
N
;,;

~
'" "'" , -c;
.~ ...
Po.

~ ,
..J
U
(rJ

(rJ A Parallel Implementation of
Particle Tracking

with Space Charge Effects
on an Intel iPSC/860

Superconducting Super Collider
Laboratory

SSCL-Preprint-149 Rev. 2
May 1993
Distribution Category: 414

L. Chang
G. Bourianoff
B. Cole
S. Machida

SSCL-Preprint-149 Re\". 2

A Parallel Implementation of Particle Tracking
with Space Charge Effects on an Intel iPSC/860'

L. Chang, G. Bourianoff, B. Cole, and S. Machida

Superconducting Super Collider Laboratoryt
2550 Beckleymeade A venue

Dallas, TX 75237

May 1993

• Submitted to Scientific Programming.

t Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

A Parallel Implementation of Particle Tracking

with Space Charge Effects on an Intel iPSC/860

Long Chyr Chang, George Bourianoff, Benjamin Cole, and Shinji Machida

Superconducting Super Collider Laboratory·

255D Beckleymeade A venue

Dallas, TX 75237

August 1992

Revision 2, May 1993

Abstract

Particle-tracking simulation is one of the scientific applications that is well-suited to

parallel computations. At the Superconducting Super Collider, it has been theoretically

and empirically demonstrated that particle tracking on a designed lattice can achieve very

high parallel efficiency on a MIMD Intel iPSC/86D machine. The key to such success is

the realization that the particles can be tracked independently without considering their

interaction.

The perfectly parallel nature of particle tracking is broken if the interaction effects

between particles are included. The space charge introduces an electromagnetic force that

will affect the motion of tracked particles in 3-D space. For accurate modeling of the beam

dynamics with space charge effects, one needs to solve three-dimensional Maxwell field

equations, usually by a particle-in-cell (PIC) algorithm. This will require each particle to

communicate with its neighbor grids to compute the momentum changes at each time step.

It is expected that the 3-D PIC method will degrade parallel efficiency of particle-tracking

implementation on any parallel computer. In this paper, we describe an efficient scheme for

implementing particle tracking with space charge effects on an INTEL iPSC/86D machine.

Experimental results show that a parallel efficiency of 75% can be obtained .

• Operated by the Universities Research Association, Inc., for the U.S. Department of

Energy under Contract No. DE-AC35-89ER4D486.

Chang-2

1.0 INTRODUCTION

The Superconducting Super Collider (SSC) under design and construction near Waxa­

hachie, Texas, will be the largest and most powerful scientific instrument ever built and will

be used to investigate the fundamental origins of matter. The SSC complex consists of the

linear accelerator (LINAC), low-energy booster (LEB), medium-energy booster (MEB),

high-energy booster (REB), and two Collider rings, which will have a circumference of

54 miles (87 km) (see Figure 1). Each accelerator consists of an array of elements, mostly

magnetic. Particles are first injected from the LIN AC, then travel circularly in the LEB,

the MEB, and the REB, and finally in the Collider for many turns while being accelerated.

At the final stage, two bunches of particles at 20 TeV, traveling in the 87-km Collider rings

in opposite directions, are brought into head-on collision.

Since the construction cost of the SSC is high (expected to exceed $8 billion), there is

a demand to reduce the construction cost by design refinement. To reach such a goal,

computer simulation of particle motion in each accelerator is essential. For a simulation to

be useful, many particles must be tracked in a design lattice' for hundreds of thousands of

turns (Yan, 1990). If hundreds of thousands of particles are tracked in an SSC lattice with

14,000 magnet elements for 105 turns in a computer, then more than a thousand Tflops

(1012 floating-point operations) will be performed. This requirement makes computer sim­

ulation difficult without the use of high-performance, scalable, parallel computers. Parallel

programming for a large scientific application requires one to understand the characteristics

of the problem and to redesign the program to take advantage of hardware features. At the

SSC, TEAPOT (Thin-Element Accelerator Program for Optics and Tracking, Schachinger

and Talman, 1987) particle-tracking code has been implemented in a 64-node iPSC/860

machine. In the absence of space charge, it achieves about 98.3% parallel efficiency, since

, A lattice is a detailed description of how an array of elements such as dipole (bending),

quadrupole (focus/defocus), sextupole, and rf cavities are arranged to form an accelerator

ring at SSC.

