
Integrating PAW, a Graphical
Analysis Interface to Sybase

Superconducting Super Collider
Laboratory

SSCL-Preprint-218
April 1993
Distribution Category: 400

A.Fry
I. Chow

To be published in Supercollider 5 SSCL-Preprint-218

Integrating PAW, a Graphical
Analysis Interface to Sybase *

A. Fry and I. Chow

Superconducting Super Collider Laboratory t
2550 Becldeymeade Ave.

Dallas, TX 75237

April 1993

*Presented at the Fifth Annual International Symposium on the Super Collider, May 6-8, 1993 San Francisco, CA.
tOperated by the Universities Research Association. Inc .• for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

AN EXAMPLE OF COMBINING SYBASE WITH PAW TO PERFORM
GRAPIDCAL DATA DISPLAY AND ANALYSIS

A. Fry and I. Chow

Superconducting Super Collider Laboratory*
2550 Beckleymeade Avenue
Dallas, TX 75237-3997

INTRODUCTION

The program PAW (Physics Analysis Workstation) [1] enjoys tremendous :",(,):"tl·,,\~.y
within the high energy physics community. It is implemented on a large nU1tl0er of
platforms and is available to the high energy physics community free of charge from the
CERN computing division. PAW combines extensive graphical display capability
(HPLOTIHIGZ), with histogramming (HBOOK4), file and data handling (ZEBRA), vector
arithmetic manipulation (SIGMA), user defined functions (COMIS), powerful function
minimization (MINUIT), and a command interpreter (KUIP).

To facilitate the possibility of using relational databases in physics analysis, we have
added an SQL interface to PAW. This interface allows users to create PAW N-tuples from
Sybase tables and vice versa. We discuss the implementations below.

METHODS AND RESULTS

An "isql" interface was constructed within PAW using KUIP commands [2] so that
users can type in SQL commands at the PAW prompt. The interface takes the SQL
statements and sends them to the Sybase DB-library interface [3]. Therefore, all the SQL
computations are done at the SQL server. Users can also issue commands to transfer the
c!ontents of their Sybase tables to and from PAW n-tuples. Results can be displayed using
the HIGZ graphics library which is contained in PAW. The commands that we added to
PAW for processing SQL commands are listed in Figure 1.

*Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

1: * ISQL
2: * MVEC
3: * SQL

SQL Command Interface
Retrieve values from a column to a vector in PAW
Single line SQL input processor

4: * SNTUPLE
5: * SYBTAB

Move values from tables in database to N-tuples in PAW
Move N-tuple values from memory back to Sybase

Figure 1. Commands added to PAW for SQL interface to Sybase

After creating these commands within PAW, we performed a test using data from the
cnF experiment at Fermi lab. The data are organized into named structures called YBOS
banks [4]. The YBOS banks were extracted into corresponding Sybase tables. The schema
of the tables are based the original YBOS tree structures. Unique IDs are generated to
specify each records. We performed a Z-mass analysis using pure SQL statements. This
analysis selected 243 events from a loose sample of 5007 Z candidates. The mass plot (fig.
2) of the selected events shows the Z mass peak near 92GeV.

20

17.5

15

12.5

10

7.5

5

2.5

0
20 40 60 80 100 120 140

I Mass I

Figure 2. The display of the results of our Z-mass SQL analysis.

FUTURE RESEARCH

When performing this test, we found that the YBOS data structures as used by the
CDF experiment were not optimal for a relational model. A better data model of High
Energy Physics data can be constructed. We are continuing the effort to define a more
appropriate model for HEP data within the relational and Object-Oriented database
paradigms [5][6]. Hopefully, such effort will benefit both the database and HEP
communities. We also believe that the graphical interface to Sybase using PAW can be
found useful in many other application which do not as yet have a graphical interface.

ACKNOWLEDGMENTS

We wish to thank Craig Blocker for his assistance in our understanding of the CDF
YBOS structure.

REFERENCES

1. R. Brun, O. Couet, C. Vandoni and P. Zanarini, "Physics Analysis Workstation-
PAW", CERN Computing, CERN (1989).

2. R. Brun and P. Zanarini, "KUIP -- Kit for an User Interface Package", CERN
Computing, CERN (1988).

3. "DB-Library Programming Guide", Notes from Sybase Educational courses.
4. "CDF notes", Fermi Lab, Chicago, (1988)
5. A. Baden, C. Day, R. Grossman, D. Lifka, E. Lusk, E. May, S. Mehta, L. Price and X.

Qin, "A Data Model for Scientific Databases Supporting Objects, Attributes, Methods

and Collections: Preliminary Report", PASS project, (1991)
6. R. Grossman, X. Qin, C. Day, S. Loken, F. MacFarlane, E. May, D. Lifka, E. Lusk, L.

Price, A. Baden, L. Cormell, P. Leibold, D. Liu, U. Nixdorf, B. Scipioni, T. Song,
"Database Challenges: Analyzing High Energy Physics Data Using Database
Computing" , PASS project, (1992)

Appendix A: Schema of our Sybase tables.

