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ABSTRACT 

We propose a new scenario in a class of superstring derived standard-like 

models that explains the suppression of the left-handed neutrino masses. Due to 

nonrenorma.lizable terms and the breaking of the U(1)zl symmetry a generalized 

see-saw mechanism takes place. Contrary to the traditional see-saw mechanism 

in GUTs, the see-saw scale and the right-handed neutrino mass scale are sup

pressed relative to the U(l)zl breaking scale. 
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1. Introduction 

Superstring theories [1] are believed to provide a viable framework for the 

consistent unification of gravity with the gauge interactions. The superstring 

unification scale is at the Planck scale while at the electro-weak scale the Stan

dard Model is in remarkable agreement with experimental observations. Thus, 

an extremely important task is to try to derive the Standard Model from the 

superstring theories. 

In ref. [2,3,4], realistic superstring standard-like models were constructed in 

the free fermionic formulation [5] with the following characteristics: 

1. Three and only three generations of chiral fermions. There are no additional 

generations and mirror generations that presumably get massive at a high scale. 

2. The gauge group is SU(3) x SU(2) x U(1)B-L x U(1)y x U(1)" x hidden. 

3. There are enough scalar doublets and singlets to break the symmetry in a realistic 

way and to generate a realistic fermion mass hierarchy. 

4. Proton decay from dimension four operators is supressed due to the gauged B - L 

symmetry. There is a stringy doublet-triplet splitting mechanism that projects 

out the color triplets and leaves the Higgs doublets in the spectrum. Thus, proton 

decay from dimension five operators is expected to be supressed [4]. 

5. String gauge coupling unification can be obtained in these models due to the 

presence of additional color triplets in vector-like representations from exotic 

sectors [6]. 

6. These models suggest an explanation for the top-bottom quark mass hierarchy 

and for the generation mass hierarchy in general. At the trilinear level of the 

superpotential only the top quark gets a nonvanishing mass. The mass terms 

for the bottom quark and for the lighter quarks and leptons are obtained from 

nonrenormalizable terms. Thus, only the top mass is characterized by the elec

troweak scale and the masses for the lighter quarks and leptons are naturally 

supressed [3,4]. 
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In this paper we examine the problem of neutrino masses in the superstring 

standard-like models. Like many other extensions of the Standard Model the 

superstring standard-like models contain right-handed neutrinos. At trilevel an 

underlying SO(10) symmetry dictates that for every up-like quark mass term 

there is a neutrino Dirac mass term, with All = Au. Thus, the T neutrino mass is 

equal to the top quark mass. Clearly a disasterous relation, unless there is a see

saw type mechanism. In this paper we demonstrate that a see-saw mechanism 

is present in the superstring standard-like models. 

We study the renormalizable and nonrenormalizable contributions to the neu

trino mass matrix. We show that a large see-saw in the neutrino mass matrix 

is generated by condensates of a non-Abelian hidden gauge group. As a result 

the left-handed neutrino masses are supressed whereas the right-handed neu

trino masses are pushed above the Te V scale. However, we find a new feature in 

our superstring derived see-saw mechanism unprecedented in traditional Grand 

Unified Theories (GUTs). In traditional superstring inspired GUTs the see-saw 

scale is proportional to the GUT scale. For example in the flipped SU(5) the 

see-saw matrix takes the form [7], 

) (
v.) , 

MG . vf, 
O(Mw) 4>m 

(1) 

o 

where 1nu is the up quark mass matrix, MG is the scale of SU(5) x U(1) breaking. 

The mass eigenvalues are mil f"V (4))( 'Ai;)2 and mN,; f"V MG. Thus the mass scale 

of the right-handed neurtrinos is the GUT scale. Similarly in the superstring 

inspired standard-like model [8], the see-saw scale and the mass of the right

handed neutrinos are proportional to the scale of U(1)z, breaking. 

In the superstring derived see-saw mechanism, the U(1)z, is broken by hid

den sector condensates. We show that although the scale of the hidden sector 

condensates is high, Ah. f"V 1014 Ge V, the masses of the right-handed neutrinos 

are suppressed relative to the U(l)z, breaking scale. 
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2. The superstring model 

To illustrate the superstring induced see-saw mechanism, we examine the 

model of Ref. [2]. This model is constructed in the free fermionic formulation 

[5], with a set of eight boundary condition vectors for all the world-sheet fermions. 