Chang-3

each node can track different groups of particles independently and only very little com­

munication is required between nodes (Bourianoff and Talman, 1992).

The perfectly parallel nature of particle tracking is due to the fact that the interaction

effects between particles can be ignored when the beam energy is high. In practice, when

the beam energy is low, the space charge effects dominate the dynamics as in the LEB

and the MEB (at transition) at the SSC. Readers who are interested in the space charge

effects are referred to Machida et al. (1991). From the computational point of view, the

computational model and characteristics of space charge should be of interest to compu­

tational scientists. To model the beam dynamics at low energy correctly, the momentum

changes of each particle caused by the space charge force must be calculated. This requires

one to solve three-dimensional Maxwell field equations by a particle-in-cell (PIC)t fashion,

an approach widely used in the simulation of plasma physics. A characteristic of the PIC

method is that each particle needs to allocate charge to its nearest neighboring 3-D grids

and to retrieve field information from its nearest grids by an interpolating method at

each time step. Since particles will change their relative spatial position during tracking,

communication between particles and their surrounding grids will be costly for parallel

implementation. An efficient and reliable scheme is needed to reduce the communication

cost of the space charge calculation and to keep the load-balance of particle tracking and

space charge computations among nodes as even as possible.

In this paper, we will show a reliable and efficient scheme to implement parallel particle

tracking under the influence of space charge on an INTEL iPSC/860 MIMD computer.

The rest of the paper is organized as follows: Section 2.0 describes the computational

model and algorithm of particle tracking under the influence of space charge. Section 3.0

addresses our parallel implementation techniques. Section 4.0 presents empirical results

t The computation of the electromagnetic field is dependent on the charge density to

which all particles must contribute in a non-local manner.

Chang-4

on the iPSCj860 and CRAY. Section 5.0 concludes the paper and provides future research

direction.

2.0 SIMULATION MODEL

Particle simulation based on a single-particle model is perfectly matched for scalable

parallel architectures. An example is the ZTRACK code by Yan (1990). However, it cannot

simulate the operation of the LEB and the MEB, since their dynamics are dominated by

space charge. To integrate space charge into an existing tracking code such as TEAPOT,

it is necessary to calculate charge densities and fields consistent with numerical stability

requirements.

For computer simulation, we will use an explicit, fixed-time advance. The motion of

particles is tracked for k(t) magnetic elements followed by a kick (space charge force),

where k(t) is the number of elements tracked by a particle within the time t and t + /).t,

and may be a fraction less than 1. At each element, the motion of particles is calculated in

6-D phase space. At each kick, we compute a 3-D space charge force on each particle and

update its position and momentum. The choice of /).t is determined by numerical stability

and strongly affects the speed of the calculation. Figure 2 shows the computational flow

of the fixed-time-step sampling method.

In the following, we briefly discuss the models of space charge calculation. Our in­

tention is to provide the minimum accelerator background needed for understanding the

parallelization methods used for particle tracking with a space charge code. The tracking

algorithm used is based on a 4-D symplectic procedure (Schachinger and Talman, 1987)

and later extended to 6-D by Machida et al., 1992.

Chang-5

2.1 3-D PIC Formulas for Space Charge

To calculate a 3-D space charge field, we employ the PIC method. At each time step,

a 3-D cylindrical grid is first constructed, then the electromagnetic field for particles is

computed using the discretized version of 3-D Maxwell equations.

We assume that the 3-D cylindrical grid has coordinates (r, e, z), and the beam pipe

has a circular cross section with radius b, the perfect conductivity (7 = 00, and the scalar

potential </> == 0 at r = b. Let nand J be the charge density and the current, respectively,

and let A be the vector potential.

at/!
Under the Lorentz gauge Ft + c'\l . A = 0, the Maxwell equations can be rewritten as

(
1 a (a) 1 &2) ;:ar rar +r2 ae2 </>=-47rn(r,e,z,t), (1)

(
1 a (a) 1 a

2
) - 47r -

;: ar r ar + r2 ae2 A = -7J (r, e, z, t), (2)

where we invoked the ordering

(3)

This can be justified by the typical dimension of the beam, whose transverse size is the

order of 1 mm, whereas the longitudinal size is the order of 1 m.

