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Abstract 

A perturbation technique is developed that can be ap­
plied to study the collective instability problem when the 
unperturbed system is not described by a simple-harmonic 
oscillator. The longitudinal head-tail instability effect is 
well studied as applications of this technique. Applica­
tions of the longitudinal head-tail instability effects to the 
CERN Super Proton Synchrotron and the Superconduct­
ing Super Collider are included. 

I. INTRODUCTION 

The ideal motion of a single particle in a circular accel­
erator is that of a simple-harmonic oscillator. In reality, 
the accelerator contains various perturbation effects that 
cause deviations from this simple-harmonic environment. 
To study the problem of beam instability, therefore, it is 
customary to consider the various perturbation effects to 
be imposed on the idealized simple-harmonic environment. 
In particular, the conventional theory of collective instabil­
ities is developed by imposing the perturbation of collective 
wake forces on the simple-harmonic system. 

However, when the new collective longitudinal insta­
bility was observed in the CERN Super Proton Syn­
chrotron (SPS), l the analyses suggested that "longitudi­
nal chromaticity" played a role. Drawing an analogy to the 
transverse case where the betatron chromaticity causes the 
head-tail instability, this new instability was named longi­
tudinal head-tail (LHT) instability. The theoretical exis­
tence of the LHT instability was pointed out by Hereward;2 
it results from the non-simple-harmonic nature of the sys­
tem when the longitudinal chromaticity effect is consid­
ered. When the longitudinal chromaticity vanishes-and, 
therefore, the system is simple-harmonic-there would not 
be a LHT instability. To study the LHT instability, the 
conventional theory does not suffice because it treats only 
the simple-harmonic case. 

In this paper we develop a new formalism that extends 
the conventional approach to the non-simple-harmonic 
Hamiltonian system. The LHT instability is studied as 
an application to demonstrate the technique. By using the 
water-bag particle distribution model, it is possible to solve 
the problem exactly and to obtain growth rates for the var-

·Operated by the Universities Research Association, Inc., for 
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ious collective modes (dipole, quadrupole, sextupole, etc.). 
Although not discussed below, the potential-well distor­
tion, as well as its effects on collective instabilities, can 
also be studied with this technique. 

In Section 2, we follow Reference 1 to illustrate the ba­
sic physical mechanism of the LHT instability effect. In 
Section 3, a perturbation formalism for the non-simple­
harmonic Hamiltonian system is developed. For one dis­
tribution, the water-bag model, the problem is analytically 
solved. In Section 4, the results of Section 3 are applied to 
the CERN SPS, and the SSCL collider and boosters. 

II. MECHANISM OF THE LONGITUDINAL HEAD-TAIL 

INSTABILITY 

The LHT instability-like its well-known transverse 
counterpart, the transverse head-tail instability (or simply 
the head-tail instability)-is a single bunch effect. The 
mechanisms of these instabilities are quite similar. In the 
transverse head-tail instability, the betatron frequency of a 
particle depends on its momentum deviation, {) = t1E/E. 
As a consequence, the accumulated betatron phase of the 
particle depends on its longitudinal location z in the bunch 
as it executes a synchrotron oscillation. If the particle mo­
tion is then perturbed by the collective wake forces, this be­
tatron phase difference between the bunch head and bunch 
tail can lead to the transverse head-tail instability.3,4 A 
similar situation happens for the LHT instability. This 
instability is caused by a dependence of the accumulated 
synchrotron phase on the longitudinal position of the parti­
cle, coupled with a perturbation due to the collective wake 
forces. 

However, the situation is more subtle in the longitudi­
nal case for the following reason. In the transverse case, 
the betatron motion of a particle is modulated by {) and z, 
which, in the description of the transverse effects, can be 
regarded as external parameters. In the longitudinal case, 
the synchrotron motion is also modulated by 6 and z, but 
in this case, 6 and z are the dynamic variables that de­
scribe the particle motion. The analysis of this problem is 
therefore more involved. 

We will postpone the analysis until Section 3. In this 
section, we will illustrate the basic mechanism of the LHT 
instability, at least for the collective dipole mode. To do 
so, consider a circular accelerator whose slippage factor TJ 



contains a higher order term in b, i.e., 

3 
TJ = TJo(l + "2 tb ), (1) 

where TJo is the leading contribution of the momentum slip­
·page factor, and t is a parameter that specifies the strength 
of the higher-order contribution. The unperturbed equa­
tions of motion of a single particle are given by 

dz 3 

ds 
-1108(1 + "2 (8 ), 

d8 w2 

(2) 8 

ds 
= --"" 11oC2 -, 

where s is the longitudinal coordinate along the accelera­
tor circumference, and W8 is the unperturbed synchrotron 
oscillation frequency for small amplitudes. 