The first five vectors in the basis consist of the NAHE* set, {I, S, bl , b2 , b3 } [9,4]. 

In addition to the first five vectors, the basis contains three additional vectors. 

These vectors and the choice of generalized GSO projection coefficients are given 

in Table 1, where the notation of Ref. [4] is used. 

The gauge group after application of the generalized GSO projections is 

Observable t : SU(3)c x U(I)c x SU(2)L x U(I)L X U(I)6 

Hidden # : SU(5)H x SU(3)H x U(I)2. 

The weak hypercharge is uniquely given by U(I)y = lU(I)c + iU(I)L. The 

orthogonal combination is given by U(I)zl = U(I)c - U(I)L. In the observ

able sector there are six horizontal U(I) symmetries. The first three, U(I)r; 

(j = 1,2,3), correspond to the right-moving world-sheet currents iiI iii , ii2ii2 
and ii3iii. The last three, U(l)r;+3 (j = 1,2,3), correspond to the right-moving 

world-sheet currents, y3 y6, y Iw5 and w2w4 respectively. For every right-moving 

U(I) symmetry there is a left-moving global U(I) symmetry. The first three cor

respond to the charges of the supersymmetry generator XI2 , X34 and X56. The last 

three, U(I)l;+3 (j = 1,2,3), correspond to the complexified left-moving fermions 

y3y6, y Iw5 and w2w4. Finally the model contains six Ising model sigma operators 

which are obtained by pairing a left-moving real fermion with a right-moving 

real fermion, CTi = {wlwl,y2y2,w3w3,y4y\y5y5,w6w6}±. 

The full massless spectrum and cubic level superpotential were presented in 

Ref. [2]. Here we list only the states which are relevant for the neutrino see-

* This set was first constructed by Nanopoulos, Antoniadis, Hagelin and Ellis (NAHE) in the 
construction of the flipped SU(5) [9]. nahe=pretty, in Hebrew. 

t U(l)c = iU(l)B-L, U(l)L = i U (l)T.
It

• 

# Hidden here means that the states which are identified with the chiral generations do not 
transform under the hidden gauge group. 
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saw mass matrix. The sectors bl , b2 and b3 produce three generations of chiral 

fermions, Gl, G2 and G3, with horizontal symmetries. For every generation, Gj 

there are two right-moving, U(l)rj and U(1)rj+3' symmetries. For every right

moving U(l) gauged symmetry, there is a corresponding left-moving global U(I) 

symmetry, U(l)Lj and U(I)Lj+3. Each sector bl, b2 and b3 has two Ising model 

operators, (0'4, 0'5), (0'2, 0'6) and (0'1, O's), respectively, obtained by pairing a 

left-handed real fermion with a right-handed real fermion. The pairings of real 

fermions, which produce the Ising model operators, is noted in Table 1. The 

nonvanishing cubic level and higher order terms in the superpotential must be 

invariant under all the symmetries of the superstring model. The Ising model 

operators must produce nonvanishing corralators after all picture changing oper

ations have been performed. 

The Neveu-Schwarz sector produces three pairs of electroweak doublets hI, 

hI, h2, h2 and h3, hs. Each pair carries (U(I)Lj; U(l)rj) charges, (j = 1,2,3), 

respectively. The Neveu-Schwarz sector also produces three pairs of SO(10) 

singlets ~12, ~12' ~13, ~13, ~23, ~23 with U(l)rj charges. Finally, the Neveu

Schwartz sector gives rise to three singlet states that are neutral under all the 

U(I) symmetries. 6,2,3: Xi2w~ w~ 10}o, Xi4y! wi 10}o, xt6Y~Yi !O}o· 
222 222 222 

The S + bl + b2 + a + f3 sector gives 

h4s = [(1,0); (2, I)L1 _10 ° ° ° 2' 2" , , D4S = [(3, -1); (1, 0)L1 _10 ° ° ° 2 t 2' , , , 

~4S = [(1,0); (1, 0)L1 _1 -1 ° ° ° 
2 t 2' t" 

~t = [(1,0); (1, O)Lt,t,o,±l,O,O 

~~ = [(1,0); (1, O)L~,t,O,O,±l,O ~~ = [(1,0); (1, 0)L1 1 ° ° ° ±l 2'2' , , , 

(2a, b) 

(2c,d) 

(2e,f) 

(and their conjugates h4S, etc.). The states are obtained by acting on the vacuum 

with the fermionic oscillators 1{J4,5, 1{JI, ... ,3 , ij3 ,y3 ± iy 6, yl ± iw5, w2 ±iw4, respec-

tively (and their complex conjugates for h4S , etc.). 

