-~) ..f2 
(24) 

with eigenvalues 2~r - gftr/2 and 2~r + gftr/2 respectively (recall that our normal­

ization conventions imply the physical mass shift is 6M if the Lagrangian contains 
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i6M(tr 88); see Appendix A). The mass eigenfields are nontrivial functionals of the 

pions through the absorbed e, et factors as in eq.(20). The Lagrangian now becomes: 

1 -= - 1 ~ -
C,LH = -2 Tr(8v. (i8 + V)8) - 2 Tr(8 v . (i8 + V)8') 

+ (Ar - gr{" ) Tr 88 + ( Ar + gr{" ) Tr"8 B' 

1 -= - 1 -:d --2 Tr(8( v . A)8') - 2 Tr(8 (v· A)8) 

-i kr Tr 8"(5../. 8 + i kr Tr B "(5 ../. B' 
2 2 

(25) 

Note the appearance of the off-diagonal pionic transition terms of the form 8( v· A)8 . 
At this stage it can be seen that these terms are associated with a Goldberger-Treiman 

relation, by taking A" = 8,,11" r/ I", integrating by parts, and using the equations of 

motion. One finds that the 8'811' amplitude has a coupling strength gss'" = gr, and 
this is seen to be given by AM/I".1 

We can decouple the heavier field 8 to leading order in the mass gap gr/" by 

''integrating it out" (which amounts to setting it to zero in leading order). We can then 

perform the residual mass redefinition: 8 -+ exp( -iM v· x)8 where M = 2Ar - gr I" /2 
to yield the final result: 

C,LH = -! Tr 8iv· (8 + V)8 - igA 
Tr 8"(5../.8 

2 2 
(26) 

where we now discover that: 

(27) 

Our fit to the model yields gA = 0.32 (see eq.(38) and discussion). Eq.(26) is equiva­

lent to the point of departure taken by ref. [6] in writing effective Lagrangians involving 

IThe coefficient of this term corresponds to h = 1 and kr = 9 in Falk's notation [12J. Our 
conclusion is that kr = gA < h = 1, and following Falk's analysis the chiral perturbative contribution 
of these resonances, e.g., to ID./ID, is significant. 
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simultaneous heavy symmetries and chiral symmetries. Use of this effective Lagragian 

is justified so long as q is small compared to the mass gap. We see that 9A here arises 

from the perturbative kr term, which is subleading to unity in our expansion. 

In summary, the central observation of this analysis is that the underlying chiral 

representations of the full HL meson theory is a parity doubled scheme. There are two 

general implications of such a scheme: (1) The mass gap between the parity partners 

arises from (0'). Thus a Goldberger-Treiman relation refers, not to the overall mass 

of the B mesons - M, but rather to the mass splitting between the even and odd 

parity multiplets: 

(28) 

Here 9sS'fr = 9r is the BB'7r transition coupling constant and is the analogue of the 

9NNfr in the nucleon system. We note that the light quark constituent mass is given 

by me ~ 9r/fr/2 SO we expect AM ~ 600 MeV, however this must be obtained in 

principle from a fit of the model to all data (see section IV.(ii)j unfortunately, without 

exceptional circumstances the width of this state is too large for direct observation.) 

(2) 9A is not necessarily expected to be - 1, being given by a subleading perturbative 

contribution, kr' alone. This is essentially a consequence of parity doubling and 

contrasts the chiral quark model in which, 9~ = 1 is a leading term. The fit we 

present below in section IV(ii), which is crude, yields 9A ~ 0.32. This result may be 

indicated in the D-system where D* ~ D + 7r gives 9A < 0.7 [6, 11]. 

IV. Other Observables: Is, and Isgur-Wise function 

(i) HeatJY Meson Decay Constant, Is 

We presently. compute the heavy meson decay constant Is. Consider the heavy­

light axial current Q-y",rt/J. We can compute the renormalized matrix element: 

rz;-l J a'x e-iMv.:r (81 Q(xh",-y5t/J(x) 10) = Is.jMsv", +... (29) 

As a consequence of the heavy quark spin symmetry, B5 and B~ have identical decay 
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constants for the axial vector current, while B and BJ.I have the same decay con­

stants for the vector current. The B-meson must have a properly normalized kinetic 

term, which includes the finite renormalization effects, B -+ J ZI1 B. We adopt a 

conventional normalization in which we expect fs ~ 180 MeV. 

The amplitude on the lhs takes the form: 

2i~! (~~4 TrhJ.l"Y
5
(, - p + mq)(l- ,)(i"Y

5
If' + "YIIBII)]«k _ p~2 _ {l2) (v ~ k) 

_ 16!;~VJ.lB5 [A2 - p.2 + 7rV' p(A - p.) + ~7rUA - {l2In(A2 /p.2) + O«v. p)2)] 

(30) 

We see that the integral involved here is identical to II of eqs.(60, 62), and thus the 

equations of motion can be used for the B5 fields. Upon use ofthe equation of motion, 

shifting V· P -+ 2~ + ... = 2A2/Z1 - A/7r + ... a large cancellation is seen to occur on 

the rhs of eq.(30) leaving: 

We thus obtain: 

-+ 16!;~VJ.lB5 [27rA
3/Z1] = ~VJ.lIf' [A2/~ 

'MI = (A)3/2 4-/21r 
Vi~S s g2y0V 

(31) 

(32) 

For example, let g2N/47r2 = 1 and use fs = 180 MeV, Ms = 5 GeV as input 

parameters, to find A = 1.35 GeV for Nc = 3. Remarkably, our result is insensitive 

to the light quark masses. 