We further simplify the current density,

(4)

where Vz is the average velocity of the beam. This is commonly referred to as the ultra­

relativistic approximation, and it means that particles translate as a rigid body. From the

Lorentz force equation F = q(E + ~ x B), the electromagnetic force is F -:- -.¥~</>, and

we need only solve the scalar potential Eq. (1). The charge density and scalar potential

are Fourier-transformed in e:

n(r,e,z,t) = Lnm(r,z,t)exp(ime), (5)
m

Chang-6

wi th the inverse transforms

1 12
.-nm(r, z, t) = - nCr, 11, z, t) exp(-im(1)dl1,

2rr 0
(6)

and the same for </>.

For each m (referred to as mode number), Eq. (1) assumes the form

(7)

The general solution for the equation for m ~ 0 is

(8)

where Wm(r) is

1T I r ,
Wm=o(r) = -4rr no(r,z,t)r In,dr,

o r
(9)

Wm>l = - 2rrrm . r nm(r, z, t)r'(l-m)dr'
- m Jo

2rrr-m 1r
- nm(r, z, t)r'(1+m)dr'.

m 0
(10)

2.2 Algorithm

The space chaxge algorithm proceeds as follows:

1. Construct the bounding cylinder of paxticles. The cylinder is then decomposed into

3-D grids (see Figure 3(a)). Each grid has index (r,l1,z), which corresponds to

cylindrical coordinates (rdr, I1d8, zdz).

2. For each paxticle, we allocate chaxge to each grid neaxest the paxticle by the tri­

lineax interpolation method based on the relevant volume ratio (see Figure 3(b)).

For example, the grid point at index (rl,l1),zl) has volume ratio (r2dr - r)(112dl1-

8)(Z2dz - z)/(drd8dz), where (r,8,z) are the cylindrical coordinates of the paxticle

and (r2' 112, Z2) is the index of the opposite grid point of (rl' 111, zll.

3. Compute the Fourier decomposition of chaxge density in 11 using Eq. (6).

Chang-i

4. Compute the electrical field (E" Eo, Ez) for each grid. This can be done by comput­

ing <p using Eqs. (7), (8), (9), and (10).

5. Compute the momentum changes for each particle from its surrounding fields and

update its coordinates and other attributes.

3.0 PARALLEL IMPLEMENTATION

The key to a parallel implementation of a computational model into a MIMD hypercube

parallel computer is to distribute the computation and data into the separate nodes such

that each node has an equal share of computations, while communication between nodes is

minimized. Though the principle is simple, the practice is more complicated, and a given

implementation must take advantage of the available hardware features and take care of

subtle issues with each parallel scheme-I/O and memory problems, numerical stability,

and hardware failures-to achieve high performance for a large scientific application.

To take advantage of scalable parallel computers, it is necessary to understand the

characteristics of the problem so that the program can be implemented correctly and

efficiently (with performance scalable to the number of computing nodes available). The

characteristics of particle tracking with space charge effects are summarized below.

3.1 Characteristics

• Particles are tracked in 6-D phase space, and they can be tracked independently in

BASE3D().

• Particles are lost when they collide with the wall of the machine.

• The 3-D PIC method requires a large number of field quantities defined on a 3-D

mesh. The memory requirements of a complete problem exceed the limit of 8 Mbytes

of memory of a single node, so domain decomposition is required.

• Communication between a particle and its eight nearest grid points is required to

allocate charge and to interpolate the fields.

Chang-8

• A large data set must be produced for the visualization of tracking results and for

re-start capability (primarily to permit recovery from hardware failure).

