
SSCL DD2 Driver Port and
Project Update

Superconducting Super Collider
Laboratory

SSCL-Preprint-228
April 1993
Distribution Category: 414

S. Mestad

To be published in Supercollider 5 SSCL-Preprint-228

SSCL DD2 Driver Port and Project Update *

S. Mestad

Superconducting Super Collider Laboratory t
2550 Becldeymeade Ave.

Dallas, TX 75237

April 1993

*Presented at the Fifth Annual International Symposium on the Super Collider, May 6-8, 1993 San Francisco, CA.
tOperated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

SSCL DD2 DRIVER PORT AND PROJECT UPDATE

ABSTRACT

Steven L. Mestad

Physics Research Division
Computing Department MS-2003
Superconducting Super Collider Laboratory·
2550 Becldeymeade Ave.
Dallas, TX 75237
stevem @diehard.ssc.gov

A paper previously published in the 1992 ICHEP proceedings [ref. 1] outlined the SSC's need
for a high speed, high capacity tape drive to store detector data. Also described were stages and
lessons learned while developing a custom device driver for the Ampex DD2 tape drive on a Silicon
Graphics 4D/31O. This paper updates the work on the SGI chiver and describes the efforts in porting
the driver to a Sun Microsystems 670 server.

INTRODUCTION

The SSCL's interest in the DD2 tape drive is driven by the predicted data storage
requirements of the lab's detectors. The detectors are expected to generate data at 100
megabyte/second thereby producing several petabytes of data per year. The detector collaborations
require keeping a year's worth of data on line for analysis and comparisons to simulation data
generated independently. These requirements for large storage with high transfer rates clearly call
for something other than the typical tape or optical disk drive.

The DD2 tape drive is a 19 millimeter digital video tape drive produced by AMPEX.
AMPEX has adapted their video tape drive, used in the professional broadcasting industry, for high
speed high density storage of digital computer data. The DD2 tape drive is a promising device for
meeting the SSCL's requirements. Currently it is available with a 15 megabyte/second transfer rate
and the capability of storing 25 gigabytes on a $60 tape. A four drive tape robot system can store
over 6 terabytes with access to any byte averaging less than 30 seconds. The costs for such a robot
system is comparable to a 1 terabyte 3480 based tape silo system.

The DD2 mass storage project at the SSCL started by integrating a DD2 tape drive and a
VME IPI-3 controller, made by ContrOl Data, with a Silicon Graphics computer system. This
required writing a custom device driver for the tape drive. Currently the driver is being ported to a
Sun 670 computer system.

*Operated by the Universities Research Association, Inc .• for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

PROJECT STATUS

The SGI driver has undergone further debugging and testing since the ICHEP paper was
written. Error reporting and recovery has been enhanced and the front panel message display is now
supported. Proper operation of multiple controllers and drives has been verified. The best data
transfer rate achieved is 13.8 megabytes per second with over 10 megabytes per second sustained.
Further performance tuning is still needed. Also, further work is required to allow proper operation
on multiple cpu SOl systems.

Currently the focus has been on porting the driver to a Sun 670 system in order to support the
PASS project. PASS (petabyte Access Storage Solution) is experimenting with various data storage
methods to find an optimal strategy for storing lab data [ref. 2].

PROJECT STAGES

Porting the SOl driver to the Sun presented a few problems right from the start. Since a
skeletal driver containing all the required functionality could not be found, setting up the Sun
specific code was a problem. Although Sun's manuals give driver examples [ref. 3,4], these often
did not address problems presented by our driver. In addition, SunOS 4.1.3 does not include support
for partitioned DAT drives so it was not possible to map several DD2 drive operations into SunOS
supported operations as was done on the SGI. Moving these operations into device specific
commands means the MT(1) utility will not support several required DD2 drive commands so a
custom MT type utility needs to be written. SunOS also did not include a device specific ioct1(2) so
the mtio.h include file also required modifications.