Event ~---_ID ____ --1
LJ:IIO

Schema ot Ybos bank structure in Sybase tables

10-1 ... ___ VTV __ Z __ ---lr-IO -1L.. ___ V_E_R_TE_X __ ---l

........ ~~-- M --1 JETS

""> __ M-1 ... ___ C_Tr-CS ___ ..J

i 10
I

I..-__ C_TC_V_ER_S_IO_N_---ll-0-1 eTC F1THISTCRV

Continued (rom page 1

Appendix B: An example of a batch of SQL statements for calculating the Z-mass from COP data.

/*------------------------------------
* get electrons from events with
* more than one electrons
*
*/
clean_up
go
select id=eleid, eid=evtid into #tmp 1 from ELEID where eno > 1
go
insert #tmp 1
select eleid, evtid from ELEID, #tmp 1 where eid=evtid and eno = 1
go
/*
*--
* processing filter A */
clean_up
go
select id=id, x=XexEle, y=YexEle into #tmp2
from #tmp I, ELES
where (E_Ele/P _Ele) < 1.5 and EtvEle > 20
and (Er4Ele - EtvEle)/EtvEle < 0.1
and HadEle < (0.055 + 0.045*E_Ele/l00) and abs(ZvEle) < 60
and ele_id = id and RegEle = 0
go
alter table #tmp2
add phi float NULL, phe float NULL
go
update #tmp2
set phi = atan(y/x)
go
update #tmp2
set phe = PscEle
from #tmp2, CEM
where id=ele_id
go
update #tmp2
set phi = phi + 8*atan(1)
where y < 0 and x > 0
go
update #tmp2
set phi = phi + 4*atan(1)
where y<O and x<O
go
update #tmp2
set phi = phi + 4*tan(l)
where y> 0 and x <0
go
delete #tmp2
where abs(phi-phe) > 0.00831
go
clean_up

go
delete #tmp2
from#tmp2
where id not in
(select ELES.ele_id from CEM, ELES where
CEM.ele_id = ELES.ele_id and abs(ZexEle - ZstEle) < 3.0
and LshEle < 0.2 and CheEle < 15.0)
go
delete #tmp2
from #tmp2, FIDELE
where id=ele_id and pass=O
go
clean_up
go
1'*----------------------------------
* processing filter B *
* first cut *1'
clean_up
go
select id=id into #tmp3
from ELES, #tmp1
where EtvEle > 10 and (Er4Ele - EtvEle)l'EtvEle < 0.1 and HadEle < 0.1
and id=ele_id
go
clean_up
go
1'* filter bad CEM electrons *1'
delete #tmp3
from #tmp3, CEM
where id=ele_id and id not in
(select ele_id
from ELES
where RegEle = 0 and E_EleI'P _Ele < 2.0)
go
1'* filter bad PEM electrons *1'
delete #tmp3
from #tmp3, PEM
where id=ele_id and id not in
(select ELES.ele_id
from PEM, ELES
where ELES.ele_id = PEM.ele_id
and Ch3Ele < 20)
1'* and Vhit > 0.5 and Ch3Ele < 20) *1'
go.
clean_up
go
1'*------------------------------------
* pI_table and p2_table *1'
drop table #tmp 1
go
select id =id, evtid= evtid
into #tmp4
from #tmp2, ELEID
where id = eleid

go
select id=id, evtid = evtid into #tmpS
from #tmp3, ELEID
where id = eleid
go
drop table #tmp2
go
drop table #tmp3
go
/*--------------------------------------
* invariant mass table * /
clean_up
go
select idl=#tmp4.id, id2=#tmpS.id into #TMP6
from #tmp4, #tmpS
where #tmpS.id != #tmp4.id
and #tmp4.evtid = #tmpS.evtid
go
drop table #tmp4
go
drop table #tmpS
go
/* eliminate permutation from the set * /
select tidl=id2, tid2=idl into #tmp7 from #TMP6
go
delete #TMP6
from #TMP6, #tmp7
where tidl=idl and tid2=id2 and idl > id2
go
drop table #tmp7
go
/* sql select distinct evtid from ELEID, #TMP6 where idl=eleid
* sql go
--/
alter table #TMP6
add e 1 float NULL, pxl float NULL, pyl float NULL, pz 1 float NULL
go
alter table #TMP6
add e2 float NULL, px2 float NULL, py2 float NULL, pz2 float. :l'-t1JLL
go
clean_up
go
update #TMP6
set e 1 = E_Ele,
.pxl = PxEle,
pyl = PyEle,
pzl = pzEle
from #TMP6, ELES
where ele_id = idl
go
update #TMP6
set e2 = E_Ele,
px2 = PxEle,
py2 = PyEle,

pz2 = pzEle
from #TMP6, ELES
where ele_id = id2
go
;'* ------------------------------------
* get the invariant mass *;'
select m=sqrt(2*(el*e2 - pxl*px2 - pyl*py2 - pzl*pz2»,
idl=idl, id2=id2
into #tmp
from#TMP6
go
select m from #tmp
go