3.2 Implementation Schemes and Techniques

For reasons that will be explained in the next section, the main task of parallel implemen­

tation is to ensure that each computing node has the same number of particles in order to

achieve load-balancing. This is very important, since tracking the non-interacting particles

in the magnetic lattice occupies most of the computational time. The second primary task

is to decompose the 3-D grids in KICK3DO. The constraints are 1) the space charge code

should fit into an 8-Mbyte node; 2) each node should have the same amount of workload

in computing the loops over particles (for allocating charge to grids and retrieving field

information from grids) as well as the loops over 3-D grids (for computing electromagnetic

force); and 3) communication among nodes should be minimized.

Below we consider partition schemes for particles in the tracking phase and 3-D grids in

space charge.

3.2.1 Partition Scheme for Particle Tracking

So that each computing node has the same workload, particles are assigned equally into

computing nodes by the block or cyclic method; Since particles are frequently lost during

tracking when they run into a wall, a load imbalance situation will develop. That is,

some nodes might have many more particles to track than the others. The cyclic method

is usually a better approach to deal with a load-imbalance situation. However, such an

approach is not adequate when space charge is introduced. Figure 4(b) demonstrates a case

using a cyclic approach, which will produce busy communications between all nodes since

~ Assume that the index set of all particles is [O,1, .. ,15J and the index set of all nodes is

[O,1,2,3J. In the block method, the particle index set [4,5,6,7J is assigned to node 1, while

in the cyclic method, the particle index set [1,5,9,13J is assigned to node 1.

Chang-9

it violates the data locality principle. In practice, we found that a block decomposition is

a proper way to deal with our problem as long as particles are not lost dramatically.

3.2.2 3-D Grid Decomposition Schemes for Space Charge

There are several ways to map the 3-D grids into computing nodes. It depends on how

the hypercube is connected as a ring, a 2-D mesh, or a 3-D hypercube. For programming

simplicity, we will use block mapping from 3-D grids into a I-D array of computing nodes.

The cylinder is partitioned in the longitudinal direction (see Figure 3(c)). The partition

method can be based on the equal number of grids (Equal-Grid) strategy or equal number

of particles (Equal-Particle) in a sub-cylinder strategy.

In the Equal-Grid approach, each node gets a nearly equal size of sub-cylinder (or the

same number of mesh points). If particle distribution is uniform in the longitudinal direc­

tion, then each sub-cylinder will contain the same amount of particles. Therefore, there

is little or no communication between nodes. Figure 4(a) shows the best-case situation,

in which all the particles and their grid neighbors belong to the same node; therefore,

little or no communication is needed. In practice, the distribution of particles tends to

be non-uniform during simulation. Figure 4(c) shows a non-uniform particle distribution

case in which not only is communication necessary, but some nodes have to update grid

information for the other nodes as well. As a result, load-balancing among nodes is uneven.

In the Equal-Particle approach, the cylinder is partitioned into sub-cylinders, each of

which contains a nearly equal number of particles. When the particle distribution is non­

uniform, each node will have an unequal sub-cylinder (see Figure 4(d)). This strategy gains

a performance advantage by keeping communication minimal at the expense of uneven

grids in each node's domain. To achieve high parallel efficiency, an effective mechanism is

necessary to maintain the "Equal-Particle" structures and to minimize the load-imbalance

effect of uneven grids.

Both approaches have their advantages and drawbacks. (See Table 1 for a comparison.)

In general, there is a trade-off between speed and memory. Since a memory upgrade for

Chang-IO

iPSC /860 is relatively expensive, it would be very desirable to combine both approaches

to compromise parallel efficiency and memory to achieve high parallel efficiency within the

limit of node memory.

Table 1. Comparison of Equal-Grid and Equal-Particle Partition.

("Non-Uniform" refers to the distribution of particles.)

Equal-Grid Equal-Particle

Load-Balance (Loops over Particles) No (Non-Uniform) Yes

Load-Balance (Loops over Grids) Yes No (Non-Uniform)

Communication Overhead Large (Non-Uniform) Small

Memory(Grid) Size Scalability Yes No (Non-Uniform)

Programming Effort Easy Difficult

3.2.3 First Try

Since we want to keep the code size as small as possible to fit into 8 Mbytes of available

memory, we have chosen the simplest strategy to implement particle tracking with space

charge code. That is, particles are partitioned using the block method, and 3-D grids

are decomposed using block mapping with the "Equal-Grid" approach in the z direction.