fs is a measure of the wave-function of the meson at the origin in a nonrelativistic 
. potential model.·· We -can 'compute' the wave-function in principle in our model by 

point-splitting the current in eq.(29): 
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where N is a normalization factor. This essentially replaces the momentum space cut­

off procedure by a point-split regulator, and A /"oJ lIE. The wave-function is singular 

at the origin, and is not normalizable without a spatial cut-off of the normalization 

integral at 1 I A (our theory makes no sense at shorter distances than this). Thus the 

wave-function is at the origin is given effectively by: 

1'It(O)\/"oJ A 2/ rz; _ (A)3/2. (34) 

This implies that the result for IB is insensitive to infrared parameters such as the 

light quark masses in our model, and indeed we find IB,. = IB,u' This is a defect of the 

model, but it is an expected result ot an extremely relativistic, potential dominated 

system. In this sense, QeD lies somewhere between this extreme result and that of 

a nonrelativistic potent~al model. 

(ii) Fitting the model to data: 

While the model we have presented is not likely to be quantitatively successful, 

we can attempt a fit to observables, and predict some features of the HL meson 

system. We use as independent inputs Iff = 95 MeV, and IB = 180 MeV for MB = 5 

GeV. The latter implies A = 1.35 GeV as discussed in the previous subsection. We 

see, owing to the smallness of the ratio I! I A 2 = (K. - 1) I g2, that K. = g'l N /47/"2 is 

very close to unity. In defining Z2 we cut-off the renormalization group flow at an 

infrared scale JL "'oJ me taken as the approximate constituent light quark mass. Then, 

to obtain Z2 = ~K.ln(A2/m~), we self-consistently solve for the constituent quark 

mass me = ~gl.I";Z2(me). This yields: 

g'lN 
. 47/"2 = 1.065; . 9 = 3.75 A = 1.35GeV me= 169 MeV 

(35) 

me is about a factor of two too small. We can moreover use the pion mass, m"" to 
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extract the light quark PCAC masses: 

gNA2 
W = 2-/Z2 = 0.25 (GeV)2 

81r 2 
(36) 

hence, mu + met = 8.6 MeV, which is to be compared with the conventional - 15 

MeV, and is small. Also, m. R:: mi(mu + met)/m; R:: 107 MeV is small. 

The mass gap between the excited 0+ and groundstate 0- mesons is then: 

AM = grfft R:: 2mc R:: 338 MeV [600 MeV] (37) 

The result in brackets obtains when the known constituent masses are inputted. The 

decay width r(o+ -+ 0-1) is given by (AMI f,..)2Ik",I/81r. This is much too large for 

observation of these resonances when k", - AM - 600 MeV; with the lower estimate 

of AM - 338 MeV the width approaches 150 MeV, which is still too large. Hence, 

the direct observation of the parity partners of the groundstate is unlikely. Their 

effect in chiral perturbation theory is nontrivial [12); conceiveably the decay width 

r(D.(1+) -+ D:,et(1-) + K) -lkKI is phase-space suppressed by the K-meson mass 

and the 1/ M corrections to the D masses, which raise the 1- and depress the 1+ 

states. 

We obtain the axial coupling constant: 

2gf",..(Z; 4f",yln(A2 /m~) 
9A = Z = /U R:: 0.32 

1 AvN 
(38) 

We might expect both AM and gA to be underestimated in this approximation, as 

are the light sector observables, owing large~y to the short-distance singularity of our 

, wave-function. 

gA can be in principle extracted from the decay D*+ -+ DO + 1r+, though it is un­

measured to date. This decay partial width is given by ref. [6) , and in our conventions 

it takes the form: 
2 

r - gA I 13 (39) - 121rfl p", 
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where Pfr - 38.9 Mev. While this width is not yet measured directly, we can use the 

analysis of ref.[19] to obtain an estimated result of r = 53.4 KeV from the measured 

branching ratio of (D* ~ D,) / (D* ~ D7r) and a potential model calculation of 

D* ~ D,. Combining these results we find gA = 0.56, which is compatible with . 

the parity doubled interpretation, but is also not far from the naive gA ,- g~ - 0.8 

from the chiral quark model (note that we derive the chiral light~uark model here 

with g~ = 1, thus our prediction of 9A - 0.3 represents a significant suppression). 

Amundson et.al. [11] give the current experimental limit of gA < 0.7 consistent with 

this result. Thus, our model indicates that 9A is suppressed and smaller than unity, 

giving the physical underlying rationale, though the situation is arguably not decisive. 

Note that Zl = 7rA/2 - 2.12 GeV and Z2 - 1.1. Hence, 2~ = 3A/7r :::::: 1.3 GeV. 
Our model seems to suffer from generating a value of A that is slightly large. This 

implies E = 4Z2~/Zl :::::: 1.2, suggesting that our approximation of truncating on the 

Z2(V· p)2/Z1 terms is probably unreliable (Appendix A). 

The binding energy is determined in the model. Neglecting the light quark PCAC 

masses we have in the infinite mass HQ limit: 

MD,B = Me,b + 6mj (40) 

where me is the constituent light quark mass (the latter term is small, but non­

negligible). For the fit we have presented we find hr = 2g2..;z;,A/Zl = 17.9, and 

gr = g/...[Z2 = 3.55. If we use a conventional charm .(b-) quark mass of 1.2 - 1.8 
GeV, (4.5-5.0 GeV) 'this overestimates: MD :::::: 2.4-3.0 GeV, ( MB = 5.8-6.3 GeV). 
These results should be corrected for finite mass of the heavy quark. The corrected 
boundstate mass is: 

(41) 

This yields a result MD :::::: 2.0 - 2.75 GeV, ( MB = 5.65 - 6.3 GeV). This illustrates 
the problem of A being too large in the model. 

