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Abstract 

Particle-tracking simulation is one of the scientific applications that is well-suited to 

parallel computations. At the Superconducting Super Collider, it has been theoretically 

and empirically demonstrated that particle tracking on a designed lattice can achieve very 

high parallel efficiency on a MIMD Intel iPSC/86D machine. The key to such success is 

the realization that the particles can be tracked independently without considering their 

interaction. 

The perfectly parallel nature of particle tracking is broken if the interaction effects 

between particles are included. The space charge introduces an electromagnetic force that 

will affect the motion of tracked particles in 3-D space. For accurate modeling of the beam 

dynamics with space charge effects, one needs to solve three-dimensional Maxwell field 

equations, usually by a particle-in-cell (PIC) algorithm. This will require each particle to 

communicate with its neighbor grids to compute the momentum changes at each time step. 

It is expected that the 3-D PIC method will degrade parallel efficiency of particle-tracking 

implementation on any parallel computer. In this paper, we describe an efficient scheme for 

implementing particle tracking with space charge effects on an INTEL iPSC/86D machine. 

Experimental results show that a parallel efficiency of 75% can be obtained . 

• Operated by the Universities Research Association, Inc., for the U.S. Department of 

Energy under Contract No. DE-AC35-89ER4D486. 



Chang-2 

1.0 INTRODUCTION 

The Superconducting Super Collider (SSC) under design and construction near Waxa­

hachie, Texas, will be the largest and most powerful scientific instrument ever built and will 

be used to investigate the fundamental origins of matter. The SSC complex consists of the 

linear accelerator (LINAC), low-energy booster (LEB), medium-energy booster (MEB), 

high-energy booster (REB), and two Collider rings, which will have a circumference of 

54 miles (87 km) (see Figure 1). Each accelerator consists of an array of elements, mostly 

magnetic. Particles are first injected from the LIN AC, then travel circularly in the LEB, 

the MEB, and the REB, and finally in the Collider for many turns while being accelerated. 

At the final stage, two bunches of particles at 20 TeV, traveling in the 87-km Collider rings 

in opposite directions, are brought into head-on collision. 

Since the construction cost of the SSC is high (expected to exceed $8 billion), there is 

a demand to reduce the construction cost by design refinement. To reach such a goal, 

computer simulation of particle motion in each accelerator is essential. For a simulation to 

be useful, many particles must be tracked in a design lattice' for hundreds of thousands of 

turns (Yan, 1990). If hundreds of thousands of particles are tracked in an SSC lattice with 

14,000 magnet elements for 105 turns in a computer, then more than a thousand Tflops 

(1012 floating-point operations) will be performed. This requirement makes computer sim­

ulation difficult without the use of high-performance, scalable, parallel computers. Parallel 

programming for a large scientific application requires one to understand the characteristics 

of the problem and to redesign the program to take advantage of hardware features. At the 

SSC, TEAPOT (Thin-Element Accelerator Program for Optics and Tracking, Schachinger 

and Talman, 1987) particle-tracking code has been implemented in a 64-node iPSC/860 

machine. In the absence of space charge, it achieves about 98.3% parallel efficiency, since 

, A lattice is a detailed description of how an array of elements such as dipole (bending), 

quadrupole (focus/defocus), sextupole, and rf cavities are arranged to form an accelerator 

ring at SSC. 
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each node can track different groups of particles independently and only very little com­

munication is required between nodes (Bourianoff and Talman, 1992). 

The perfectly parallel nature of particle tracking is due to the fact that the interaction 

effects between particles can be ignored when the beam energy is high. In practice, when 

the beam energy is low, the space charge effects dominate the dynamics as in the LEB 

and the MEB (at transition) at the SSC. Readers who are interested in the space charge 

effects are referred to Machida et al. (1991). From the computational point of view, the 

computational model and characteristics of space charge should be of interest to compu­

tational scientists. To model the beam dynamics at low energy correctly, the momentum 

changes of each particle caused by the space charge force must be calculated. This requires 

one to solve three-dimensional Maxwell field equations by a particle-in-cell (PIC)t fashion, 

an approach widely used in the simulation of plasma physics. A characteristic of the PIC 

method is that each particle needs to allocate charge to its nearest neighboring 3-D grids 

and to retrieve field information from its nearest grids by an interpolating method at 

each time step. Since particles will change their relative spatial position during tracking, 

communication between particles and their surrounding grids will be costly for parallel 

implementation. An efficient and reliable scheme is needed to reduce the communication 

cost of the space charge calculation and to keep the load-balance of particle tracking and 

space charge computations among nodes as even as possible. 

In this paper, we will show a reliable and efficient scheme to implement parallel particle 

tracking under the influence of space charge on an INTEL iPSC/860 MIMD computer. 

