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EMITTANCE GROWTH DUE TO POWER RIPPLE 
IN A HADRON COLLIDER 

G. V. STUPAKOV 

Superconducting Super Collider Laboratory, 2550 BeckZeymeade Ave., Dallas, TX 75237* 

Abstract. Emittance growth of the beam caused by power supply ripple in the Superconducting Super 

Collider (SSC) is studied. We find that due to nonlinear terms in the equation of the betatron oscillations, 

the emittance grows only during an initial transient period, after which its increase saturates at some level. 

An analytical formula is derived that gives the fractional increase of the emittance as a function of the 

amplitude of the ripple. Numerical estimates for the SSC are presented. 

1 INTRODUCTION 

In this paper, we consider the effect of magnetic field oscillations in an accelerator on the 

emittance growth of the beam. Small fluctuations of the field are usually produced by the 

ripple in the power supplies. For the Superconducting Super Collider (SSC), these 

oscillations are expected to occur at frequencies equal to an integer times 60 Hz, with the 

maximum amplitude of the ripple at 720 Hz.1 Since the revolution frequency in the SSC 

is as low as 3.4 kHz, it might happen that one of the ripple frequencies resonates with the 

betatron oscillation of the beam. In this case, the betatron oscillations being amplified 

would cause a blowup of the beam. In the linear theory, such a resonant growth proceeds 

without limitations and results in a constant emittance growth rate. However, due to a 

small nonlinearity of the betatron oscillations, the tune for a given particle is a function of 

its amplitude, and the increase of the latter would produce detuning from the resonant 

frequency and cessation of amplitude growth. From this qualitative picture we expect a 

saturation of the emittance growth due to nonlinearity of the machine. A quantitative 

theory of such an effect is developed, allowing one to find the tolerances for the ripple in 

power supplies based on the allowable increase of the beam emittance. 

Typically, the expected amplitude of the fluctuation of the magnetic field at the SSC is 
very small, DBIB = 10 -8 -10-9 (Reference 2). This makes it extremely difficult to 

simulate the nonlinear saturation of the emittance growth using existing computer codes. 

On the other hand, the smallness of the oscillating component of the magnetic field 

* Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under 
Contract No. DE-AC35-89ER40486. 
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allows us to develop an analytic perturbation theory in parameter 8BIB. Mathematically, 

this problem is very similar to that of nonlinear Landau damping in plasma3 and 

nonlinear damping of a sound wave in a liquid with gas bubbles.4 We will use below the 

approach developed in Reference 4. 

In Section 2, we derive a Hamiltonian governing the particle betatron oscillations near the 

resonance, with the ripple accounting for the nonlinearity of the motion. In Section 3, the 

equilibrium distribution function of the beam is found, corresponding to the regime in 

which the oscillations have saturated. Using this distribution function we calculate the 

total increase of the emittance of the beam. Results of computer simulations presented in 

this section confirm our analytic formulas and also show the transient process leading to 

the eqUilibrium. In Section 4, we formulate the applicability conditions of our theory and 

present estimates for the allowable amplitude of the ripple for the SSC. 

2 SINGLE-PARTICLE DYNAMICS IN THE PRESENCE OF NONLINEARITY 
AND MAGNETIC-FIELD PERTURBATION 

We start from a linear equation that describes particle motion in the presence of a time

dependent perturbation of the magnetic field in one of the dipole magnets. This equation 

is given by 

(1) 

where 1] = y / ~ PPo ' y is the transverse offset of the particle; Po is the beta function at the 

position of the magnet, J1 = 2nv , and the function A(t) is proportional to the strength of 

the perturbed magnetic field 8B, 

A(t) = OB(t)l, 
Bp 

(2) 

where B is the magnetic field on the orbit and p is the bending radius. In Eq. (2), we have 

assumed that the length I of the dipole magnet is much shorter than the betatron 

wavelength. This allows us to model the additional force acting on the particle from the 

perturbed magnetic field by a series of kicks given by the periodic delta function on the 

right-hand side (rhs) of Eq. (1). The betatron phase' in Eq. (1) plays the role of a time 
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variable and changes from -00 to +00, each J1 interval corresponding to a complete turn. 

Let us also assume that 

(3) 

where ill is the frequency of the ripple. 