This approach can be implemented more quickly than alternative methods. We made no

assumption about spatial relationships between particles and their surrounding grids. Par­

ticles can move anywhere (e.g., across several domains (sub-grids» between calculations.

This approach is very general and could be implemented with moderate effort should a

parallel compiler, which can effectively solve irregular communication within a parallel

loop, become available in the future.

3.2.4 Communication Patterns and Programming Techniques

In the following, we discuss briefly the techniques used to solve irregular communications

in space charge. We consider the case where a particle needs to allocate charge to its eight

nearest neighbor grid points (referred to as allocating process). The inverse process of

Chang-ll

interpolating field information to the particle location (referred to as interpolating process)

can be treated similarly. For clarity, only one grid point with index (0,0,0) is shown in

the following sequential code. Note that particles and 3-D grids are partitioned based on

the strategies described above. A particle and its nearest neighbors might not belong to

the same node. That is, zi(ipart) and density(ipart,*,*) do not necessarily belong

to the same node.

vol = dr*dz*dth

do ipart=mpar, npar

irO = ri(ipart)/dr

ithO = thi(ipart)/dth

izO = zi(ipart)/dz

ratio(ipart,O,O,O)=«(irO+l)*dr-ri(ipart))

+«ithO+l)*dth- thi(ipart))+«izO+l)*dz-zi(ipart)))/vol

density(irO,ithO,izO) = density(irO,ithO,izO)+ratio(ipart,O,O,O)

enddo

The current parallel-programming tool available to us is the Mimdizer from Pacific Sierra,

Inc., which has an automatic decomposition tool at the loop level. However, the per­

formance we obtained with this tool has not been acceptable. Another tool reported by

Hiranandani et al. (1991) as being able to transform this kind of code into explicit message­

passing routines without much programming effort is FORTRAN D by Rice University.

However, FORTRAN D is still under development and was not available to us when we

developed the code. The communication strategy, therefore, had to be developed by hand.

The strategy that we use is similar to the approach proposed by Saltz et al. (1990). The

idea is based on block I/O transfer to minimize the communication between nodes. That

is, all information that a node needs to communicate with other nodes is accumulated

into a buffer. A global communication table that describes how a pair of nodes should

Chang-12

communicate with one another is computed first. Each node then sends out self-descriptive

informallon to the other nodes. The information received by a node includes the position

and fractional density for each grid that should be updated by this node. An advantage of

this approach is that the global communication table needs to be computed only once in

KICK3D() at each time step. Therefore, it results in a reduction of communication time

that would be very difficult to achieve even using future automatic parallel compilers, since

such an automatic parallelizer will not be able to plan ahead and collect operations as a

human programmer can. This strategy provides a reliable and effective communication

mechanism for FORTRAN implementation.

3.2.5 Performance Tune-up

A particle can move from one grid to another grid between space charge calculations and

is in fact unlikely to keep the perfect spatial position seen in Figures 4(a) and 4(d) all the

time. It is probable that a situation like that in Figure 4(c) will happen during a long run.

One way to keep the particles and their associated grid points in the same memory is to

sort the particles in the z direction and to remap into computing nodes. The best sorting

algorithm requires order of (n log n)jp operations (O(n)jp if bucket sort is used), where p

is the number of nodes. When n is large, the overhead will be exceptionally high. Since

particles change their relative position and surrounding grids in the longitudinal direction

gradually, it is necessary to sort these particles only occasionally (about every 50 turns).

Another approach is to have sub-cylinder guards for each node. Here, sorting is re­

duced to sub-cylinder guard communication between two neighbor nodes. This approach

usually assumes that particles can move only from a sub-cylinder to the next neighbor

sub-cylinder between space charge calculations. Such a constraint is imposed by numerical

stability considerations for any explicit time advance algorithm. Therefore communication

is performed only between neighboring nodes. A combination of the above tune-up strate­

gies with our current scheme makes it possible to provide better performance than either

of the above approaches with only a little extra memory expense.

