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Effect of Betatron Motion on Particle Loss Due to Longitudinal 
Diffusion in High-energy Colliders 

Barry S. Newberger, Inst. for Fusion Studies and Dept. of Physics, Univ. of 
Texas-Austin, Austin, TX 78712, James A. Ellison, Dept. of Mathematics, Univ. of New 
Mexico, Albuquerque, NM 87131 and H.-Jeng Shih, SSC Laboratory, Dallas, TX 75237 

ABSTRACT 

Strictly one-dimensional theories of particle loss due to longitudinal dif
fusion model the loss by an absorbing boundary condition at the separatrix 
of the underlying unperturbed motion. Particle loss always occurs at a 
physical aperture and the loss is always coupled to the betatron motion. 
A theory of particle loss which includes the effect of betatron motion is 
presented. Results are compared with Monte Carlo simulations. 

PACS numbers: 29.27.Fh 

It has long been understood that noise in the rf systems of storage rings leads to a slow 

increase of the longitudinal emittance of the stored bunches.1- 3 Especially, in the design 

of new hadron storage rings , intrinsic sources of noise must be identified and investigated 

to insure that they do not represent sources of unacceptable loss of beam lifetime.4- 5 

Conversely, the issue of controlled injection of noise into the rf system of these machines 

for the purpose of extracting beam has recently become of considerable interest.6- 7 Here 

the idea is to "diffuse" particles in momentum until due to dispersion they reach a physical 

extraction septum. 

Previous treatments of the loss process have been strictly one-dimensional, taking no 

account of the betatron motion. The losses are described in terms of longitudinal action 

and are assumed to occur at the separatrix of the longitudinal motion. This does not 

correspond to a real aperture stop and the quantitative results from these theories exhibit 

significant discrepancies when compared, for example, to Monte Carlo tracking studies. 7 

Knowledge of these loss rates is essential in the design of high-luminosity hadron colliders. 

In this paper, we obtain a statistical model of the transverse x - coordinates of an ensemble 

of particles in a bunch, calculate the loss at an x - septum and find excellent agreement 

with the tracking results. 
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It is conventional8 to describe the transverse motion in asynchrotron as a superposition 

of a closed orbit, X co , and a (betatron) oscillation, xj3. The closed orbit, as the name implies, 

is periodic with the machine period; the betatron motion, in general, is not periodic. At 

a fixed lattice position, the closed orbit of a synchronous particle is the machine axis 

while an off-momentum particle executes an oscillation about the closed orbit position of 

the synchronous particle. This is the synchrotron oscillation, of frequency n for small 

amplitudes. The motion is on an energy oval in the longitudinal phase space of a simple 

pendulum. The position of the closed orbit is related to the relative momentum deviation, 

6p by Xco = 6pD. Here, D is the dispersion which is a lattice function. Under certain 

assumptions, the effect of the noise can be described as a diffusion process in which there 

is a slow increase in amplitude of the synchrotron oscillation on a time scale long compared 

to a synchrotron period. Consequently, there is an increase in the closed orbit amplitude 

of these off-momentum particles. The position x = Xco + xj3 determines when a particle 

hits the stop. This could be an extraction septum, an array of collimators or even a 

"dynamical" aperture which results from nonlinearities in the system. 

The theory9-11 of the longitudinal dynamics in a noisy rf system leads to a description 

of the evolution of an ensemble by a diffusion in the action, J which is a constant of the 

unperturbed motion. The time scales of the diffusion in action, the synchrotron period 

and the betatron oscillation period are disparate with td ~ ts ~ tj3. Thus the collimation 

process sweeps a shell in the transverse phase space (A, A + dA), where A characterizes 

a Courant-Snyder invariant, and a shell (J, J + dJ) in the longitudinal phase space in a 

time t, ts < t < td, (see Fig. 1). The maximum betatron displacement is related to A by 

IXj3l max = .J"PA where f3 is the usual betatron function. 8 

In the presence of an aperture stop, a particle slowly diffuses toward the periphery 

of the beam pipe until it strikes the stop. The horizontal position of the stop is Xc and 

we assume the "image" of the stop in momentum, xci D is inside the bucket. This is 

appropriate for both the proposed superslow extraction 7 or momentum scrapers.12 The 

time it takes until the particle is lost, or conversely, the loss rate, depends on both the 

closed orbit position (equivalently, action) and the betatron displacement. 

Consider particles which, at a given time, t, have not yet reached the stop. Referring to 

Fig. 2, we see that the protons which are inside the stop lie in the domain Sin J, xj3 space. 
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The entire space is the quadrant Q : J,xf3 ~ O. We have simply written xf3 for IXf3lmax 

in order to keep the notation from becoming too cumbersome. The domain S is bounded 

by segments of the coordinate axes and the curve as : {xf3,J = Jb(xf3)I0:$ xf3:$ xc}; 

Jb(Xf3) is the action for a particle on an energy surface, k = (8P)max/8PSl defined by 

k = kb(Xf3) = (xc - xf3)/(D8ps). Here 8ps is the relative bucket half-height. For the 

pendulum, kb(Xf3) can be found in terms of elliptic integrals. It might be expected that 

for these particles, the two random variables, xf3 and J might be statistically independent 

for all time because initially they are. That this is not so is the crucial observation in the 

construction of the theory. However, the calculation of the joint distribution is deceptively 

simple. 