The sectors bi + 21' + (I) (i = 1, .. ,3) give vector representations which are 

SU(3)c x SU(2)L x U(I)L x U(l)c singlets (see Table 2). These states transform 
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in the fundamental representation under the hidden non-Abelian gauge groups. 

The sectors b1 + b3 + a + , + (I) and b2 + b3 + (3 + , + (I) produce states with 

vanishing weak hypercharge and with non vanishing U(l)zl charge (see Table 3). 

In particular the sector b1 +b3+a+,+(I) produces 5 and 5 of the hidden SU(5) 

gauge group with U(l)zl charge and vanishing weak hypercharge. However, the 

entire massless spectrum does not contain 5 and 5 of the hidden SU(5) group 

that carry U(l)y charge. 

The standard-like models contain an anomalous UA(l) symmetry which in

duces a D-term and destabilizes the vacuum [10]. To preserve supersymmetry 

at the Planck scale, one must satisfy the F and D constraints arising from the 

superpotential by giving VEV s to the scalar fields [11]. We will consider the 

solution to the constraints given by Eq. 12 of Ref. [2]: 

where 6.13 = li1312_1~1312 and V2al = 2VS;jgMpl. We would like to emphasize 

that the solution, Eq. (3), preserves F flatness to all orders of nonrenormalizable 

terms. For solutions that break U(l)zl close to the Planck scale, higher order 

terms are expected to violate F flatness [13]. We therefore assume that VEVs 

which break U(l)zl are suppressed relative to the SO(1O) singlet VEVs. 

3. Neutrino mass matrix 

The cubic level and higher order terms in the superpotential are derived by 

applying the rules of Ref. [12]. Order N nonrenormalizable terms are of the 

form cffh(~jM)N-3 where f, h and ~ are fermions, scalar doublets and singlets 

respectively. M is a Planck scale mass to be defined later. The coefficients c can 

be calculated from string amplitudes and are f'V 0(1). For our choice of boundary 

condition vectors given in Table 1, at the cubic level, there are Dirac mass terms 
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only for the +i charged quarks and for the neutrinos, with Au = All, 

At the cubic level of the superpotential only two pairs of Higgs doublets which 

are combinations of hI,h2' h45 and hI,h2,h45 remain light. At an intermediate 

energy scale one additional pair becomes heavy [13]. For a specific choice of 

VEVs, the light doublets will be h2 and h45 [13]. Therefore, there is a cubic level 

mass term only for the top quark and for the T neutrino (the heaviest generation 

is the one with index 2), with At = All,.. The JL neutrino obtains a Dirac mass 

term at order N = 5. 

N2L2(hl ~t~; + h45~23CP45) 
NI L1(h2CPtcp; + h45~13CP45) 

(5a) 

(5b) 

Since the VEV s of the scalar fields are generally'" 0(10-1)M the Dirac mass 

term for the JL neutrino is suppresed relative to the T neutrino by (~) 2 '" o.o!. 
As shown in Ref. [14] a Dirac mass term for the electron neutrino can only arise 

from higher order terms which contain VEVs that break U(I)z,. VEVs that 

break U(I)z, are expected to be suppressed relative to the SO(10) singlet VEVs 

[13]. 

Mixing between the generations is induced by the states from the sectors bj+2-y 

[15]. However, the mixing terms are suppressed relative to the leading diagonal 

terms and therefore their effect is small. We neglect them in this paper. 