The effect of the explicit SU(3) breaking light quark masses is calculable, upon 



-21- FERMILAB-Pub-93/059-T 

restoring these terms in eq.(13) as contained in the shifted iT field. Using the full 

constituent quark mass me = griT /2 we have: 

MBq - MBt' - -(me - me') + (m~ - m~) (:;~) 
- -(me - me') + (2.1 X 10-3 (MeVrl)(m~ - m~) (42) 

For the B.-Bo mass difference we take me = 450 MeV (the strange quark con­

stituent mass) and me' = 300 MeV to obtain MB• - MB(u,d) = 86.25 MeV. (IT we 

use the predicted me' = 169 MeV and me = 276 MeV we obtain 52.5 MeV). This 

compares to ~ 100 MeV experimentally. It shows, however, that the model must 

include the effects of the (72 term in computing these differences. The MD+ - M DO = 
[( +0.26), (-0.3)](md - mu) ~ (2.6, -3) MeV (using standard constituent masses in 

the first entires, and the model's derived constituent masses in the second). This is 

subject to electromagnetic corrections, estimated to be +2.0 MeV. 

We have seen that fB is insensitive to the light quark masses iIi this model. Thus, 

we obtain fB./ fBu,d = 1, while lattice results yield", 1.09 [20]. This result owes to the 

unrealistic non-normalizeable singularity of the wave-function at the origin. This is 

consistent with the behavior of the binding energy for small constituent quark mass, 

in which increasing the constituent mass actually decreases the meson mass (for large 

constituent mass the (72 terms contribute to increase the meson mass). 

(iii) !sgur-Wise Function 

The analysis of the Isgur-Wise function in the model involves a careful treatment 

of the cut-off procedure. We select a preferred cut-off by demanding the validity of 
reparametrization invariance {or the residual mass symmetry) (15-17]. 

We consider the transition amplitude in 4-velocity defined by the matrix element 
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(B"I Q"rQ", IB",), where r is an arbitrary Dirac matrix. 

This involves the integral: 

f d"k k,.. 1 1 
11 - (211")4 (k2 _ m2 ) v . k tI . k 

- A· (vi' + V'lA) (44) 

where the latter term follows by symmetry, since A can only depend upon v . v' and 

is even under v .... v'. Now multiply by v + v': 

Therefore: 

2A. (1 + v. v') = f d"k k· (v + v')_1 __ 1_ 
(211")4·(k2 - m2) V· k tI· k 

f d"k 2 1 
- (211")4 (k2 - m2) V· k 

, 
- 811" (A - 2m) 

i 
A = 1611"(1 + v. v') (A - 2m) 

and we conclude that the Isgur-Wise function is given by: 

e(v. v'} = 2 
l+v·v' 

(45) 

(46) 

(47) 

This·should be trneif"·the momentum space integral is Lorentz-invariant and finite. 

Computing the integral directly, without recourse to the symmetry argument one can 

obtain: 
~e(v. v') = {fr/2 d8 cos 8 
2 10 (1 + 2v· tI cos 8 sin 8)3/2 

(48) 

which agrees with the previous result. 
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This result contains a t-channel pole at t = (M! + M2)2, where M! (M2) is the 

incoming (outgoing) heavy meson mass. One might ask if this is consistent with the 

slope constraint of de Rafael and Taron [18] arising from t-channel unitarity? Our 

slope, e'(O) = -1 is inconsistent with the their lower bound of -1/2 arising from a 

t-channel branch-cut at threshold. Grinstein and Mende [18] have pointed out that 

the de Raphael-Taron constraint is weakened by effects of resonance poles, as we 

are presently observing. However, the t-channel unitarity constraint is an interesting 

issue in HQET. In an HQET such as we have studied, the anti-particle has been 

discarded at the outset, and with it goes crossing symmetry and t-channel unitarity. 

Moreover, our cut-off theory would s~m to require the bound of Q2 < A2 without a 

unitarization. Since Q2 = 2M2(1 - v. v'), we see that this bound corresponds to the 

limit V· v' -+ 1 for M -+ 00. Nevertheless we can compute the t-channel behavior 

by incorporating the heavy anti-quarks and computing the large-N bubble sum with 

the full interaction. While we do not present this analysis here, we find, perhaps not 

surprisingly, a Nambu-Jona-Lasinio pole at M! + M2 is generated, and our slope is 

consistent with the existence of this pole. 

The previous result of eq.( 4 7) is, however, sensitive to the definition ofthe cut-off 

procedure, which we have taken to be a Lorentz-invariant Euclidean momentum space 

cut-off. Different results follow if the energy integrals are first performed by residues, 

and then a 3-momentum cut-off procedure is used. To see this let us compute directly 

with a 3-momentum cut-off Let v' = (1,0) and v = (vo,ii). First we perform the 

energy integral by closing dko below to pick up the single pole: 

A(l + V· vi) = f iJ4k (ko + voko - ii· k) ( 1 ) ( 1 ) 
(211')4 k~-k2+iE voko-k.ii ko 

__ i r. dk [ 1 I . (v. v'+ V(v, v')2 -1) ] 
411'2 ° J(V'v')2-1 n v.v'-J(v'v')2-1 +2 

(49) 

This result, using a non-Lorentz invariant regularization procedure, differs signifi-
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cantly from eq.(47) in which the Lorentz invariant cut-offwas used. 