In what follows, we will utilize the linear dependence t versus C, t = C/vn, where n is 

the revolution frequency. This assumption is justified for accelerators with a large tune, 

v» 1, because nonlinear terms in the relation between t and C are small in the 

parameter V-I. With such a relation, A(t) in Eq. (1) can be considered as a function of C, 

(4) 

Our consideration will be based on the Hamiltonian formulation of the problem. Defining 

a conjugate momentum p = d1]/de, Eq. (1) can be written as a pair of Hamiltonian 

equations: 

. dH . dH 
P = - d1]' 1] = dp' (5) 

where the dot denotes the derivative with respect to C, and the Hamiltonian H is 

(6) 

The next step is to transform to the action-angle variables J and tfJ of the unperturbed 

Hamiltonian according to 

1] = .../2J cos( tfJ + '), p = -m sin( tfJ + '), (7) 

which gives 
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Now we assume that the ripple frequency m is close to one of the sideband betatron 

harmonics; that is, for some n, the parameter .1 = ( v ± n ± ~) is much smaller than the 

tune, .1/ v« 1. This allows us to use the method of averaging for the Hamiltonian (8) 

(see, for example, Reference 5), keeping in it the only harmonic of the perturbation that 

resonates with the beam, 

(9) 

where l/Jo = ±n'o/v is the initial phase. It is convenient now to choose, instead of the 

.1 
phase coordinate l/J, a new variable qJ = l/J + -, + l/Jo' which gives rise to a time

v 
independent Hamiltonian, 

.1 ~It H(J,qJ) = -J - __ 0 cosqJ. 
v 2 J1 

(10) 

At this point we will introduce into the problem a small nonlinearity that generates a 

weak dependence of the tune versus the action. Far from machine resonances, the only 

effect of the nonlinearity is that it makes va function of J. For the sake of simplicity, 

consider here a linear dependence, 8v = avJ, usually produced by the sextupole and 

octupole components of the magnetic field. It is easy to see that this kind of nonlinearity 

is accounted for by adding a quadratic term to our Hamiltonian: 

.1 1 2 ~lto H(J,qJ)=-J+-aJ - --cosqJ. 
v 2 2 J1 

(11) 

The coefficient a may have either a positive or negative sign on a particular machine. 

Due to the effect of nonlinearity, different particles in the beam will acquire different 

tunes. In the limit when the amplitude of the ripple is small enough, only those particles 

that have the tune equal to the resonant one will effectively interact with the perturbation. 
The value of the action, J = Jr , which corresponds to these resonant particles, can be 

found from the condition that total tune of the particle is equal to a sideband harmonic of 
the ripple, v + 8v = ±n ± m/D., which gives 
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.d 
Jr =--. 

va 
(12) 

By definition, Jr must be positive, so that .d has to be negative for positive a and vice 

versa; otherwise, the ripple does not resonate with any particle in the beam. For particles 

having J in the vicinity of Jr (we will see below that those particles make the dominant 

contribution to the emittance growth), one can expand the Hamiltonian in the difference 

y = J - J, with the result 

1 riA H(y,cp) = -a/ - -' _0 coscp. 
2 2 /1 

(13) 

As follows from Eq. (13), we have reduced our problem of the nonlinear particle motion 

in the vicinity of the resonance to the Hamiltonian of the pendulum.5 This Hamiltonian 

has the familiar phase portrait shown in Figure 1, with the separatrix dividing the closed 

trajectories from the periodic ones. In the next section, we will apply this Hamiltonian to 

the evolution of the distribution function of particles in the beam. 

y 

FIGURE 1. Phase portrait of the Hamiltonian (13) for positive a. 
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3 DISTRIBUTION FUNCTION OF THE BEAM 

We start from the initial Gaussian distribution function "'i of the beam particles, which in 

terms of the action J has the form, 

_ 1 -J/Jo 11£ ---e 
'f'i 21CJo ' 

(14) 

where Jo gives the width of the distribution in J. The parameter Jo can be expressed as 

Jo = eo /130 , where eo is the initial emittance of the beam. 

Due to the lasting perturbation of the magnetic field 8B( t ), this function will be changing 

with time. To find ",(t) one has to solve the appropriate Vlasov equation with the initial 

condition given by Eq. (14). A distinctive feature of this solution is that after a transient 

period the distribution function arrives at an equilibrium state.3,4 In this paper, we restrict 

our attention to a simpler problem of determining the final distribution function "'f 
corresponding to this equilibrium, and we also give an estimate of the transient time. 

