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THESnMPSONSPROGRAM 

6-D PHASE SPACE TRACKING WITH ACCELERATION* 

S. Machida 
Superconducting Super Collider Laboratory, t Dallas, TX 75237 

ABSTRACT 

A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been 
developed to model proton synchrotrons and storage rings. We take time as the independent variable 
to change machine parameters and diagnose beam quality in a quite similar way as real machines, 
unlike existing tracking codes for synchrotrons which advance a particle element by element. 
Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for 
defining a machine cycle. The code is used to study beam dynamics with time dependent 
parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) 
boosters are shown. 

INTRODUCTION 

Particle tracking codes developed so far mostly deal with either transverse or longitudinal 
phase space coordinates separately, or at most, track both of them but without acceleration. In a 
rapid cycling proton synchrotron, such as the Low Energy Booster (LEB) of the Superconducting 
Super Collider (SSC) which accelerates protons from 1.22 GeV/c to 12 GeV/c within 50 msec 
(about 26,000 turns, total), the synchrotron tune changes quite rapidly and sometimes becomes large 
(- 0.1). Furthermore; multitum injection; adiabatic capture and bunching all occur in a short time 
period right after the injection, usually with strong space-charge force in all directions. The Medium 
Energy Booster (MEB) of the SSC has the transition crossing where it is essential to observe the 
particle behavior in 6-D with acceleration. Coupling effects between transverse and longitudinal 
planes are expected to playa significant role in these machines thus, a more sophisticated tracking 
model with acceleration is necessary. 

From a practical point of view, for example to simulate a commissioning procedure, it is 
desirable to have a machine simulation model which can handle time-dependent parameters such as 
rffrequency errors and magnet strength (including multipole errors), as arbitrary functions. We 
developed the code Simpsons to track multi-particles in full 6-D phase space with acceleration. The 
code reads external tables which specify time-dependent parameters when they are necessary. First, 
we will explain the detail of the simulation method. Secondly, we will show some results of the LEB 
and MEB of the SSC. 

THE CODE SIMPSONSI 

The code Simpsons is a multi-particle tracking program in 6-D phase space with 
acceleration. It takes time as the independent variable. Phase space coordinates of macro-particles 
are updated by a fixed time interval. Choice of the time interval depends on the physics one is 
studying. When the internal force among particles, such as space-charge effects, is not negligible, 
one needs to choose a small enough time interval because the force is a function of the coordinates 
themselves and self-consistency of the particle distribution and the force should be kept. When the 
external force, namely the force from magnetic lattice elements and rf cavities, is dominant, each 
macro-particle behaves independently so that a large time interval can be taken. 
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The tracking is done for one cycle of a machine (it does not necessarily mean from 
injection to extraction), and some machine parameters have to be specified throughout a cycle in 
addition to the geometric lattice configuration. When the synchronous momentum and the rf voltage 
are constant throughout a cycle, for example the simulation of an injection porch in the MEB and 
the HEB, values of these constants and total real time of a cycle (or total tum numbers) are 
sufficient to specify a cycle. For a simulation of a machine with acceleration, one has to prepare 
tables which specify the strength of a bending fieldPe(t), and the rf voltage Vet) as a function of 
time. In the code, these tables are interpolated to get values in a time interval. Figures 1 and 2 show 
these functions for the LEB. 
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Fig. 1. eBe of a LEB Cycle. Fig. 2. Rf Voltage of a LEB Cycle. 

The Simpsons itself does not have the interpretation part of the Standard Input and 
Command Language2 for describing and tuning an accelerator lattice. Instead, we adopted the 
TEAPOT3 as a preprogram. A lattice description file in the Standard Language is processed by the 
TEAPOT beforehand and replaced by a thin lens machine file. Furthermore, transverse tune and . 
chromaticity are adjusted, multi pole and misalignment errors in lattice elements are introduced, and 
lattice functions; p, a, 1/ and closed orbit distortions are calculated by the TEAPOT. In this way, a 
thin lens machine file and a lattice function file are ready for the Simpsons as input files. 