The Hamiltonian of the system is given by 

TJ 2 w2 
Ho = ....Q.82(1 + (8) + ...2..2z

2. 
2 2c 

(3) 

Equation (2) follows from the Hamiltonian (3) if we take 
the canonical variables to be 

q = z and p = -1108. (4) 

The coefficient t describes the deviation from the simple 
harmonicity of the system. We consider small t so that 
It81 ~ 1. The motion of a single particle in the z-8 space 
follows a constant Hamiltonian contour. One such contour 
is shown in Figure 1. The contour would be elliptical if 
t = O. When t # 0, the contour is deformed. The contour 
in Figure 1 shows the deformation when { > O. 

Also shown in Figure 1 is the motion of a beam bunch. 
The center of the bunch is considered to move along the 
constant Hamiltonian contour shown. The other particles 
in the bunch move along neighboring contours, which are 
not shown. The bunch is considered to be executing a 
longitudinal dipole oscillation, the amplitude of which has 
been exaggerated in Figure 1. The main effect of a non­
vanishing { is that it has introduced an asymmetry between 
the upper and the lower halves of the phase plane. 

As the beam bunch executes its dipole oscillation in this 
deformed phase space, the shape of the phase space area 
occupied by the bunch varies, although its area is con­
served. The bunch shape at two instances (marked by + 
and -) are shown as shaded areas in Figure 1. In particu­
lar, the bunch lengths z+ and L at the two instances are 
related by the Liouville theorem according to 

L I~~_I -cL(1+~{cL) 1-t60 l+t:cL 
z+ = I~~ I = 6+(1 + ~t6+) :::::: 1 + t80 :::::: 1 + t6+' 

+ . (5) 
where 80 = .j2Ho/1110 \, and 8± :::::: ±oo - ~t85 are the values 
of 8 at the + and - locations. We conclude from Eq. (4) 
that, to first order in It60 1, the bunch length is modulated 
according to 

Z ex 1 + {8 (6) 

(5 

+ 

Z 
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Figure 1: The phase space trajectory due to the non­
simple-harmonic Hamiltonian (3). The case shown is for 
(> O. 

as the bunch executes the dipole oscillation in the phase 
space. 

Next we introduce the effect of the collective wake fields. 
The bunch will lose energy due to interacting with the 
surroundings through the wake fields. Since the energy 
loss of the beam bunch depends on the bunch length, the 
bunch energy loss is also modulated by the same factor of 
Eq. (6). Adding the energy loss term to Eq. (2), we obtain 
the equations of motion: 

dz 3 
= -1106(1 + 2(8), 

ds 
d8 w2 1 

(7) 
ds '10~2z+ NEC[Ae li(1+£o) -Ae Ii] 

:::::: 
w~ z dAe 

TJOC2 z + ( N EC di 0, 

where N is number of particles per bunch, E is the par­
ticle energy, C is machine circumference, and Ac is the 
bunch energy loss per turn. Compared with Eq. (2), 
Eq. (7) contains an extra term that is proportional to 
Ae \i(1+£o) -Ae \i, which is the portion of Ac that is 
modulated by the instantaneous beam energy 0; we have 
kept only its leading contribution to first order in 6. 

To first order in 0, the two equations in (7) can be com­
bined to give 

d26 _ t~ dAe do + w~ 8 = 0 (8) 
ds2 NEC dz ds c2 . 

Equation (8) represents a system with growth (or damping, 



if negative) rate: 

-1 cz dD..E 
T = f 2NEC di . (9) 

The result (9) was first obtained in Reference l. 
The dipole LHT instability growth rate is proportional 

to the nonlinear slippage factor f and the dependence of 
the beam energy loss on the bunch length. Whether the 
system is stable or unstable is determined by the sign of 
f(dD..c/dz). Usually the quantity dD..c/di is positive. (A 
short bunch loses more energy than a long one. In our 
convention, D..c < 0.) This means the bunch oscillation is 
unstable if f > 0 and stable if < < O. 