Consider the joint density p(J,xf3) and the action density conditioned on xf3, p(Jlxf3)' 

Then, 

p ( J, x f3, t) = p ( J, t I x f3 ) p (x f3 ) (1) 

where p(xf3) is the marginal density of xf3. These must be probability densities and must 

be defined throughout Q. In the domain S, the protons have a marginal xf3 - distribution 

which is just the initial distribution; they are Rayleigh distributed with parameter v'€i3, 
where € is the emittance. (The transverse phase space variables are bi-Gaussian.) We 

must now find the conditional density, p(J, tlxf3). This satisfies the same diffusion equation 

considered in earlier work:7,9-11 

(2a) 

but with boundary condition: 

(2b) 

The action dependent diffusion coefficient is D( J). The absorbing boundary now is de

pendent on xf3 and is just the curve as defined earlier. In Q - S, the joint density is a 

delta function. Furthermore, consistency requires that the identity: 

(3) 

be satisfied. The joint density in Q - S is constructed so this consistency condition is 

satisfied. It is never needed to evaluate any quantity of interest although it is implicit 
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in the required conservation of probability. It should be noted that the same arguments 

apply if the marginal density p( x /3) has time dependence provided the evolution is due to a 

process which is independent of the particle's longitudinal action, J. Finally, the fraction 

of protons which reach the stop is given by a quadrature of the joint density over the 

domain S: 

N (t) = 1. - J!sp (J, tlx/3) p (x/3) dJ dX/3' (4) 

It is also instructive to derive Eq. (4) in the context of a first passage problem. Suppose 

T is the (random) time a particle strikes the stop. This time depends on the particle's 

betatron motion and is a random variable. Conditioning on x/3, the law oftotal probability 

gIves 
Xc 

PiT > t} = J PiT > tlx/3}p (x/3) dX/3 
o 

where the lhs is the probability of not reaching the stop in [0, t). Now, 

P{T > tlx/3} = P{J(s) < Jb (X/3) ,0::; s ::; tlx/3} 

(5) 

(6) 

Jb 
where J(t) is the action stochastic process and the probability on the rhs is J p(J, tlx/3) dJ 

o 
where the integrand is defined by Eq. (2). Therefore, 

Xc Jb 

PiT > t} = J J P (J, tlx/3) dJ dX/3, (7) 

o 0 

and the lhs can be interpreted as the fraction of particles not reaching the stop in the time 

interval [0, t]. This is the same as 1. - N(t), Eq. (4). 

In general, the diffusion coefficient is not expected to have a simple dependence on the 

action and Eq. 2 must be solved numerically.7,1l If the diffusion coefficient is linear in 

the action, the diffusion equation is easily solved by separation of variables9 in terms of 

a Fourier-Bessel series. A quadratic diffusion coefficient, D = D oJ 2 , leads to a continu

ous spectrum and an integral representation of the solution obtains by means of Fourier 

transforms. 13 Neither of these exactly correspond to simple noise spectral densities. How

ever, the diffusion coefficient for small action is linear in the case of white phase noise 

and quadratic for white amplitude noisell . Furthermore, we will see that the diffusion 

coefficient for white phase and for white amplitude noise can reasonably be fit over most 
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of the bucket by linear and quadratic approximations respectively; the fit is very good in 

the latter case. 

It is straightforward to apply the solutions of Ref. 9 and Ref. 13 to our problem. We 

reiterate that the solution in terms of the absorbing boundary condition at Jb( x (3) is the 

required conditional probability density. The solutions are functionals of the initial density. 

It is convenient to express the initial density distribution in terms of k(O 5 k 5 1) rather 

than the action J. There is a one-one mapping between the two: J = (Sn/rr)k2B(k) 

where B is related to the complete elliptic integrals of the first and second kinds, K and 

E respectively; B(k) = 1/k2[E(k) - (1 - k2)K(k)] Then, the initial density is 

POI (k) = k/a~ exp (_k2 /2a~) (S) 

where ak = a6p/8ps and a6p is the rms momentum spread. We have neglected exponentially 

small corrections to the normalization in Eq. S. 

In the case of a linear diffusion coefficient Eq. (4) gives: 

Xc 

N = 1. - 2 J dX(3 POl. (x(3) I: an Tn (x(3) 
o n 

(9) 

where an = (Jl(jn)Xb!in)an, Xb = Jb/ Js, Js = sn/rr and POl. is the initial probability 

density of x(3. Here Tn is the temporal part of the separated solution and an the Fourier

Bessel coefficient: 

Tn = exp [- (rr3 /16) (Q;a~j;/Xb) t] , (lOa) 

kb 

an =. J t-) 2Jkexp(-k2/2a~)Jo(jnkJB(k)/Xb) dk (lOb) 
In 1 In ak o 

where, jn is the n'th zero of the Bessel function Jo, t is the time measured in machine 

periods, To, Qs = (n/2rr)To and a,p (rad) is the phase noise standard deviation. 