Chang-13

3.3 Code Development

The particle tracking with space charge code was first written for the CRAY-YMP by

Machida et al. (1992). The CRAY code that can handle 10,000 particles in an LEB lattice

utilized about 19 Mbytes of memory, which includes 11 Mbytes space charge (KICK3D)

code. This code was analyzed with FORGE (Pacific Sierra, Inc.) to identify the most com­

putationally intensive portion. The most time-consuming routine is the particle-tracking

code (BASE3D) subroutine. The code is very complex and not well-suited for pipelining. It

uses about 61 % total time when the time step tlt = 10 ns. The next most time-consuming

routine is the KICK3D code, which takes about 25%. The code is tuned using the op­

timization option of FORTRAN compiler only, since the code is very complex and not

well suited to pipelining. Parallel implementation was based on the strategies addressed

in Section 3.2.3.

3.4 Hardware Platform

The SSC iPSC/860 has 64 computing nodes, 62 of which have 8 Mbytes of memory

and two of which have 32 Mbytes. The MIMD architecture allows one to run different

programs on different nodes simultaneously, though the programming paradigm at this

machine tends to favor the SPMD (Single Program Multiple Data) style. For particle

tracking with space charge we combine both paradigms, wherein the master node (node 0)

runs a different program from the other nodes (workers). Because the worker nodes are

utilized for tracking and kicking, they can execute in 8-Mbyte memory nodes. The master

node, which has 32 Mbytes, is also utilized to deal with I/O and to input data.

4.0 EMPIRICAL RESULTS AND DISCUSSION

We have tested the program on our iPSC/860 machine, running 10,000 particles for

500 turns in an LEB lattice that contains 693 elements. For our applications, a cylindrical

grid size of 40 x 20 x 32 is appropriate. This suggests the maximum number of nodes used in

this study is 32. Additional nodes will provide redundant computation using our domain

Chang-14

decomposition strategy. As mentioned previously, the fields are Fourier-decomposed in

the azimuthal direction, with a maximum mode number of 2 utilized in this case. Using

32 nodes, the simulation took about 26.3 hours to finish. The results of the parallel

implementation were checked against the CRA Y version by starting a run on the CRA Y

and tracking it for 6 turns. The two codes were exercised in tandem from this point

and tracked for 500 turns. Differences in the random number generator required this

type of start-up procedure. Figures 5(a), 5(b), and 5(c) show the emittance growth in

the longitudinal 5, X, and Y directions, respectively. Readers can see that the emittance

evolution in the 5 direction is identical, but it differs slightly in both the X and Y direction

after about 0.2 msec (100 turns). However, they almost converge at 1.2 msec (500 turns)

in both the X and Y direction. The differences in numerical results between the two

supercomputers are small and are probably due to differences in word length.

Although our goal in using parallel computers is to reduce the computation time in

tracking study, readers are often interested in the scalability issues such as whether the

performance of implementation is scalable to the number of processors. From what we

learned in using massively parallel computers, such issues can be observed in the following

ways. First, in the absence of space charge force, our problems have a natural granularity

that makes it "embarrassingly parallel," one simply distributes the particles over available

nodes and track. The number of nodes should not exceed the number of particles tracked

and the overall performance of the calculation is dominated by single node performance.

In this context, obviously, the scalability is limited by the number of particles studied.