Consider a bunch executing a longitudinal dipole oscilla­
tion relative to a synchronous particle. Due to the nonlin­
ear slippage factor, as the bunch executes a dipole oscilla­
tion, its length is modulated by the factors 1 + <8, where 8 
is the instantaneous relative energy of the bunch. If < > 0, 
the length of the bunch is going to be shorter when its 
energy is lower than the synchronous energy (8 < 0), and 
longer when its energy is higher than the synchronous en­
ergy (8 > 0). If a short bunch loses more energy in the 
wake field than a long bunch, i.e., if dD..c/di > 0, the 
bunch will lose energy when 8 < 0 and gain energy when 
8 > O. This means an ever-increasing amplitude of the 
dipole motion of the bunch, leading to an instability. If 
< < 0, the opposite happens, and the beam dipole motion 
is damped. 

We have so far studied the effect of anon-harmonic term 
in the dz/ds equation, which is nonlinear in 8. Naturally, 
one could pose the counterpart problem, when the non­
harmonicity is contained in the d8/ds equation due to a 
term nonlinear in z. This system describes a potential­
well distortion effect. The analysis to be described in the 
next section, as well as the physical picture described in 
the present section, can be extended to that system as well. 
We have not pursued it in the present report. Suffice it to 
say here that the collective wake forces do not cause an 
instability of this system; they cause only collective mode 
frequency shifts. 

III. PERTURBATION ApPROACH 

The conventional approach to treating the longitudi­
nal collective instabilities is as follows. One starts with 
a certain stationary bunch distribution (usually ignoring 
the potential-well distortion effects). One then assumes 
that on top of this stationary distribution, there is a time­
dependent perturbation that oscillates with a certain co­
herent frequency 0 that is to be determined. The equation 
that governs the perturbation distribution is the Vlasov 
equation. By solving the Vlasov equation, one obtains so­
lutions for O. The imaginary part of 0 then gives the 
stability growth rate.5 ,6 

If we adopt the simple harmonic oscillation as the un­
perturbed model (unperturbed is used here to refer to the 
case when wake field effects are neglected), the action-angle 

variables form a pair of canonical variables. In fact. the ac­
tion is proportional to the Hamiltonian. and the canonical 
transformation from the (z, 8) to the action-angle variables 
is the transformation from the Cartesian coordinates to the 
polar coordinates. 

From the previous section we know that to study the 
LHT instability, we will have to consider an unperturbed 
system that is described by a non-simple-harmonic Hamil­
tonian. For such a system, the conventional method of 
Cartesian-to-polar transformation no longer applies. The 
technique we develop in this paper is to introduce a new 
pair of dynamical variables: the Hamiltonian H itself and 
another variable Q, which assumes the role of the time 
variable. The advantage to using the new variables is that 
we need to deal with only one complicated variable, Q. 
This point will become clear in the later derivation. Hav­
ing introduced the new dynamical variables, the procedure 
we use to solve the Vlasov equation then follows basically 
the conventional treatment. 

We start with a general situation when the accelerator 
is described by a Hamiltonian H(q,p; s). The beam distri­
bution 'I/J(q,p; s) in the phase space (q,p) behaves in this 
environment according to the Vlasov equation: 

eN + N, H} = eN + EN oH _ 0'I/J oH = O. (10) 
os os oq op op oq 

Here we have introduced the Poisson bracket notation. 
Later we will relate the canonical variables q and p to z 
and 8 according to Eq. (4), but we leave them general for 
now. 

The unperturbed part of the Hamiltonian H is 

1 2[ ()] w; 2 Ho(q,p) ="2P 1 + f p + 2c2q , (11) 

where the function f(p) represents a small deviation of 
the system from simple harmonicity. In the following we 
will study how f(p) contributes to the LHT instability, 
particularly for the system described by Eq. (3), for which 

< f(p) = --po 
1/0 

(12) 

Consider a beam with an unperturbed distribution 'l/Jo 
that is executing a collective oscillation due to the inter­
action of wake fields. Let the collective oscillation be de­
scribed by a small distribution perturbation 'l/Jl, and let the 
oscillation frequency be O. The total beam distribution is 
then given by 

(13) 

The normalization is chosen such that 

1: dq 1: dp 'l/Jo = N. (14) 

To describe the stationary distribution of the unperturbed 
system, 'l/Jo must be a function of Ho alone. 