There is however an implicit gauge invariance in heavy quark effective theories 

associated with the "residual mass ambiguity." One is free to add a term xQvQv to the 

effective Lagrangian of eq.(12). X should be viewed as a gauge potential in the sense 

that if we redefine the heavy quark mass M ~ M + IJ, and thus Q ~ exp{ ilJv· x)Q we 

can compensate this gauge transformation by shifting X ~ X + IJ. Hence iv· 8 + X is a 
covariant derivative. This is essentially the demand that the global zero of energy of 

a classical theory be arbitrary. This symmetry and its implications will be discussed 

elsewhere, however we can see immediate implications for our present problem. 

We can observe that the non-Lorentz invariant regularization procedure violates 

the X symmetry. Consider the integral involved in our calculation of the Isgur-Wise 

function: 
! - J d"k 1 

- (211')4 [(k + p)2 - m2]( v . k + IJ) (50) 

We have chosen to route the external momentum p through the light fermion line. 

The X symmetry applies to the external heavy mesons and requires that the following 

shift in V· P and IJ be a symmetry of the integral: 

v·p~ v·p+ X; (51) 

This is readily seen to be a symmetry in the case of the momentum p routed through 

the heavy fermion line. 

In the present example we can implement this by shifting p ~ p + vx. Therefore 

the shift in the integral is: 

(52) 

The symmetry condition is Ix! = 0, and is equivalent to demanding that the integral 
generates no nontrivial surface term upon shifting k ~ k + a. For simplicity we 
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consider the surface term: 

(53) 

H we evaluate S using the covariant cut-off we find that S = O. 

Now consider computing S by first performing dko by residues, then the residual 

3-momentum integration with a cut-off. We find: 

(54) 

Consider now 

f tJ4k 1 
(211')4 (k2 - m2)(v. k)2 

_ -i r sin8d8 foo k
2
dk 

811'2 10 10 (k2 + m2)3/2( Vo - IVlu( k) cos 8) 

(55) 

where u(k) = k/Jk2 + m2 and vI' = (vo,v), and thus v~ - iP = 1. Notice that if 

either m -. 0 or if v -. 0 then S -. O. Let us expand in m2 , using the latter results, 

to find for S: 

(56) 

,-.Here ,we introduce ·a..four-vector '11' = (1,0) ,which is -the direction of the,dko line 
integration. 

This latter result implies that the X symmetry is broken when the ko line integral is 

not parallel to vI" For the computation of the Isgur-Wise function where v :f: v' then 

the X symmetry can never be present in the residue computation. However, utilizing 



-26- FERMILAB-Pub-93/059-T 

the Lorentz invariant cut-off we see that the X symmetry can be maintained. The 

X symmetry therefore requires that we reject the result of eq.(49) in favor of eq.(47) 

which is consistent with the absence of momentum space surface terms, and the 

attendant symmetry. 

VI. Conclusions 

We have presented perhaps the simplest, solvable, strongly coupled toy field­

theoretic model in which both heavy quark and chiral symmetries are present at 

the fundamental quark level, and the dynamics of chiral symmetry breaking is made 

explicit. We find that the chiral representations of the heavy mesons are parity 

doubled. This has a well defined meaning in the toy model because we can tune 

the coupling constant to restore the spontaneously broken chiral symmetry. In the 

symmetry limit the groundstate is a degenerate system of (O-, 1-) and (O+, 1 +) heavy 

mesons. When chiral symmetry is broken the degeneracy is lifted, elevating the 

(O+ , 1 +) and depressing the .( 0-, 1 -) heavy meson multiplets. We obtain the full 

chiral Lagrangian containing the parity doubled composite HL mesons together with 

the composite pions. The mass gap between the multiplets is given by glfo and 

the analogue of the Goldberger-Treiman relation of the system reflects this, 9BB'fr = 
t1M/lfr. We are able in the broken phase to pass to a nonlinearly realized chiral 

symmetry, and to write a purely derivatively coupled pion effective Lagrangian. We 

can then decouple the heavier parity doubling field to arrive at the conventional low 

energy effective chiral Lagrangian for B. 

We believe that the general phenomenon of the parity doubled chiral representa­
tions of heavy mesons is inherent to QeD itself. We emphasize at the outset that 

this toy model is only intended to convey the schematics of QeD chiral dynamics in 
heavy-light mesons. - The model is designed to imitate these dynamical features of 

QeD, rather than provide a detailed phenomenological fit. Nonetheless, the simplest 
fit seems to agree within a factor of two to the expected values of physical quantities, 
and is predictive. While we would be inclined to trust the result gA = 0.32 only to 
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within a factor of 2, the model suggests that gA is smaller than might be naively 

expected on the basis of the simple constituent quark model in which. The direct 
observation of the parity partners of the groundstat~ mesons is unlikely owing to 

their large widths. It would be interesting to extend these results to the heavy quark 

containing baryons where similar conclusions must hold. 