Normally, a simulation starts from creating initial6-D phase space coordinates; s. PSt x. Px. 
Y. Py for all the macro-particles. The Gaussian distribution with a certain cut of a tail for both 
longitudinal and transverse directions is commonly assumed, but a parabolic and a uniform 
distribution for longitudinal, and a waterbag and a K-V distribution for transverse can be also 
selected. 

Within one time interval, a particle either remains in drift space or receives one or more 
momentum kicks due to magnets and/or rf cavities. If there are no lattice elements in the time 
interval, as is the case only with drift space, the positions are updated, 

p.c 
Snow = Sold + I1t , 

j(moc2)2 + (PC)2 
(1) 

where P is the total momentum of the particle, 

P = j p; + p; + p; , 

rna is the mass of proton, c is the speed of light, and I1t is the time interval. The momenta remain 
constant. 

At the location of rf cavities, a particle gains or loses its energy as 

l1E = eV(t)sint/Jif(t) , 

(2) 

(3) 

(4) 

(5) 



where V(t) is the rf voltage, e is the unit charge, and rprf (t) is the rf phase at the time a particle is 
passing through the rf cavity. Without acceleration, the rf phase can be simply replaced by 

rp,,(t) = w,,' t + rp,,(O) , 

where wrf is the constant rf frequency, the product of the revolution frequency of the synchronous 
particle and the harmonic number h, 

That is, the rf phase is a linear function of time. 
The rf phase is no longer a simple linear function of time once a particle is being 

accelerated. With acceleration, the rf phase at time t is 

rp,,(t) = fW,,(t)dt + rp,,(O) , 

where wrf (t) is the "instantaneous" rf frequency and as a function of the bending field, 

27tcf3(t) 
w" (t) = h . wrev(t) = h . C 

(6) 

(7) 

(8) 

(9) 

where f3(t) is the Lorentz factor and C is the machine circumference. When a beam goes through the 
transition energy, the rf phase must be shifted by a proper value. In the code, we add the phase shift 
lltprf to the rf phase at specified time instantaneously. 

In either case, with and without acceleration, the total energy of a particle increases, or 
decreases at an rf cavity, by the amount of the Eq. (5) 

and the new total momentum is 

Since only the longitudinal momentum should change at the rf cavity, 

(10) 

(11) 

(12) 

In summary, the most different feature of the longitudinal dynamics of the Simpsons is that it does 
not solve differential (or difference) equations with respect to the synchronous phase. Instead, the rf 
frequency is integrated to keep track of the rf phase all the time so that one can apply proper voltage 
when a particle is passing through an rf cavity. 

If there are magnets in a time interval, first the positions are updated to the magnet location 
with the Eqs. (1) to (3) (at should be substituted by its appropriate fraction), then the transverse 
momenta are changed in the same way as the TEAPOT, 

1 (B,L) 
Px,new = Px,old - 1 + 0 pole P , 

(13) 



_ 1 (ByL) 
PYJlew - Py,old + 1 + ~ pole P , 

(14) 

where Po is the synchronous momentum at that particular time, ~ is the momentum deviation from 
the synchronous one 

~ = P - Po 
Po ' 

L is the magnet length, and Bx and By are the magnetic fields at the particle position as the 
summation over multipoles. 

M 

(By + iBx)L = (pole) I{lin + ian)(x + iy)n , 
n-O 

where lin and an are the normal and skew multipole strengths, respectively, in the TEAPOT 
notation, which are related to the MAD4 kn by 

- knL b =-
n n! 

Since the magnitude of the total momentum should not change by magnets, 

Pnew = Pold , 

and the longitudinal momentum is adjusted as 

In the real machines, designed values never stay perfect and noise of all kinds of 
frequencies affects machine operations. Besides, one may intentionally vary some machine 
parameters as a function of time. For example, in low energy proton synchrotrons the operation 
point is set with a large fractional tune at the beginning of a cycle to accommodate the large 
space-charge tune shift and it is gradually pushed down for the suppression of other instabilities 
such as resistive wall instability. In the Simpsons, the deviation from the perfect value of the 
magnetic strength, the rf frequency and so on, are read as an external file tabulating values as a 
function of time. 