The distribution perturbation induces a collective wake 
force that affects the motion of the beam particles. This 



additional wake force is described by the perturbed Hamil­
tonian 

H(q,p;s) = Ho(q,p) + HI(q)e- iOs / c, (15) 

where the unperturbed term Ho is given by Eq. (11), and 
the wake-induced term HI is given by 

q 

HI = - ;~ j VI (q')dq', (16) 
-00 

where VI(q) is the retarding wake voltage per turn induced 
by tPl and is related to the longitudinal wake function W(q) 

and impedance z~ (w) according to 

VI(q) = e [: dq' [: dp tPI(q',p)W(q - q') 

= .:.-.100 

dw Zll (w )eiwq / c 
211" -00 0 

x [: dq'e-iwq'/c [: dp tPI(q',p). (17) 

The wake term HI contains the effect due to the perturba­
tion distribution tPI; the wake force induced by the unper­
turbed distribution tPo has been ignored. This amounts to 
ignoring the potential-well distortion effect, which is not 
of interest in the present study. In writing down Eq. (17), 
we have also ignored multi-turn wake effects. 

Considering that tPl is a small quantity, the Vlasov equa­
tion (10) can be linearized by keeping the first-order terms 
in tPl, 

(18) 

We now introduce a canonical transformation from the 
old variables (q,p) to the new variables (Q, P): 

of 
q=-­

op 
and 

with the generating function 

p 

of 
Q= oP' 

F(p, P) = - J q( P, p')dp'. 
o 

(19) 

(20) 

The basic idea is to choose the unperturbed Hamiltonian 
Ho as the new canonical momentum, i.e., P = Ho. Then 
the other canonical variable is given by 

P , 

Q =_jOq(Ho,P)d' 
oHo p. 

o 

(21) 

The advantage of having P = Ho lies in the fact that tPo 
depends on H 0 only, and we have 

tP( Q, Ho; s) = tPo(H 0) + tPl (Q, Ho)e-ifb/c. (22) 

Notice that the period of the motion of a particle is 

~ = f oq(Ho,P')d ' 
oHo p. (23) 

This period depends on the value of H 0 for the particle 
under consideration. In the simple harmonic case, we have 
~ = 211"c/w •. 

Since the Poisson bracket is invariant under canonical 
transformations, we can express it in either the new or the 
old variables. In particular, we use the new variables to 
obtain 

(24) 

and, noting that HI is independent of p, we use the old 
variables to obtain 

= (25) 

Following the definition of HI in Eq. (16), we have 

(26) 

The linearized Vlasov equation (18) becomes 

To solve the Vlasov equation, we first Fourier-expand tPl 
as 00 

tPl = L R/(Ho)ei21r/Q/4>(Ho) , (28) 
/=-00 

where the 1 = 0 term in the summation is to be ex­
cluded because it violates the total charge conservation 
for a given Ho. The Fourier expansion is possible because 
the motion is periodic in Q with period~. Note that ~ 
depends on H o. 

Substituting Eq. (28) into Eq. (17), we find 

00 

e J d Zll() [. q(Q, H o)] -2 wow exp aw 
11" C 

= 
-00 

00 4>(H~) 

X J dH~ J dQ' exp [-iW q( Q/~ Hb)] 

-00 0 

00 [Q' ] x /];00 R/(H~) exp i211"1 ~(Hb) . (29) 

Multiplying both side of Eq. (27) by exp(-i211"1Q/~) and 
integrating over Q from 0 to ~, we obtain 



00 II>(Ho) 

J d Z II( ) J dQ a1};o aHo [. q(Q,HO)] 
x WOW a H 0 ap exp lW c 

-00 0 

00 II>(H~) 

X J dHb J dQ' exp [-iW q(Q'~ Hb)] 

-00 0 

I = ± integers. (30) 

For a general equilibrium distribution 1};o (Gaussian, for 
example), the analysis to solve Eq. (30) is involved. Pur­
suit along this line would yield the radial modes of the 
collective oscillation. For one simple beam distribution, 
the water-bag model, however, the radial modes degener­
ate and the equation can be solved analytically. In the 
following, we will assume that the unperturbed beam has 
a water-bag distribution 

1};o(Ho) = {Nj IoB dHolP(Ho) if 0 < Ho < H, (31) 
o otherwise. 