Our analysis achieves the basic systematics of chiral symmetry in these systems 

where we might expect potential models to fail. The chiral symmetry limit is relativis­

tic, and the chiral symmetry breaking is a dynamical rearrangement of the vacuum, 

two features which would be hard to realize in any potential model treatment. One 

must be careful in estimating the value of gA in a naive potential model unless the mix­
ing with the parity doubled states is under control. As we have observed in eq.(21), 

the gA term is a transition matrix element between the 0+ and 0- states in the mixed 

parity basis appearing there. In a basis in which the gA term is diagonal, the mass 

matrix must be correspondingly diagonal. There remains the transition amplitude 

term between the parity partners (some authors include an extra factor of 1'5 in the 

odd parity fields, and this transition term can then be mistaken for the gA term in a 

mixed parity· basis). In our model, the constituent quarks are found to have g~ = 1, 

and yet the value of gA obtained in the Lagrangian of ref.[6] is suppressed to - 0.32. 

This is a subtlety of parity doubling which must be treated with some care. The res­

onances may have important contributions in chiral perturbation theory to quantities 

such as fD./ fD and flavor ratios of Isgur-Wise functions [12] (in the notation of Falk, 

h= 1 and 9A = g, and thus h2 » g2 in our model, so the resonance contributions 

are significant). 

We have studied the physical predictions of this system. The wave-function of 

the theory is too singular at the o~gin to represent a realistic QeD wave-function. 
This is a consequence of the strong coupling of the point-like four-fermion interaction 

term. While it is a defect of the model, it indicates the trend in a theory in which the 

potential term is dominating the dynamics. For example, we obtain the unrealistic 

fs./ fsu,t/. = 1, because the singular short-distance behavior of the wave-function 

becomes insensitive to the infra-red parameters of the theory. This contrasts lattice 
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results, indicating IB./IBu,d = 1.1 [20]. However, a weakly coupled potential model 

would give the larger result .jm./md'" 1.2 [21]. 

In our analysis we fix A '" 1.35 GeV from IB and examme the relationship with 

the cut-off' wave-function at the origin. Inputting also If( fixes g, and marginal results 

(within a factor of 2) obtain for AM, gA and the light quark sector. A defect, related 

to the short-distance singularity of the wave-function, is the fact that for small light 

quark constituent mass, the groundstate mass is actually depressed as the light quark 

constituent mass is increased from small constituent mass. Nonetheless, the common 

hr tenn is sufficiently large for me'" 300 MeV that a reasonable result for MB.-MBu,d 

emerges from the fit. 

Of further interest is the Isgur-Wise function, which is associated with an am­

biguous linearly divergept integral in the present scheme. The ambiguity is resolved 

by invoking ''residual mass invariance" [15,16], or equivalently, "reparameterization 

invariance," and enforcing an associated Ward identity [17]. The simple Isgur-Wise 

function corresponds to a t-channel threshold pole at (Ml +M2)2. This pole is beyond 

the cut-off' scale of our model, but it may be indicative of a Nambu-Jona-Lasinio re­

sult when the QQ system is studied. In fact, the fundamental issues raised by de 

Rafael and Taron can in principle be explored in this scheme [18]. We will defer this 

discussion to another place. 

We believe there remains much to do in dynamical analyses of this kind for heavy­

light systems and their interactions. Our model has inherent shortcomings. While the 

agreement of this crude model with observation is marginal at best, it suggests that 

improvements, such as a Pagels-Stokar approximation, Holdom's approach [2.2, 23], 
or "Russian sum-rule" methods [24], will lead to more reliable estimates of crucial 

Mheavy meson observables. The singular. behavior of the wave-function is not expected 

in a more realistic scheme. Replacing our pure a-wave dynamics by QeD ladder 

approximation is clearly of some interest. For example, pinning down a prediction 

of gA or the Isgur-Wise function from such models would be quite interesting. The 
full range of phenomenological applications of generalized models would seem to be 
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an interesting direction for future research. This toy scheme is a first step in that 

direction and highlights the challenges and advantages for more elaborate approaches. 
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Appendix A: Fermion Loop Approximation 

(i) Zero momentum pions 

Let us now integrate out the heavy and light fermion fields in eq.(12) to pro­

duce an effective Lagrangian for B and B'. This can be viewed as a: block-spin 

renormalization of the theory of eq.(12) defined at the scale p. = A, to a new scB:le 

p. < A, and is analogous to the treatment of the light quark dynamics in Appendix 

B. We begin in the approximation of treating the (7 and 1f' fields as zero-momentum 

(constant in spacetime) backgrounds (small momentum 1f' amplitudes are considered 

subsequently). We note that the fermion propagators take the form: 

i (1 +;) SHQ{k)=- - ; v·k 2 

where: 

S (k) = . (~ + mq + 9ES)_ 
LQ I k2 _ 0 2 

~S 1 .1 
~ = -(7 + 1-,S1f' • T 

2 2 

(57) 

(58) 

We obtain from the diagram of Fig.(1) {recall that the 8 contain (1 +; )/2 projection 

factors): 

J lfIk 
iSBB - -g2N (21f')4 

Tr [( -is',s + 8) (~ - P + mq + 9ES) (~i,sB' + 8) (1 +;)] ~ 
(k - p)2 - 0 2 2 v . k 

_ -~NTr[(-iB,,5+B)Il(-i,5B'+B)] (59) 

and: 

(60) 

We carry out a "block-spin" integration over heavy and light quark modes between 

the scales p. and A in Euclidean momentum space. The integrals are evaluated with 
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a Euclidean 4-momentum cut-off: 

J d:' k 1 i 2i [( 2/ 2] 
(271")4 ((k _ p)2 _ 02)v. k = 1671" (A -.1') + 1671"2 V . p In A 1') 

J d"k 1 i [2 2 2 ( 2/ 2)] 
(271")4 ((k _ p)2 _ 02) = -1671"2 A - I' - 0 In A I' 