Secondly, in the space charge case, there is also a natural granularity of the grid size

(32 in our test case) which limits its scalability to the number of processors as explained

previously. It is also obvious that the space charge is communication code intensive which

will be the bottleneck eventually as the number of processors increases. To show the

performance of our parallel implementation, a speed-up performance graph and a parallel

efficiency figure are shown in Figures 6(a) and 6(b), respectively. The speed-up comparison

Chang-15

is based on the performance of the original code (1" on-parallelized version) running on a

big (32 Mbytes) node versus 8-node, 16-node, and 32-node parallel versions. Both figures

represent the performance of the overall loop, the performance of the BASE3D routine

for particle tracking, and the performance of the KICK3D routine for space charge at a

time step (see Figure 2). The parallel efficiency of the tracking code is 80-92%, while the

parallel efficiency of the space charge code is about 75-88%. The overall loop performance

is slightly lower than the performance of tracking and of space charge code because we

need to check the particle loss situation and collect emittance information at each time

step. The above facts indicate that our parallel algorithm does not provide the optimal

solution, but it does a fairly reasonable job. Using 32 nodes, we are able to obtain a speed­

up in overall performance by a factor of 22. A more significant fact is that the 32-node

performance makes space charge simulation feasible, which otherwise would be impossible

using SUN-SPARC II, and eliminates a month of computations.

The use of advanced visualization techniques as an aid to understanding coherent wave

motions in plasma simulation is well accepted. Part of the parallel space charge simu­

lation effort is to develop high bandwidth visualization techniques capable of displaying

simulation results from the hypercube. To this end, we have integrated a Silicon Graphics

CrimsonjVGX to the hypercube and have begun the software development task.

Figure 7 shows the motion of 6,000 particles in the first six consecutive time steps. The

transverse dimension is scaled by a factor of 100 relative to the longitudinal direction. Eight

different particles are shown in the figure; particles with the same number are assigned

into the same nodes. An optimal algorithm must maintain the same identification number

of particles in the same contiguous slices of cylinders to minimize communication among

nodes and to maintain workload balance.

5.0 CONCLUSION AND FUTURE RESEARCH DIRECTION

We have successfully implemented particle tracking with space charge effects using the

3-D PIC method with an explicit time advance on our iPSCj860 parallel computer. The

Chang-16

numerical results are compared with CRAY. We show that the new version of iPSCj860

code does the right physics and is very effective and scalable for our applications. The

current implementation is very effective and can be implemented quickly to suit our oper­

ational needs.

For future research directions, we are investigating the use of 3-D visualization techniques

in order to visualize collective phenomena. This requires normalization of the motion with

respect to the local (3 function ratio.

Chang-17

REFERENCES

Yan, Y. Supercomputing for the Superconducting Super Collider. Energy Science, Super­

computing 1990, National Energy Research Supercomputer Center, 9-13.

Schachinger, L., and Talman, R. (1987). TEAPOT: A Thin-Element Accelerator Program

for Optics and Tracking. Particle Accelerators, 22, 35-56.

Bourianoff, G., and Talman, R. (1992). Accelerator Progress Relies on Computation Sim­

ulations. Computers in Physics, 6, 1, 14-23.

Machida, S., Bourianoff, G., Mahale, N.K, Mehta, N., Pilat, F., Talman, R., and

York, R.C. Space Charge Effects in the SSC Low Energy Booster. IEEE Particle

Accelerator Physics Conference 1991, 1,383-385.

Machida, S., Bourianoff, G., Huang, Y., and Mahale, N.K (1992). Tracking Study of

Hadron Collider Boosters. XV International Conference on Hi9h Energy Accelerators,

Hamburg, Germany.

Hiranandani, S., Kennedy, K, and Tseng, C.W. Compiler Optimizations for Fortran D on

MIMD Distributed-Memory Machines. Supercomputing '91, Albuquerque, 86-100.

Saltz, J., Crowley, K, Mirchandaney, R., and Berryman, H. (1990). Run-Time Schedul­

ing and Execution of Loops on Message Passing Machines. Journal of Parallel and

Distributed Computing, 8, 4, Academic Press, 303-312.

FORGE/MIMDIZER User's Guide, Pacific Sierra, Inc.

Chang-18

FIGURE CAPTIONS

Figure 1. Schematic Layout of the SSC Complex. The 54-mile SSC will be the largest and

most powerful particle accelerator ever built.

Figure 2. Computational Model.

Figure 3. 3-D Grid Decomposition. (a) 3-D grids of bounding cylinder of particles; (b) com­

munication between a particle and its neighbor grids; (c) grid decomposition in longitudinal

direction.