The normalization is given by Eq. (14), together with the 
condition dQdHo = dqdp. For small (, the overall normal­
ization of (31) can be approximated to give 

w,N A 

1};o(Ho) ~ --A 9(H - Ho), (32) 
27rcH 

where 9( x) is the step function. 
Since any perturbation of a water-bag distribution has 

to occur around the edge of the bag, we have 

R,(Ho) ex 6(Ho - H). (33) 

After adopting the water-bag model, Eq. (30) simplifies 
considerably to yield, for the l-th mode (for example, I = 
1,2,3 correspond to the dipole, quadrupole, and sextupole 
modes), 

-00 

JII> dQaHo [. q(Q, H) ·2 IQ] x -- exp lW - l 7r -
ap c IP 

a 

(34) 

x j dQ' exp [-;,., q( Q'; H) + i2rl ~] = 0, 
a 

where, and from this point on, IP is evaluated at Ho = H. 
In obtaining Eq. (34), the coupling among the different 
modes with I' =f I is neglected. The validity of this ap­
proximation assumes that the mode frequency shifts are 
small compared with 27rcji) ~ w,. 

For the longitudinal head-tail instability problem, we 
now substitute Eq. (11) for Ho and Eq. (12) for f(p). We 
further define an angular variable () according to 

q = ~J2Ho cos(), 
w, 

PJ1- ( P = J2Ho sin (). 
TJo 

(35) 

We then have, from Eqs. (21) and (23), 

6 

Q = -~JG«()')d()" 
w, 

a 
2,,-

IP = ~ J G«())d() == 27rc (G) , 
w, w, 

(36) 

a 

with 

(37) 

The size of the water-bag H is related to the bunch 
length i through H = w; i 2 j8c2 • Below, we will introduce 
another convenient parameter: 

A i 2.J2H 
T=-=---. 

c W, 
(38) 

In terms of the new variable (), Eq. (34) can be written 
as 

-00 

[ 

6 1 2,,- A I G( ()1I)d()1I 

X ! d() sin Oexp i~T coso + ilo (G) (39) 

2,,- A I G(O")dO" 

[ ~ 1 X ! dO'G(O')exp _i
w
2
T 

cosO'- ilo (G) = O. 

If the non-harmonicity is weak, we assume 1(.J2HjTJol ~ 1 
and keep the first-order terms in ( to obtain 

G(O) 

(G) 

~ 1 + ~ J2H sin 0, 
TJo 

1 + 0«(2) ~ 1. (40) 

Substituting the above expression into Eq. (39), we finally 
find the mode frequency 

(/) _ . TJoNe2c (A n -lw,+l2 3EC A(A+-
2 

w,TB), (41) 
7r W,T TJo 



where 

00 2". 

A 1 dw z~ (w) 1 dB sin Be iwf cos IJ /2+iI9 

B 

-00 0 

2". 1 dB'e-iwf cos IJ/2-iI9' , 

o 
00 2". 1 dwZ~(w){ il 1 dB sinB(l- cos (})e iwf coslJ/2+illJ 

-00 0 

2". 2". 1 d(}'e-iwf cos IJ/2'-iIIJ' + 1 d(}sin{Jeiwfcos9/2+illJ 

o 0 

2". 1 d(}'[sin B' - i/(l- cos B'»)e-iWfCOSIJ/2-iIIJ'}. 

o 
(42) 

The quantities A and B can be simplified as 

-00 

-00 

2 wi" 
+(1 -/)J1 ("2 »). (43) 

The longitudinal impedance satisfies 

zM(w) = zM*(-w). (44) 

It follows that A is purely imaginary and B is real. If { = 0, 
only the A coefficient plays a role; the result describes the 
solution of the conventional longitudinal instability prob­
lem. In particular, the fact that A is purely imaginary 
means the mode frequency n is real, and the beam is al­
ways stable. This is a well-known result 5,6 when mode 
coupling and multi-turn effects are ignored, as is presently 
assumed. If { f. 0, the B term also contributes to the 
mode frequency n. This contribution, being imaginary, is 
the cause of the LHT instability. The instability growth 
rate is 

-1 
TI 

-00 

(45) 

Equation (45) is our main result of the LHT instability 
growth rate for mode l. 

We will next establish Eq. (9) as follows. The energy 
loss in one turn is given by 

00 

~E = - e
2 1 dwlp(wW~ZU(w). (46) 

21T 
-00 

For the water-bag distribution, we have 

8N~ 
p(z) = 1Ti2 V -;; - z2, 

and the corresponding Fourier spectrum is 

_() 4Nc J (wi) PW=-A-1-
2

· 
wz c 

Substituting Eqs. (46) and (48) into Eq. (9), we find 

-1 _ 4Ne
2
c
2 100 

d ~Z~(w) J (wi)J (wi) 
T - { 1T EC i w W 1 2c 2 2c . 