Knowledge of "'f allows us to calculate the ultimate increase of emittance due to the 

ripple. 

Because of the assumed smallness of the perturbation, the distribution function is 

perturbed only in the vicinity of the resonant value J,. Furthermore, the amount by which 

",is perturbed in this region is also relatively small. Taking this into account, we consider 

the difference 

(15) 

and since we are interested in the region of small y, expand "'i around the resonant 

value J,: 

(16) 

where "'; = (d",J dJ)IJ=J, . 

The final equilibrium distribution function '" f can be easily found without invoking the 

Vlasov equation if one notices that according to the ergodicity principle, in the 

equilibrium the distribution function is a function of the integrals of motion. In our case, 
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that means that 1JIf must be a function of the Hamiltonian (13), 1JIf = 1JIf{H). (To avoid 

confusion, we use the symbol H in the argument of 1JIf and denote by H the function 

given by Eq. (13).) The dependence 1JIf{H) is given by the following formula:4 

f 1JIi8(H - H(y, cp ) )dydcp 
1JIf{H) = f 8(H - H(y, cp ))dydcp 

(17) 

Instead of integrating over y, we first perform integration over H, using the relation 

dy = dH( oH/ (}y t = dH( q, t. This eliminates 8-functions in Eq. (17) and gives 

(18) 

where Eq. (16) has been used. In Eq. (18), the integration is performed along the 

trajectories of the Hamiltonian (13) over one period of motion in the plane y, cp. Noting 

thatq, = oH/ (}y = ay, for closed trajectories inside the separatrix we obtain 

f ydcp/ q, = a-1 fdcp = 0, and the second term on the rhs of Eq. (18) vanishes. That means 

that for H < a, where 

(19) 

one obtains 

(20) 

Outside of the separatrix, H > a, we have from Eq. (13), 

(
2)1/2 

Y = ± a (H + a cos cp t2 , (21) 
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which gives 

f Y d~ (2 )1/2[ 1C ]-1 J J = 211: a Ld<P(H + aCOS<Pr'" 

qJ 

(22) 

Combining Eqs. (15), (18), and (19) one finds the following expression for the 

perturbation of the distribution function: 

(23) 

8lf1 = -lfI(Y, H < a. 

The graph of the function 8lf1is shown in Figure 2. As a simple analysis shows, 8lf1 tends 

to zero in the limit H» a, which means that, indeed, the perturbation of the distribution 

function is localized in the region IYI- (a/a)I/2 in accordance with our original 

assumption. 

1 
0.5 

o 
-0.5 o 

y 

phi 

3 
HGURE 2. Perturbation of the distribution function ~1fI as a function of y and cpo For negative y, ~1fI is 

given by the antisymmetry condition, 8lf1( -Y, qJ) = -8lf1(Y, qJ) . 
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Having found the perturbation of the distribution function, we are now in position to 

compute an increase ~e = e f - ei of the emittance of the beam. Applying the definition 

(24) 

to Eq. (23), one finds 

( )
3/2 

~e = -25/21ryf30: VI;, (25) 

where the numerical factor yis 

[ ( J
-l] tr ~ 1 tr d 1 tr 

y= Jdq>Jd; -~;+cosq>- J -V q> +-Jdq>{1+cosq»3/2 =1.1. 
-tr 1 21r -tr ;+cosq> 31r_ tr 

(26) 

Note that ~e > 0 because VI; is negative. 

The result (25) can be rewritten in a more practical form if one introduces the tune spread 

in the beam 8VNL as the tune difference between the particles with zero amplitude of the 

betatron oscillations and that equal to (I, 

(27) 

Then the relative increase of emittance ~e/ eo (where eo is the initial emittance of the 

beam, which, according to Eq. (24), is eo = f3oJo = ~ /f3) takes the following form: 

3/4 ( )( J3/2 314 ~e _ 2-3/4 -312 ~ ~ Ao (f3f30) -- Y1C -- exp --- -- -
Eo 8VNL bVNL 8VNL ~ 

(28) 

Maximum value of ~e is reached for I~I = 38vNL /4 and is equal to 

( J
312( 314 

~e = 0.045 ~ f3f30). 
eo 8VNL ~ 

(29) 
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This equation expresses the increase of the emittance of the beam in terms of the 

amplitude of the ripple, the tune spread in the beam, and the initial emittance of the beam. 