J d"k kp. . vp. [2 2 0 21 (A 2/ 2)] 
(271")4 (k2 _ 02)v . k = -z 1671"2 A - I' - n I' 

J d"k kp. . vp. [1 (A2/ 2)] 
(271")4 (k2 _ 02)2v . k = '1671"2 n I' 

Then Tr(h) can be written as (note Tr(B")'5B) = Tr(B'S) = 0, etc.): 

ig2 N Tr(BIIB) 

= -~ Tr(BB)[( v . p + gO' /2)(Zl + 4Z2V' p) + Zl(A + 1')/71" - 21012 Z2] 

ig2 NTr(S( _i")'5) II ( _i")'5)8') 

(61) 

= -~Tr(S8')[(v. p - gO'/2)(Zl + 4Z2v· p) + Zl(A + 1')/71" - 2/0/2Z2] 

ig2 N[Tr(S( -i")'5)hB) + Tr(BI1( _i")'5)8')] 

(62) 

where we let gu = g(1 + 2mq and: 

(63) 

... (notethat the expression for Zl·contains a.factorofl/7f, not 1/71'2). 

(ii) The gA term 

Now consider small, but nonzero ((1,71") momentum qp., with q2 ~ O. We compute 

the effective Lagrangian, where the ((1, 71") are coupled through !:5. We then have the 



amplitude of Fig.(2): 

1 3 f tJ:4k 
iSBB'E = 29 N (211")4 
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[
" .-, 5 - (~ +' /2)(0' + i1l"· 'T-y5)(~ -, /2) . 5 ] 

'If (-IB -y + B) ((k + q/2)2 _ n2)((k _ q/2)2 _ n2)v . (k _ p) (-I-Y 8' + B) 

We are interested in the divergent terms of order q, since the q = 0 term has previously 

been computed: 

1 3 J d"k [.,5 - [~"}(0'-i1l".'T-y5)( . 58' )] :::::: -49 N (211")4'?" (-IB -y + B) (k)2(k)2(v. k) -I-Y + B 

_ -~93 N 16
1
11"2 'If [( -iB'-y5 + B)[p" ](0'"- i1l" • 'T-y5) ( -i-y58' + B)] In(A2 /1'2) 

- -i9Z2°'If [( -iB'-y5 + B)[p ,,](0' - i1l"· 'T-y5) ( _i-y58' + B)] (65) 

Hwe now expand the result of eq.(65) we observe some simplifications, e.g. Blp,,]B = 
0, and we obtain: 

(66) 

This implies an operator in the effective Lagrangian of the form: 

- ~9Z2 (Tr [B-y5-Y#,'TGB - B-y5-Y#,'TG8'] {JI'1I"G - Tr [B'-y5-y#'B + B-y5-y#,8'] {JI'O') 

(67) 

(64) 
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(iii) Normalization Conventions 

Consider a complex scalar field ~ wi~h the Lagrangian: 

(68) 

Define ~' = v'2M exp( iM v . x)~ (~' destroys incoming momentum M vI' + PI') and 

the Lagrangian becomes to order 1/ M: 

(69) 

Now let 8" = ~(1 - , )i'Y5~' and write in terms of traces (the field 8" with these 
conventions annihilates an incoming meson state IB»): 

(70) 

Thus when the Lagrangian is written in terms of 8 and 8' the normal sign conventions 

are those of the vector mesons, and opposite those of scalars, i.e., the term in the 

Lagrangian +~6MTr(B8) an increase in the B5 mass by an amount 6M. A properly 

normalized kinetic term is -i~ Tr(8v . 88), with the overall minus sign and ~. 

One must take care in using HQET propagators, since the direction of momentum 

routing is fixed. Ultimately, the veracity of eq.(59) is best checked by computing 

with finite M, routing MVIJ through the Q propagator, and P through the light quark 

propagator, and then taking the M ..... 00 limit. Note that vI' ..... -vI' and PI' ..... -PI' 

is a symmetry of the final expressions. Hence, 8" can be viewed as annihilating 

incoming particles, (t/JQ), or creating outgoing anti-particles (t/JQ). 

(iv) Structure Qf the EiJective Lagrangian 

The heavy meson effective Lagrangian therefore takes the form: 

L,LH= 

-i~Zl Tr(Bv· 88) - i~Zl Tr(8'v. 88') + 2Z2 Tr(8(v. 8)28) + 2Z2Tr(8'(v· 8)28') 



-34- FERMILAB-Pub-93/059-T 

_9:1 [Tr(BuB) - Tr(B'uB')] - i9Z2 [Tr(Buv. aB) - Tr(B'uv' aB')] 

_9:1 [Tr(B'1r' rB) + Tr(B1r' r8')] - igZ2 [Tr(B'1r' rv· aB) + Tr(B1r' rv· 08')] 

+g2:2 [Tr(B(u2 + 1r2)B) + Tr(B'(u2 + 1r2)B')] 

+ (A2 - Zl(A + p,)/27r) [Tr(BB) + Tr(B'8')] 

+ ~2gTr [B')'S'(7r' r)8 - B'')'S'(1r' r)8' - B'')'S'(u)B - B')'S,(u)8'] (71) 

If we define: 

(72) 

then eq.(71) becomes more compactly: 

1 - 1--i2Z1 Tr(TBv· aTB) - i 2Z1 Tr(TB'v. aTB') 

_ 9:1 [Tr(TBuTB) - Tr(WuT8')] 

_9:1 [Tr(TB'1r' rTB) + Tr(TB1r' rTB')] 

+tT:2 [Tr(B(q2 + 7r2)B) + Tr(8'(u2 + r)8')] 