In porting to SunOS, it was expected that the tape drive specifiC portions of the driver would
be largely unaffected and that the SGI specific portions would need large modifications. These
changes would include restructuring the initialization and setup portions of the driver to fit Sun
conventions as well as switching over to Sun specific driver data structureS. There are also kernel
calls available on the SOl which do not have a comparable call under SunOS. These calls must be
replaced by functionally equivalent code.

Once the structural changes were roughed out and the code compiled, the debugging began.
After getting past several problems related to acquiring configuration information, the first device
specific problems arose. After solving a system lockup problem due to incorrect backplane jumper
settings [ref. 5], the interface card failed its self test with a DMA error. This problem could have
several different causes. The most unusual clue however was the VME bus analyzer did not register
any attempts to access memory.

The interface vendor, CDC, directed inquiries to the board designers. After using a diagnostic
port on the interface board to verify the DMA maps were setup properly and the Sun memory was
indeed accessible from the VME card, it was determined that the device driver was requesting block
transfer mode on the VME bus. Once this mode was turned off, the board initialized correctly.
Though the interface will work without block transfer, performance will be degraded. Information
from Sun about their VME bus support [ref. 6] is forthcoming and should help determine if block
transfer mode is supported. At the time this paper was written, the Sun driver is not completely
debugged. There are problems synchronizing execution of the driver. The driver is passing·
commands to the tape drive and accepting asynchronous interrupts; therefore the command block
assembler, interrupt handler and response block parser are all operating. Hopefully the driver can be
made functional in the time between the paper deadline and the IISSC presentation.

MORE LESSONS

One of the lessons learned was that finding a good skeletal driver to work from can save large
amounts of time. Piecing together the correct approach from several incomplete driver fragments
using trial and error can be time consuming and frustrating. Debugging can also be difficult as most
problems have several causes and finding the correct solution from an assortment of possibilities
involves a large amount of investigation.

A previously learned lesson, the importance of vendor documentation, also came up again.
The standard documentation set shipped with our previous Sun equipment contains no information
on making use of the Sun Open Boot PROM used in newer SPARC systems such as the 670. This

information is contained in Sun's Sbus Developers Toolkit [ref. 7]. Sun's manual describing their
VME implementation was unknown until after inquiring about support of block transfer mode.
Also, SOl issued an update to their device driver manual. This was discovered upon learning that a
better method of using semaphores and spinlocks was covered in a manual section we did not have
[ref. 8, 9]. However, don't discard old manuals as newer ones may not contain necessary
information. Sun's older debugging manual [ref. 10] contains information on using ADB(1) for
kernel debugging. This topic is not present in a newer debugging manual which concentrates on
newer debugging tools.

The previously learned lesson on the importance of test equipment was once again
demonstrated by the VME bus analyzer. Because the bus trace showed no attempt at accessing
memory, the possibility of incorrectly setup DMA maps or a bad initialization address could not be
causing the problem experienced. Such problems would be the more likely explanation of a DMA
selftest failure but the trace showed that something very unusual was taking place.

A new lesson, the importance of maintaining current hardware revisions, was demonstrated by
the arrival of the dual port hardware. Once installed, it became apparent something was wrong
when trying to use both controllers in a single system. Instead of behaving like 2 separate drives on
2 separate controllers as expected, the second interface would fail to initialize properly.
Investigation showed the new Rhino board, an IPI interface in the drive itself, was a newer revision
than the original one. ReplaCing the original Rhino with an upgrade helped but did not solve the
problem. Further investigation found that our tape drive contained hardware which was seriously
obsolete. This would be unusual for a one year old product, but as this tape drive is still in
development, the situation is not unheard of. After the drive was upgraded to current hardware and
firmware levels, the dual port hardware operated as expected.

The ICHEP paper also touched upon the importance of keeping an archive of previously
working versions of code to allow comparisons to the current code when it has stopped working.
While this practice has been helpful during software development, it also turned out vital for
resuming work after several hardware changes. After installing a backplane upgrade and multiple
cpu board in our SOl system, the driver failed to work properly. This was not terribly surprising as
it was known the semaphores are not properly guarding critical sections. However, it was surprising
when the code continued to fail after swapping the single cpu board back into the system. Along
with the SOl cpu upgrade, AMPEX had performed a major upgrade on the tape drive and the effects
of this work were still unknown. A mOdified version of the driver supplied by AMPEX would run
but less than one half the speed of our original code. On the possibility that building a multi cpu
kernel changed the configuration, SOl sent a copy of the default kernel configuration code.
However, kernels built with it showed the same problems.