Likewise, in the case of a quadratic diffusion coefficient, we find: 

Xc kb( Xfj) 

N = 1. - ~ J dX(3Pol. (x(3) J dkpOI (k) 
o 0 

x {erfc[ ( rrQsaav't) /2 + (In (k2 B (K) / Xb)) / (2rrQsaav't)] 

- (Xb/k2 B (k)) erfc [( rrQsaav't) /2 - (In (k2 B (K) / Xb)) / (2rrQsaav't)] }. (11) 
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where O"a is the standard deviation of the amplitude noise (relative to applied voltage) and 

erfc( z) is the complementary error function. Recall POl. is the Rayleigh distribution: 

POl. (x/3) = :; exp (-x~/2€(3) . (12) 

We will use these results to make a comparison with Monte Carlo tracking studies7,1l 

However, two points need to be discussed. The first is to account for what we call transient 

particles. These are particles whose initial phase coordinates are such that they will strike 

the aperture stop in a synchrotron period independent of the diffusion. They contribute 

to the count in Eqs. (9) and (11) as well as in the simulations. We then will briefly discuss 

the use of the linear and quadratic approximations in treating the diffusion in the white 

nOIse case. 

The number of transient hits are simply found by integrating the initial joint distribu

tion in X co , x/3 over the appropriate domain in the space of the random variables. Initially, 

the random variables Xco and x/3 are independent and the initial joint distribution is just 

the product of the initial distributions of the individual random variables. We do not 

present the details; the calculation is completely straightforward. 

H one simply uses the small amplitude expressions for the diffusion coefficients all the 

way to Jb(x/3)lx,8=o = J/3(O), these diffusion coefficients overestimate the actual diffusion. 

It is better to fit the approximations by forcing them to be equal to the actual diffusion 

coefficient at J /3(0). This is illustrated in Fig. 3. 

We have been using Monte Carlo tracking studies in the linear SSC lattice to simulate 

the effect of noise in the rf system for the purpose of extracting particles7,1l as well as 

understanding its impact on collider performance5,1l Typically, the simulations follow 1000 

particles for about a million turns around the ring. Comparison of the numbers of tracks 

reaching the aperture at the end of the run with the value of N from the appropriate 

expression above is summarized the following table: 

The simulation results are from a single realization of the random process. The machine 

parameters are the nominal values for the SSC collider rings, 0"6p = 5 X 10-5 , Ex = 17rmm

mrad. The value of (3x at the aperture stop was 1385 m in all cases but one. The exceptional 

case is indicated. The dispersion D = 4 m. For both simulation and theory, thirty-one 

transient particles have been taken into account. The noise variances are larger than would 



Phase Noise Amplitude Noise 

a¢ N(sim) N(theory) aa N(sim) N(theory) 

0.2 584 732/595 0.5 745 772/718 

0.2* 343 542/595 0.2 182 211/178 

0.1 187 261/179 0.1 67 56/48 

0.05 51 69/49 0.05 22 19/17 
0.02 13 14/14 0.02 7 7/6 

* ((3:; = 346m) 

Table 1: Values of Nh. The two theoretical values are for the case of small 
amplitude extrapolation/monomial fit. 
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be encountered in practice. This is necessary to get a measurable loss rate in a reasonable 

computing time. The first figure in the column of theoretical values is the result using the 

extrapolated small amplitude diffusion coefficient and the second value was obtained by 

using the diffusion coefficient fit as just discussed. The agreement between the simulation 

and theory is generally very good for the latter. The largest discrepancy, about 30%, 

occurs for the amplitude noise case with aa = 0.1. There is reason to believe it might be 

due to statistical fluctuations in the single realization of initial conditions. 

This work has been supported in part by the SSC Laboratory which is operated by 

Universities Research Association for USDOE under contract DE-AC35-89-ER-40486 and 

is based in part upon work supported by the Texas National Research Laboratory Com

mission under Grant No. RGFY9234. 
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FIG. 1. Transverse phase space domain (schematic) swept by collimation process. The 

longitudinal phase space is similar. 
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FIG. 2. Domain of random variables, J, xf3 for particles inside the aperture. 



1.6 ...-----....,..------r----,.----....,..------, 0.4 

1.2 

0.4 

DC!> phase noise 
.....;,,----- Exact 
- - - Small amplitude extrapolated 
-- - - - Monomial fit 
Da amplitude noise 
---- Exact 
- - - Small amplitude extrapolated 
- - - - Monomial fit 

0.3 

0.1 

o~---=~~--------~------~--------~----~o o 0.2 0.4 0.6 0.8 1.0 

J/Jb (0) 
TIP'()3908 

FIG. 3. Diffusion coefficients for amplitude and phase noise. 