In the superstring derived standard-like model the states in the see-saw mass 

matrix are the neutral states in the left-handed doublets Ll, L2, L3, the right

handed neutrinos Nl, N 2, N3, from the sectors b1 , b2 and b3 and the SO(10) 

singlets cP = {CPI3, ~13, cpt, t 1, cpt, cpt, t a} from the Neveu-Schwarz sector and 

from the sector S + b1 + b2 + a + (3. These S0(10) singlets remain massless after 

6 



{ 



the symmetry breakdown for the choice of VEVs given by Eq. (3) and therefore 

appear in the low energy spectrum. There are other light singlets but only 

these mix with the right-handed neutrinos. A nonvanishing VEV for the right

handed neutrino will induce rapid proton decay from dimension four operators 

[13]. Therefore, the right-handed neutrinos are assumed to have vanishing VEVs. 

The neutrino-singlet mixing terms arise from higher order nonrenormalizable 

terms, which are obtained according to the rules of Ref. [12]. The general form 

of the terms is fixed by the symmetries of the model. The coefficients of these 

terms can in principle be calculated from string scattering amplitudes, and are 

of order one [12]. The nonrenormalizable terms contributing to the see-saw mass 

matrix appear at orders N = 6, N = 7 and N = 8. 

At order N = 6 there is only one see-saw term for N 2: 

At order N = 7 we obtain the following see-saw terms for N3: 

N3~3 Hl9T3H25~45~13 

N3~t H19T3H23~456 

(6) 

(7a) 
(7b) 

Other see-saw terms that appear at this order are suppressed relative to the 

ones above since they contain more VEVs that break U(I)z,. For Nl the mixing 

terms are at order N = 8: 

Nl ~t Hl9TlH23~4566 

Nl ~45H191\H25~1~136 

Nl ~13H19TIH25~1~456 

Nl ~13Hl9TlH25~1~456 

Nl ~1 H24TIH25~45~l36 
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The see-saw terms that are suppressed relative to those above are neglected. 

Up to order N = 8 there are no mass terms for the SO(10) singlets for our specific 

choice of VEVs in Eq. (3). At order N = 9, there is a mass term of the form 

~t~tT2T2T2T2~45~456M-6 for ~t. This term contains four VEVs that break 

U(l)zl. Other singlets get masses from higher order (N > 9) terms. 

In Eqs. (6,7,8) the 5,5 states, HI9 and T of the hidden SU(5) group form 

condensates. These condensates carry nonzero U(l)zl charges and therefore 

will break U(l)z,. In addition we make the assumption that additional singlets 

(H23, H25, H26 ) with nonzero U(l)zl charge get a VEV at the same scale. The 

SO(10) singlets from the Neveu-Shwarz sector and the sector S + bI + b2 + ex + f3 
obtain VEV s by the cancellation of the anomalous D-term equation. As a result 

the terms in Eqs. (5,6,7) induce the effective see-saw terms of the form 

(9) 

where Az, is the scale at which SU(5) condensates form and break U(l)z, and 

M = Mp/2VS; '" 1018 GeV. n is 1,2 and 3 for N2, Ns and NI respectively. We 

take the SO(10) singlet mass terms, mtjJ to be generically of the form 

(10) 

where m = 3 for ~t and m > 3 for the other singlets. It should be emphasized 

that for the see-saw mechanism to operate there must exist singlets that couple 

to the right-handed neutrinos as in Eq. (9) and that remain massless at trilevel 

for the Hat directions. IT such singlets exist then the higher order mass terms for 

these singlets will be generically of the form given by Eq. (10). 

The neutrino mass matrix therefore takes the following form for each genera

tion in the basis (VL, N C , ~ ) 

(11) 
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with mx '" (16') 3 (1J)) n M and m; '" (16') 4 (w) m M. The mass eigenstates 

are mainly II, N and ¢> with a small mixing and with the eigenvalues 

(12) 

The constant k gives the effects of Yukawa coupling renormalization. At M 

..\u = ..\11. These two couplings run differently since up-quarks and neutrinos have 

different quantum numbers. In order to find their ratio at the weak scale,Mw, 

one has to solve the renormalization group equations for these two couplings 

which are 

(13) 

(14) 

where ..\~, ..\~,..\3', ..\4,..\7 are the Yukawa couplings ofthe top, bottom,r, r neutrino 

and scalar Higgs respectively. 917 92 and 93 are the U(I)y, SU(2)L and SU(3)c 

gauge couplings. The numerical solution gives k '" 0.5. 