-00 

(47) 

(48) 

(49) 

This is the same result as Eq. (45) for the case I = 1. The 
simple physical picture and the self-consistent calculation 
thus give an identical result for dipole motion. 

IV. NUMERICAL RESULTS 

We may apply the result of the last section to specific 
models of the impedance. For example, the diffraction 
model of cavity structures gives an impedance 7 

zU(w) = 2~b J 1T1~1 [1 + sgn(w)i], (50) 

where Zo = 377 n is the impedance of free space, b is 
the radius of the beam pipe at the location of the cavity 
structure, and 9 is the longitudinal length of the gap of the 
cavity. The corresponding growth rate is found to be 

For the I = 1 dipole mode, this gives 

(52) 

In case the dominating cavity structures are the accelerat­
ing rf cavities, one would have 9 R:; c/2/n, where In is the 
rf frequency. 

As a second impedance model, we consider the resonator 
model 

(53) 

The growth rate for the dipole mode is found to be 

(54) 



where 

and 

X12 == WrZ (-i ± V4Q2 - 1). (56) 
, 4Qc 

For the CERN SPS collider, we take E 26 GeV, 
N = 1011 , C = 6.9 X 103 m, z/c = 5 ns, and f = 1. (Refer­
ence 1 gives a bunch length of 7 ns for the cosine squared 
distribution. The i is obtained by equaling the rIDS bunch 
length of two distributions, the water-bag and the cosine 
squared.) We also assume there are two sets of rf cavities. 
The first set contains 198 rf cells, with Irf = 200.222 MHz, 
b = 6.5 cm, and R/Q = 114.5 n. The second set con­
tains 32 rf cells, with Irf = 200.3982 MHz, b = 7.8 em, 
and R/Q = 216 n.1,8 The growth time l' is 5.4 s for the 
diffraction model and 23 s for the resonator model. The 
observed growth rate is 5 '" 6 S.l 

For SSC machines the parameters are as follows: For 
the Collider, we assume E = 2000 GeV, N = 8.1 X 109, 
C = 8.712 X 104 m, Z = 5.4 cm, and there are 40 rf 
cells with Irf = 359.75901 MHz. For the High Energy 
Booster, we assume E = 199.1 GeV, N = 8.1 X 109, 
C = 1.08 X 104 m, i = 30.7 cm, and there are 10 rf 
cells with Irf = 59.957832 MHz. For the Medium En­
ergy Booster, we assume E = 11.1 GeV, N = 8.3 X 109, 
C = 3.96 X 103 m, i = 22.0 em, and there are 18 rf cells 
with Irf = 59.776 MHz. For the Low Energy Booster, we 
assume E = 0.6 GeV, N = 8.7 X 109, C = 5.7 X 102 m, i = 
143.0 em, and there are 8 rf cells with Irf = 47.514 MHz.9 
We also assume b ~ 5 cm and f ~ 1 for all machines. The 
growth times are 7.0 x 104 s, 3.4 X 103 s, 32 s, and 1.2 s, 
respectively. 

The LHT instabilities tend to playa more important role 
in the lower-energy accelerators, particularly those oper­
ated close to transition. In all cases studied, however, the 
LHT instabrlity does not constitute a serious limit on beam 
intensities. 

We may also apply the result to the resistive wall 
impedance: 

zM(w) = ~ J ~;~[1- sgn(w)i], (57) 

where u is metal conductivity. We obtain 

-1 312r(l- t) N e2c (2c 
1'/ = 411'r2 (!)r(1 +!) f Ezb V ;;i' (58) 

For the resistive wall, we find that the growth rate is neg­
ligible. For the LHT instability, resistive walls do not play 
an important role. 

V. SUMMARY 

If the unperturbed beam motion is distorted from that 
of a simple harmonic motion, the non-harmonic distortion 

will create a new collective instability. We have developed 
a formalism based on the Vlasov equation to analyze this 
instability. The technique is then applied to the longitu­
dinal head-tail instability effect. Explicit expressions of 
growth rates are obtained for the water-bag distribution 
model for various collective modes. The analytical result 
for the dipole mode seems to agree with the observation 
made at the SPS. Application to the SSC Collider and 
Boosters shows that the longitudinal head-tail instability 
is not a serious limit on the SSC beam intensities. 
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