EXAMPLES 

(15) 

(16) 

(17) 

(18) 

(19) 

We have been using the Simpsons to study several beam dynamics issues in the LEB, MEB, 
and HEB of the SSC. In the following section, some tracking results of the LEB and MEB will be 
shown to demonstrate potential capability of the code. The application to the HEB can be found 
elsewhere.s 

Synchro=-beta Coyplin!: 

The synchrotron tune of the LEB becomes as high as 0.05 a few milliseconds after injection 
and decreases slowly toward the end of a cycle. The betatron tune is around 11.85 right after the 
injection to accommodate the large space-charge tune shift. We have looked at the emittance growth 
due to synchro-beta coupling effects which are excited by rf cavities at a finite dispersion position. 
As a matter of fact, all the rf cavities in the LEB are planned to be located in one straight section 
where dispersion functions of both planes are ideally zero. We examined, however, some lattices 
where some of rf cavities are in an arc section with finite dispersion. In all the examined lattices, the 
total rf voltage is kept same. 

The 100 macro-particles are tracked in a whole cycle of the LEB (50 msec). The rms!1p/p 
of 100 particles is shown in Figure 3 and the estimated synchrotron tune in Figure 4. The horizontal 
emittance stays almost constant throughout a cycle when all four rf cavities are put in a 



dispersionless (except residual ones due to errors) straight section as designed, Figure 5(a). When we 
put one rf cavity at the maximum horizontal dispersion position of about 3.5 m, the horizontal 
emittance becomes as twice as much, which mostly occurs when the synchrotron tune has the 
maximum value of 0.05, Figure 5(b). In both cases, the vertical emittance stays constant. 

An arc section consists of four identical modules. Horizontal phase advance between each 
module is fixed to 0.75 x 2n'. The lattice functions including dispersion repeat in each module. 
Instead of putting one rf cavity in one module, we tested two rf cavities in two modules. First, the 
two rf cavities were separated by phase advance 0.75 x 2n' (one module apart). The horizontal 
emittance growth becomes smaller but still exists, Figure 5(c). Second, the two rf cavities were 
separated by phase advance 1.50 x 2n' (two modules apart). The result shows the cancellation of 
synchro-beta coupling effects by means of proper phase advance, Figure 5{ d). 
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Fig. 3. Rms l!J.p/p of 100 Macro-particles. 
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Fig. 4 . Synchrotron Tune. 
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Fig. 5. Horizontal Rms Emittance; (a) 4 Rf Cavities in Dispersionless Section, (b) 1 Rf Cavity at 
Large Dispersion, (c) 2 RfCavities at Large Dispersion with Phase Difference of 0.75 x 2n', and 
(d) 2 RfCavities at Large Dispersion with Phase Difference of 1.50 x 2n'. 

Transition Crossini 

The transition energy is defined by a lattice itself unlike a tracking program of longitudinal 
phase space only, in which it should be given as an input parameter. That is also true for higher order 
coefficients of !:l.p/p. Therefore, a simulation of transition crossing starts from finding transition 
energy itself. The revolution frequency shift is expanded as 



The fIrst coefficient co is 

where" is the Lorentz factor and ao is the momentum-compaction. At the transition, co becomes 
zero and second order of t1p/p is dominated. 

(20) 

(21) 

To fInd out the transition energy of the MEB, off-momentum particles were tracked for 100 
turns by scanning the synchronous momentum. When the synchronous momentum is not equal to the 
transition momentum, the trace of off-momentum particles draws an asymmetric curve, Figure 6(a) 
because the fIrst term of Eq. (20) is not zero. At the transition energy, off-momentum particles 
behave symmetrically, Figure 6(b). In that MEB lattice, it turns out that a particle reaches the 
transition energy 0.39237 sec after acceleration starts. 
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Fig. 6. Phase Space Plot of Off-momentum Particles for 100 Turns. (a) On-momentum Particle is 
not at the Transition Energy. (b) On-momentum Particle is at the Transition Energy. 