Figure 4. Possible Spatial Position of Particles and Sub-cylinder with Equal-Grid and

Equal-Particle Approach. Each rectangle is the side view of the cylinder. (a) equal size

sub-cylinder, uniform particle distribution; (b) equal size sub-cylinder, uniform particle

distribution, cyclic particle mapping; (c) equal size sub-cylinder, non-uniform particle

distribution; (d) non-equal size sub-cylinder, non-uniform particle distribution.

Figure 5. Emittance Growth (a) in the S direction; (b) in the X direction; (c) in the

Y direction.

Figure 6. (a) Speed-up Performance and (b) Parallel Efficiency.

Figure 7. The Motion of 6,000 Particles at the First 6 Time Frames.

:Fzgurel

I
I
I
I

I
I
I
I
I

LINAC

sse
(54 Miles)

T1P-D3034

BASE3D()
Fixed time element-element

particle tracking

CKLOSS()
Check particle lost?

PREMIT()
Calculate emittance information

!
KICK3D()

Momentum changes of particles
by space charge force

NO~yeS •
TIP-<l3035

:Ft.gUre2

(a)

(b)

dz

(e)

rl£Jure3

Transverse

y

x I
I
I

I

/
/

/

I ----~-- ------;------..
Longitudinal \

dEl

I
I
I
I
I
I
I
I

I
I
1
1
1
\
\

\ , , ,
"

(r, El, z)

(r1, El1' Z1)

l

/
I
I
I
I
I
I
I

TIP-03036

rtgure4

(a)
.. Z

(b)
.. Z .. : .. • Node 0 • e: 0 E9 .. : .. • Node 1 - .8:0 E9

00:00 • Node 2 .8:0 E9
E9E9:E9E9 • Node 3 - • 8i 0 E9

(e)
.. Z

(d)
.. Z

• I
I ,.:0._ NodeO - __ · : . .: .

- e: ••
•

Node1 - __ •
°O-~. •• -- Node 2 - __ E9 E9: E9 E9
E9 E9 I

-! •

• particles owned by node 0

• particles owned by node 1

_ owns grid data reside in
- this portion of cylinder

Node 3 - __ 0 0:0 0 :

o particles owned by node 2

E9 particles owned by node 3

TIP-00037

!Fwure5

(a)

4.0

.;-
b 3.5
~

"C
~ 3.0

~
2.5

(b)
4.5

4.4

,::- 4.3

~ 4.2

~ 4.1

~ 4.0
~ 3.9

3.8

(e)
4.5

4.4

,::- 4.3

~ 4.2

~ 4.1
"C

o

0

iPSC/S60

r\lrv'i'~ ":~~ I iPSC/S60 (restart fro';;;-e 6th tum)

"'" CRAY

CRAY (restart from the 6th tum)

0.2 0.4 0.6 0.8 1.0 1.2

sec (x 10-3)

CRAY (restart from the 6th turn)

0.2

..... " iPSC/860 (restart from the 6th tum) .• ,p{.

0.4 0.6

~.f."'"
':'f"'"

,(", ,< CRA Y

iPSC/S60

0.8 1.0 1.2

iPSCl860

~d::#~

! iPSC/S60 (restart from the 6th tum)

CRAY (restart from the 6th tum) ~ 4.0
3.9 -L,.."...,'--~

3.8 +--,----.---.,...---...---,-----,
o 0.2 0.4 0.6 O.B 1.0 1.2

(a)
30

25 ~
'"

20
BASE3D~/~>.,*

'" ~.;
Co '" .' :::l '" .' , "'- ...
't:J

15 .. " •• -\ ICK3D '" '"
Co
rn Loop

10

5

5 10 15 20 25 30 35 40

Number of processors

(b)
1.00

"-
0.95

, , , ,
0.90

........

'" 0.85
............ /BASE3D

'" ", 01
'E

0.80 ", '" ~~

e '. ~~ KICK3D
'" 0.75 n. -.~

0.70 ············~~OOp
0.65

0.60
0 5 10 15 20 25 30 35 40

Number of processors
TIP~3039

Twure6

rwure 7