+ (A2 - Zl(A + p,)/21r) [Tr(BB) + Tr(B'8']) 

+ ~29Tr [B')'S,(1I" r)B - B'')'S,(1I'' r)B' - B,,),S,(u)B - B')'s,(u)B'] 

(73) 

To simplify the subsequent analysis we will assume that the subleacling terms of order 

Z2V' P/Zl are negligible, and take T = 1. Since these terms arise upon expanding 

the loop integrals in powers of 1/ A, we cannot self-consistently use the effective 

Lagrangian in this form unless this condition is at least approximately valid. We see 
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that other terms, such as the last one in eq.(73) which leads to gA, are leading in this 

order and describe various physical processes. Thus, we expect the amplitudes these 

terms describe to be small. H 4Z2V' P/Zl is large, then we must retain full analytic 

expressions for the loop integrals to fit the theory. 

We see that there is thus an induced kinetic term for the B and 8'. fields with 

a common wave-function normalization. We absorb the factor Zl into the fields 

as B ~ ..[ZII B. Thus, with the field redefinition we then have the full effective 

Lagrangian: 

where: 

1 - 1 - B' -i2 Tr(Bv . 88) - i2 Tr(8'v . 8 ) 

-~ [Tr(8u8) - Tr(8'u8')] - ~ [Tr(B'1I"' r8) + Tr(811"' r8')] 

+~~2 [Tr(8(u2 + 11"2)8) + Tr(8'(u2 + 11"2)8')] 

+ A [Tr(B8) + Tr(8'8')] 

+ 2~1 gTr [8,5'(11"' r)8 - 8',5, (11" . r)8' - B',5,((1)8 - 8,5'((1)8'] . 

(74) 

(75) 

The equation of motion in momentum space is v . p =. 2A + ... and 2A is the mass 

difference between the heavy meson and the heavy quark in the chiral symmetric 

phase: 

Ms=2A+MQ (76) 

Note that A > 0 (A < 0) for g2N/1611"2 < 1 (g2N/1611"2 > 1). 
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Appendix B: Light Quark Dynamics 

(i) Deriving the Constituent Quo.rk Model 

The effective Lagrangian in the light quark sector is: 

(77) 

For concreteness we will take tP = (u, d), and in the limit that the quark mass matrix 

m, -+ 0, we have an exact chiral SU(2} x SU(2} invariant Lagrangian. This can be 

viewed as a single gluon exchange potential, where we assume a "gluon mass" AI y'2, 
and we have written the form of the effective Lagrangian at rf I'V A 2, integrating out 

the massive gluon, and truncating on dim = 6 operators. 

Upon Fierz-rearrangment of the interaction Lagrangian, ~ping only leading 

terms in lINe, eq.(77} takes the form: 

L,L = 1/J(i" - m,)tP + ~ (tPLtPRtPR1/JL + tPL.,-A1/JRtPR.,-AtPL 

1- -A. - _A 1- -A. - -A. 
- 81/J'Y I' r -1/J1/J"'tr -tP - 81/J'Y 1'15 r -f/Jf/J"'t'Y5 r-1/J 

-~1/J'Yl'tPtP"'ttP - ~1/J'Y1''Y5tPtP'''t'Y5tP ) (78) 

where tPL = (1 - 'Y5}tP/2, tPR = (1 + 'Y5}tP/2. Here,-A are Pauli matrices acting upon 
the isospin indices. 

For the present analysis we will truncate eq.(78) on the pure Nambu-Jona-Lasinio 
terms, since the (vector)2 and (axial-vector)2 terms play no significant role in the chiral 
dynamics (they are associated with the formation of'Vbtual p and Al vector mesons 

in the model). Hence we take: 

We can solve the light-quark dynamics in large-N in the usual way by writing an 
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equivalent effective Lagrangian of the form: 

where: 
~ 1 I . G~ 
4.J = -u 2 + 11r -

2 2 
(81) 

is an auxiliary field. We emphasize that at this stage l: is a 2 x 2 complex field, so 
both u and 1rG are complex, (otherwise, with u and 1r real there would be unwanted 

contributions from (Tl: l:) = (Tl:t l:t) -::F 0 in integrating out l:). 

Thus there is parity doubling at this stage, 1 m( u) is the fourth Goldstone boson 

associated with the U(1) problem, and Im( 1rG) is the 0+ isotriplet. The restriction to 

real1rG will emerge dynamically at very low energies, since the induced Tr(l:tl:l:tl:) 

term will lift the degeneracy of the Re(1r) and Im(1r). We ultimately must add a 

det(l:) + h.c. term to get rid of the Im(u) mode. 

We now inte~ate out the fermion fields on scales A 2 > q2 > p,2, keeping only the 

leading large-:-Nc fermion loop contributions. We use the massless fermion propagator, 

treating l: as a classical background field. Thus we arrive at an effective field theory 

at the scale p,: 

where: 

c - 1/J(i' - mq )1/J - g1/JLl:1/JR - g1/JRl:t1/JL 

+Z2 Tr(a~l:t8l'l:) - V(l:) 

g2N (2/ 2) Z2 - 161r2 In A p, 

V(l:) _ [~A2 - ~2; (A2 _ p,2)] Tr(l:tl:) _ :~(A2 _ p,2) Tr(mql: + h.c.) 