The ratio (Az,/M) is obtained from the one loop renormalization group equa

tions 

with bs = ins - 15, Qs(M) '" 0.059 and ns = 8 which give Az, '" 1014GeV. 

Taking the SO(10) singlet VEVs to be '" 10-1 M, a numerical scenario for the 

heavy generation gives 

milT '" 25 e V mNT '" 100 TeV (16) 

Assuming that other singlet masses arise at order N = 10 (or m = 4), one gets 
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the loose bounds for the other two generations: 

(17) 

If some of the 5,5 states of the hidden SU(5)H get mass after the symmetry 

breakdown, n5 gets smaller. For smaller n5, Az, and the see-saw scale mx in

crease. Therefore the left-handed neutrino masses decrease and the right-handed 

neutrino masses increase. It is also possible to modify the boundary conditions of 

the hidden sector in the vector "'(: "'(4>1,2 ... 8) = (!OOO!!!O) [15]. Then the hidden 

gauge group is SU(7) X U(I)2 in which case Az, is larger and the left-handed 

neutrino masses are smaller. 

4. Conclusions 

We have shown that although there is a large Dirac mass for the T- neutrino at 

tree level in the superpotential of the superstring standard-like models, very light 

left-handed and heavy right-handed neutrinos for all generations are obtained. 

This is due to the see-saw mechanism present in the model as a consequence of 

the higher order nonrenormalizable terms and the breaking of U(I)zl symmetry 

by hidden sector condensates. The hidden sector condensates break U(I)zl and 

leave U(l)y unbroken. We learn from our superstring derived see-saw mechanism 

a new feature unprecedented in traditional GUT models. Although the scale of 

U(I)z, breaking can be large (e.g. AZI ~ l014GeV) the effective see-saw scale 

is much smaller. This feature arises in superstring models because the see-saw 

and the singlet mass terms are obtained from higher order nonrenormalizable 

terms. As a result, the right-handed neutrino masses are suppressed relative to 

the U(l)zl breaking scale. Consequently, the right-handed neutrinos can be at 

a rather low energy scale, say a few Te V, but this does not imply the existence 

of a new gauge boson (Z') at the Te V scale [16]. 
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1/J~ {X12 j X34 j X56} ;p, ;jJ2, ;jJ3, ;jJ4, ;jJ5, ij1, ij2, ij3 4)1, 4)2, 4)3, 4)4, 4)5, 4)6, 4)1, 4)8 

a 0 {O, 0, O} I, I, I, 0, 0, 0, 0, 0 I, I, I, I, 0, 0, 0, 0 

f3 0 {O, 0, O} I, I, I, 0, 0, 0, 0, 0 I, 1, I, 1, 0, 0, 0, 0 

1 0 {O, 0, O} 1 .1 1 1 .1 1 1 1 1 0, I, I, .1 .1 1 0 2' 2' 2' 2' 2' 2' 2' 2 2' 2' 2' 2' 

y3y6, y4it, y5g5, g3g6 y1w6, y2g2, w5Q5, glQ6 w1w3,w2Q2,w4Q4,Q1Q3 

a I, 0, 0, 0 0, 0, I, 1 0, 0, I, 1 

f3 0, 0, I, 1 I, 0, 0, 0 0, I, 0, 1 

1 0, 1, 0, 1 0, 1, 0, 1 1, 0, 0, 0 

Table 1. A three generations SU(3) x SU(2) x U(1)2 model. The choice of generalized GSO coefficients is: 

c (a'~'1) = -c (7) = c (p) = -c (~) = c (1;a) = -c (~) = -1 (j=1,2,3), with the others spec-

ified by modular invariance and space-time supersymmetry. Trilevel Yukawa couplings are obtained only for 

+i charged quarks. The 16 right-moving internal fermionic states {;jJl, ... ,5, ijl, ij2, ij3, 4)l, ... ,8}, correspond to 

the 16 dimensional compactmed torus of the ten dimensional heterotic string. The 12 left-moving and 12 

right-moving real internal fermionic states correspond to the six left and six right compactified dimensions 

in the bosonic language. 1/J~ are the two space-time external fermions in the light-cone gauge and Xl2, X34, 