At this point it was time to try old drivers to see if the current version was defective. The
oldest working archived driver also no longer ran. We then loaded the kernel configuration code
from an old system backup and built a kernel with the oldest driver version. It worked and ran as
fast as expected. We then tried running the most recent driver archived with all three sets of kernel
code. It ran properly and as fast as expected with all sets of kernel code. Further investigation is
needed to understand why the latest version of the driver no longer works and why the oldest version
failed unless built from the old backup files. Analysis of why AMPEX's code is slower than our
code may be helpful in understanding which modifications will improve performance. Determining
which configuration files are automatically changed by a multiple cpu kernel build might shed some
light on why the SOl driver fails on a multiple cpu system when locked to a single cpu although it
will run properly on a Single cpu system.

FUTURE DEVELOPMENT

As outlined in the ICHEP paper, there are several areas for future work on the 002 project.
Because of the concentration on the Sun port, little recent work has been done on the SOl driver.
The SOl driver needs further tuning to enhance throughput. Modifications are also required to
permit proper operation on multiple cpu systems. Essentially this work involves ensuring the critical
sections of driver code are protected by semaphores to prevent simultaneous update problems in the
driver data structures. However, to ensure good performance of the tape drive and computer system,
semaphore and spin locks must protect the smallest amount of code possible. The locks must also
be implemented carefully to avoid the possibility of deadlock. The Sun driver, once

fully functional, will require further changes as well. Plans are to upgrade the 670 system to Solaris
2.1 which will require major changes to the driver. This involves porting the driver yet again as
SunOS is based on a BSD kernel whereas Solaris is based on a System V kernel.

In order to make use of the dual port hardware, the driver will need some modifications to
support it. In particular, the proper handling of tape drive resets, current tape position, and the
setting of block sizes will need attention. Access control and IPI port allegiance also needs support;
probably through some sort of drive request daemon.

The solution to the problem of how to feed a 15 megabyte per second tape drive has been
decided on. It is expected that the computing systems used for data analysis will have sufficiently
large amounts of memory; enough to hold several entire data sets. Therefore the data will be written
and read directly to memory and striped disk arrays will not be needed.

Other projects under consideration include acquiring a D2 tape robot so that a base of
experience and support code can be developed. Integration of D2 into the PDSF for tertiary storage
is also desirable due to the existing need for large amounts of fast storage [ref. 11]. The 8mm drives
currently in use are too slow and their reliability disappointing.

NOTES

UNIX, SGI, IRIX, SUN, SUNOS, and possibly other terms in this document are registered
trademarks of USL, Silicon Graphics, Sun Microsystems, and other various companies.

REFERENCES

1. "SSCL DD2 Mass Storage Project", Steve Mestad, ICHEP Proceedings, 1992.
2. "The PASS Project: Database Computing for the SSC", E. May, et al., Proposal to the DOE High

Performance Computing and Communication Initiative, March 1992.
3. "Writing Device Drivers", Sun Microsystems part DO. 800-3851-10.
4. "Writing SBus Device Drivers", Sun Microsystems part no. 800-5322-10.
5. "SPARCsystem 670MP", Sun Microsystems part no. 825-1390-01.
6. "SPARC 600MP VME Implementation Guide", Sun Microsystems part no. 800-6738-10.
7. "Open Boot PROM Toolkit User's Guide", Sun Microsystems part DO. 800-5279-10.
8. "Writing Device Drivers for Silicon Graphics Computer Systems", Version 1.0, SGI document number

007-0911-010, 1989.
9. "IRJX Device Driver Programming Guide", Silicon Graphic document number 007-0911-020.
10. "Debugging Tools", Sun Microsystems part no. 800-3849-10.
11. "SSCL-PDSF Data Management System", Jeffrey L. Allen, ICHEP Proceedings, 1992.