As a check of our analytic results we performed computer simulations in which an 

ensemble of 105 particles was tracked, governed by the Hamiltonian (6) with the 

nonlinear term aJ2/2 added to it. A result of such a simulation for Ao = 3· 10-3
, a = 0.1, 

v = 0.28, and m/n = 0.3 is shown in Figure 3. As is seen from this figure, an initial 

linear growth of emittance anticipated from a linear theory turns out to be a transient 

process which, after reaching a local maximum, comes to oscillations around an 

asymptotic value of Ile/eo• Note the good agreement between simulation and the 

analytical prediction for asymptotic Lie. The duration of the transient process can be 

characterized by the number of turns N of the first maximum in Figure 3. From the 

theory, it follows that this time is associated with nonlinear oscillations described by the 

Hamiltonian (13). A simple scaling analysis predicts that N behaves in accordance with 

the scaling law, N oc 8v;vi (eo / Ile t3. Comparison with the curve in Figure 3 allows one 

to find approximately the unknown numerical factor in this scaling: 

(30) 

This equation complements Eq. (29) and can be used for estimates of the characteristic 

time at which the final eqUilibrium state of the beam is established. 
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FIGURE 3. Plot of the relative emittance increase as a function of number of turns. The horizontal dashed 

line shows the asymptotic value of /)"8/80 calculated with the use of Eq. (28). 

4 DISCUSSION 

The main result of this paper consists in the prediction of the saturation level of the 

emittance growth caused by the resonance with the ripple. Our approach is based on the 

use of a small parameter associated with the amplitude of the ripple. To find out the 

condition under which our approach is valid, we should require the width of the 

resonance to be much smaller than the width of the distribution function. The width of the 

resonance 8Jres can be estimated from the Hamiltonian (13) as the amplitude of the 

oscillations on the separatrix, 8Jm - (a/ay/2, giving a condition of applicability 

8Jres « Jo' Comparing this inequality with Eq. (25) one concludes that within a 

numerical factor of the order of unity the condition of applicability of the theory can be 

also formulated as /)"8/80 « 1; that is, the theory is valid for the ripple, which causes a 

relatively small increase of the emittance. 

The theory can be easily generalized for nonlinearity 8v( J) of the kind other than 

quadratic dependence-for example, for those caused by the beam-beam interaction. For 

rough estimates one can use Eq. (29) for any type of nonlinearity by simply putting in it a 

proper 8VNL (defined as a tune difference between particles having a zero amplitude and 

that equal to 0'). 
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As an application of results obtained, let us estimate a tolerable level of the ripple for the 

sse parameters at injection energy 2 TeV, assuming that the allowable increase of the 

emittance is b.c/ Co = 10-2 
• From Eq. (29) one finds 

oB = 7.90V
NL 

P b.c a-
( J

2/3 ( ? J1I2 
B 1 Co 13130 

(31) 

For the collider,6 the magnet length 1= 15 m, bending radius p = 9.8 km, and nominal 

normalized emittance ra2 /f3 = lO-6 m. Taking the average beta function 130 = 100 m as 

the value of 13 at the position of the magnet, and using OVNL = 10-5 (Reference 7), for the 

natural nonlinearity of the ring, one finds oBI B = 5.4 .10-9
• However, this result refers to 

the case of only one magnet experiencing ripple oscillations of the magnetic field. The 

sse collider will have 10 power supplies that produce the ripple that attenuates with the 

distance propagating from the drive points) Effectively, the result of all the power 

supplies can be estimated as equal to 20-30 times of the perturbation of the magnetic 

field in the magnet closest to the driving point. With this amplification factor due to the 

large number of magnets involved in the ripple oscillations the tolerable level of 

fluctuations per magnet becomes oBI B = (2 + 3) . 10-10
, which lies below the expected 

value of fluctuations. 

At the full energy of 20 TeV, the nonlinearity will be dominated by beam-beam 

interaction with the nominal tune shift OVNL = 0.004. Although beam-beam interaction is 

characterized by a more complex dependence of the tune shift versus the amplitude of the 

betatron oscillation than that assumed in Eq. (27), for an estimate we can still use 

Eq. (31). Using the same values for other parameters as above, one finds the tolerable 

level of the ripple oBI B = (2 + 3) .10-8
• 
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