We started a simulation 0.380 sec after acceleration starts (about 1000 turns before the 
transition) with 1000 macro-particles. The initial longitudinal distribution is matched to the rfbucket 
at that time. We set the bending fIeld increases quadratically and the rf voltage does linearly. The 
bunch length and Il.p/p throughout the transition crossing are shown in Figures 7 and 8. Because of 
unavoidable mismatch at the transition crossing, namely the different momentum particle has the 
different transition energy, Johnsen effects6, the longitudinal emittance growth is observed in 
Figure 9 while the transverse emittance stays almost constant as shown in Figure 10 as expected. 

Resonance Correction 

The way of correcting betatron resonances is well-known and several harmonic correctors 
are designed for the SSC boosters. We used the Simpsons to check the performance of these 
correctors by looking at the emittance growth and beam loss due to resonance crossing taking 
bandwidth as a parameter. 

In the LEB, the trim quadrupole strength is linearly shifted as a function of time to simulate 
resonance crossing. We used 100 macro-particles to calculate the evolution of the emittance. In 
the Simpsons, a particle loss happens if the radial amplitude of the particle is more than the beam 
pipe radius, which is 35 mm in the LEB. The resonance crossing simulation of the sum resonance; 
Vx + Vy = 23 is shown in Figure 11. Keeping the vertical tune constant at 11.60, the horizontal tune 
is scanned from 11.41 to 11.39 in 2.5 msec so that a beam crosses the sum resonance about halfway. 
The 50% correction of the bandwidth is not enough and a large emittance growth occurs. 
Figure 11 (b), however, indicates the decrease of the beam loss even with the 50% correction. For 
the second order normal resonance; 2vx = 23, the horizontal tune is scanned from 11.51 to 11.49 in 
2.5 msec and it shows that the 50% correction works well in Figure 12. There is no beam loss. 
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Around the Transition Energy. 
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Fig. 10. Transverse Rms Emittance 
Around the Transition Energy. 

100% 

50% 

\ 0% 
\ 

2.5 time [sec] time [sec] 
x 10.3 x 10-3 

Fig. 11. (a) Horizontal Rms Emittance Growth Due To Resonance Crossing ofvx + Vy = 23 
Which Occurs at About t = 0.1 milliseconds. (b) Beam Loss Due To Resonance Crossing. 
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Occurs at About t = 0.1 milliseconds. (b) Beam Loss Due To Resonance Crossing. 



SPACE-CHARGE EFFECTS 

There are two methods of calculating space-charge effects in the Simpsons. One employs 
macro-particles for calculation of charge distribution and emittance. The electromagnetic 
space-charge field is solved self-consistently in 3-D configuration space according to macro-particle 
distribution which is updated every time interval. A more detailed calculation method and some 
results can be found elsewhere.7 The other, which is a simplified version, uses macro-particles only 
for emittance calculation and the space-charge field is fixed throughout a simulation. An initial 
charge distribution is assumed to be Gaussian in 3-D configuration space and we use the analytical 
formula of the transverse space-charge field for that distribution.8 Nevertheless, an evolution of the 
bunching factor due to the rf voltage envelope, adiabatic damping of transverse beam size, and 
cancellation of an electric field by a magnetic field depending on the Lorentz factor y are included. 
Once the distribution evolves into non-Gaussian or the emittance grows significantly, the 
approximation which assumes constant distribution function and emittance is not appropriate. In that 
sense, the latter for space-charge calculation is only appropriate to see the growth rate in a quick 
way, not to predict asymptotic emittance. 

Space-charge effects are one of the crucial beam dynamics issues for the emittance 
preservation especially in the LEB and MEB. In each stage of the tracking studies we have 
mentioned above, we should include the effects in a proper way and that is certainly one of the goals 
of the code Simpsons. Some other methods to incorporate space-charge effects are also under 
development.9 Although the simulation of the LEB with space-charge effects becomes almost 
possible in an established way, the transition crossing simulation with space-charge effects, 
especially of the transverse direction, seems to need further development. 
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