X56 correspond to the spin connection in the bosonic constructions. 
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F SEC SU(3)c x SU(2)L Qc QL Q1 Q2 Q3 Q. Q5 Q6 SU(5) X SU(3) Q1 Qs 

V1 h1 + 27 + (I) (1,1) 0 0 0 1 1 1 0 0 (1,3) _1 5 
2 2 2 2 2 

Vi (1,1) 0 0 0 1 1 1 0 0 (1,3) 1 5 
2 2 2 2 -2 

T1 (1,1) 0 0 0 1 1 _1 0 0 (5,1) _1 _1 
2 2 2 2 2 

1'1 (1,1) 0 0 0 1 1 _1 0 0 (S,l) 1 1 
2 2 2 2 2 

V2 h2 + 27 + (I) (1,1) 0 0 ! 0 1 0 1 0 (1,3) _1 5 
2 2 2 2 2 

V2 (1,1) 0 0 1 0 1 0 1 0 (1,3) l _1 
2 2 2 2 2 

T2 (1,1) 0 0 .1 0 1 0 _1 0 (5,1) _1 _1 
2 2 2 2 2 

1'2 (1,1) 0 0 1 0 1 0 _1 0 (S,l) .1 1 
2 2 2 2 2 

V3 ~ +27+ (I) (1,1) 0 0 1 1 0 0 0 1 (1,3) 1 5 
2 2 2' -'2 2 

V3 (1,1) 0 0 .1 ! 0 0 0 .! (1,3) 1 _1 
2 2 2 2 2 

T3 (1,1) 0 0 1 1 0 0 0 _1 (5,1) _1 _1 
2 2 2 2 2 

1'3 (1,1) 0 0 1 1 0 0 0 _1 (S,l) 1 1 
2 2 2 2 2 

Table 2. Massless states from the sectors bi + 27, and their quantum numbers. 





F SEC SU(3)c x SU(2)L Qc QL Q1 Q2 Q3 Q4 Q5 Q6 SU(5) X SU(3) Q7 Qa 

Hl3 b1+ba+a (1,1) 3 1 -~ 1 1 0 0 0 (1,3) 3 5 -'4 2 4 -'4 '4 i 

Hu ±-y + (I) (1,1) ~ 1 1 _1 1 0 0 0 (1,3) -~ _A 
4 -3 i 4 i 4 4 

Hu (1,2) -~ _1 _1 .1 _.1 0 0 0 (1,1) _.1 _ll 
4 2 4 4 4 4 4 

H16 (1,2) ~ .1 1 _1 1 0 0 0 (1,1) 1 ll. 
4 2 4 4 4 4 4 

Hu (1,1) -~ 1 _.1 -~ _.1 0 0 0 (1,1) _.1 _ll 
4 2 4 4 4 4 4 

H1a (1,1) ~ _1 1 ~ 1 0 0 0 (1,1) 1 ll. 
4 2 4 4 4 4 4 

H19 b2+b3 +a (1,1) _A 1 1 _1 _.1 0 0 0 (5,1) _1 i 
4 2 4 4 4 4 4 

H2O ±-y + (I) (1,1) A _1 _1 1 1 0 0 0 (5,1) 1 _2 
4 2 4 4 4 4 4 

H2l (3,1) 1 1 1 _1 _.1 0 0 0 (1,1) _l _ll 
4 2 4 4 4 4 4 

H22 (3,1) _1 _1 _1 l 1 0 0 0 (1,1) 1 II 
4 2 4 4 4 4 4 

H23 (1,1) 3 1 1 _1 3 0 0 0 (1,1) .1 15 
-'4 2 i 4 i 4 T 

HZ4 (1,1) 3 _1 _1 .1 -t 0 0 0 (1,1) ! ll. 
'4 2 4 4 4 4 

HZ5 (1,1) -~ 1 .1 ~ _1 0 0 0 (1,1) _1 _ll. 
4 2 4 4 4 4 . 4 

HZ6 (1,1) ~ _1 _1 -~ 1 0 0 0 (1,1) 1 II 
4 2 4 4 4 4 4 

Table 9. Massless scalars and their quantum numbers 