(82) 

+g4N In(A2/p,2) Tr(l:tl:l:tl:) (83) 
161r2 
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We see that Z2 ~ 0 as IJ - A, reflecting the compositeness of the ~ field. Let us 

now renormalize the ~ field: 

(84) 

and we have the properly normalized effective Lagrangian at the scale IJ (this is proper 

normalization for real q and 1r): 

where: 

.c = 'l/J(if! - mq)'l/J - g'l/JL~'l/JR - g'l/JR~t'l/JL 

+ Tr(ap~tQP~) - V(~) 

9 - 1/{Z; 

V(~) - m; Tr(~t~) - wTr(mq~ + h.c.) 

+.\ Tr(~t~~t~) 

m2 
(T - (2-) [!A2 _ g2N (A2 - IJ2)] 

Z2 2 81r2 

.\ 161r2 -2 - Nln(A2/1J2 = 9 

w - ggN (A2 _ IJ2) 
81r2 

(85) 

(86) 

U,1C C"'''''IIlVC .LJa.~langian is seen to be a linear q-model at scales IJ < A. As the scale 

IJ ~ 0 we see that the theory is trivial, since 9 ~ o. However, these evolution results 
apply only to a scale JJo corresponding to a mass scale for the fermion. Nonzero mq 
will block the evolution into the far infrared, but we will neglect this presently. The 

:theory will develop' a chiral instability (a constituent quark mass) provided that m! 

becomes ta.chyonic (negative) at some scale IJo. By tuning the bare coupling constant 

g2 we can put the model in a symmetric phase, m2 > 0 ~ g2N /41r2 < 1, or in a chiral 

symmetry breaking phase: m2 < 0 ~ g2 N /41r2 > 1, where the critical bare coupling 

corresponds to m! = 0 as IJo ~ o. 
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In the broken phase (ignoring mq) the (I field develops a vacuum expectation value 

«(I) = Irr = v'2lm17I/J'X. We see that the renormalized (I field develops a vacuum 
expectation value given by: 

(87) 

In the broken phase we can then write (I = Irr + iT, and the physical mass2 of the iT 

is readily seen to be m~ = 2Im~l, while the fermion mass becomes mo = i/rrg. Thus, 
using eqs.(86) to relate g2 = A, we obtain the usual Nambu-Jona-Lasinio result: 

m~ = 2mo. 

The solution to the theory can thus be written as a chiral quark model in which 

we have both constituent quarks described by 'I/J and the mesons decribed by E. In 

the broken phase it is useful to pass to a nonlinear (I-model and write: 

(88) 

and: 

c - 'I/J(i' - mq)'I/J - mo'I/JLexp(i1r"ra/lrr)'l/JR - mo'I/JRexp(-i1rGTG/lrr)'l/JL 

+Tr(a#.lEt~E) +wTr(mqE + h.c.) (89) 

where mo = 19lrr is the constituent quark mass. Note, in our present normalization 

conventions that Irr = 93 MeV. By a chiral redefinition of the fields,'l/JR -+ e'I/JR 
and 'l/JL -+ et'I/JL we arrive at the Georgi-Manohar Lagrangian (their eq.(2.9)) with 

9A = 1.0 (note that they fit GA/Gv = (5/3)gA and obtain 9A = 0.75, consistent with 
.-our,large.-N approximatiQll). 

When the (I and 1r fields are slowly varying in space, the light quark propagator 

of the chiral quark model is given by (in terms of the unrenormalized fields): 
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where we define: 

0 2 = (mq + gU/2)2 + g21r2/4; 

~5 1 .1 
LJ = 2u + 'fY51r . T 

(90) 

(91) 

(92) 

In the broken phase we replace u = ff( and E -+ iff(exp(i'fr'lr'/ff()' For future ease 

of writing we can often replace gu /2 = gu /2 + mq,fZ; since it easy to restore the 

explicit chiral symmetry breaking quark mass terms. 

(ii) Schematic Discussion of a Parity Doubled Nucleon 

Consider a "nucleon" doublet N with the SU(2)L x SU(2)R assignments NL -

(i,O), NR - (0, i). Also, we introduce a partner, K, of opposite parity with assign­

ments KL - (0, i), KR - (i,O). A typical renormalizeable linear u-model effective 
matter Lagrangian (not including the i: kinetic and potential terms) is then: 

£, = Ni,N+Ki,K 

-MINLENR - M2KLEtKR - MoNLKR - M~NRKL + h.c. (93) 

Parity symmmetry requires Mo = Mo. We consider the special case Ml = M2 = M, 

which is the analogue, of our model, but this is not generally required by symmetries. 

Now perform the redefinitions, NL -+ eNL, KL -+ etKL, NR -+ etNR, KR -+ eKR. 
Thus, the Lagrangian becomes: 

,£,?.= 'N{i, +··V +-yr,./.)N+',K(i, +V,--yl;~)K 

-MNN - MKK - MoNK - MoKN + h.c. (94) 

Upon diagonalizing, the mass eigenfields are just (N ±K)/V2, with mass eigenvalues 

M ± Mo. We can decouple the heavier state by setting (N + K)/ V2 = 0, whence the 
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light effective Lagrangian for Q = eN - K)/V2 is: 

c = Q(i' + V)Q - (M - Mo)QQ (95) 

We see that 9.. = O. Hence, 9.. is not generally of order unity as is the case of a 

non-parity doubled nucleon. (this is also a consequence of the special case Ml = M2; 

more generally 9 .. = sin(28) where 8 is the mass mixing angle). With 9 .. = 0 the 

only nontrivial Goldberger-Treiman relation refers to the pionic transition amplitude 

between the ground state, Q, and the parity partner, Q' = (N + K)/V2. 
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