The rest of the paper is organized as follows: Section 2.0 describes the computational 

model and algorithm of particle tracking under the influence of space charge. Section 3.0 

addresses our parallel implementation techniques. Section 4.0 presents empirical results 

t The computation of the electromagnetic field is dependent on the charge density to 

which all particles must contribute in a non-local manner. 



Chang-4 

on the iPSCj860 and CRAY. Section 5.0 concludes the paper and provides future research 

direction. 

2.0 SIMULATION MODEL 

Particle simulation based on a single-particle model is perfectly matched for scalable 

parallel architectures. An example is the ZTRACK code by Yan (1990). However, it cannot 

simulate the operation of the LEB and the MEB, since their dynamics are dominated by 

space charge. To integrate space charge into an existing tracking code such as TEAPOT, 

it is necessary to calculate charge densities and fields consistent with numerical stability 

requirements. 

For computer simulation, we will use an explicit, fixed-time advance. The motion of 

particles is tracked for k(t) magnetic elements followed by a kick (space charge force), 

where k(t) is the number of elements tracked by a particle within the time t and t + /).t, 

and may be a fraction less than 1. At each element, the motion of particles is calculated in 

6-D phase space. At each kick, we compute a 3-D space charge force on each particle and 

update its position and momentum. The choice of /).t is determined by numerical stability 

and strongly affects the speed of the calculation. Figure 2 shows the computational flow 

of the fixed-time-step sampling method. 

In the following, we briefly discuss the models of space charge calculation. Our in­

tention is to provide the minimum accelerator background needed for understanding the 

parallelization methods used for particle tracking with a space charge code. The tracking 

algorithm used is based on a 4-D symplectic procedure (Schachinger and Talman, 1987) 

and later extended to 6-D by Machida et al., 1992. 
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2.1 3-D PIC Formulas for Space Charge 

To calculate a 3-D space charge field, we employ the PIC method. At each time step, 

a 3-D cylindrical grid is first constructed, then the electromagnetic field for particles is 

computed using the discretized version of 3-D Maxwell equations. 

We assume that the 3-D cylindrical grid has coordinates (r, e, z), and the beam pipe 

has a circular cross section with radius b, the perfect conductivity (7 = 00, and the scalar 

potential </> == 0 at r = b. Let nand J be the charge density and the current, respectively, 

and let A be the vector potential. 

at/! ...... 
Under the Lorentz gauge Ft + c'\l . A = 0, the Maxwell equations can be rewritten as 

(
1 a ( a) 1 &2) ;:ar rar +r2 ae2 </>=-47rn(r,e,z,t), (1) 

(
1 a ( a) 1 a

2
) - 47r -

;: ar r ar + r2 ae2 A = -7J (r, e, z, t), (2) 

where we invoked the ordering 

(3) 

This can be justified by the typical dimension of the beam, whose transverse size is the 

order of 1 mm, whereas the longitudinal size is the order of 1 m. 

We further simplify the current density, 

(4) 

where Vz is the average velocity of the beam. This is commonly referred to as the ultra­

relativistic approximation, and it means that particles translate as a rigid body. From the 

Lorentz force equation F = q(E + ~ x B), the electromagnetic force is F -:- -.¥~</>, and 

we need only solve the scalar potential Eq. (1). The charge density and scalar potential 

are Fourier-transformed in e: 

n(r,e,z,t) = Lnm(r,z,t)exp(ime), (5) 
m 
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wi th the inverse transforms 

1 12
.-nm(r, z, t) = - nCr, 11, z, t) exp( -im(1)dl1, 

2rr 0 
(6) 

and the same for </>. 

For each m (referred to as mode number), Eq. (1) assumes the form 

(7) 

The general solution for the equation for m ~ 0 is 

(8) 

where Wm(r) is 

1T I r , 
Wm=o(r) = -4rr no(r,z,t)r In,dr, 

o r 
(9) 

Wm>l = - 2rrrm . r nm(r, z, t)r'(l-m)dr' 
- m Jo 

2rrr-m 1r 
- nm(r, z, t)r'(1+m)dr'. 

m 0 
(10) 

2.2 Algorithm 

The space chaxge algorithm proceeds as follows: 

1. Construct the bounding cylinder of paxticles. The cylinder is then decomposed into 

3-D grids (see Figure 3(a)). Each grid has index (r,l1,z), which corresponds to 

cylindrical coordinates (rdr, I1d8, zdz). 

2. For each paxticle, we allocate chaxge to each grid neaxest the paxticle by the tri­

lineax interpolation method based on the relevant volume ratio (see Figure 3(b)). 

For example, the grid point at index (rl,l1),zl) has volume ratio (r2dr - r)(112dl1-

8)(Z2dz - z)/(drd8dz), where (r,8,z) are the cylindrical coordinates of the paxticle 

and (r2' 112, Z2) is the index of the opposite grid point of (rl' 111, zll. 

3. Compute the Fourier decomposition of chaxge density in 11 using Eq. (6). 
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4. Compute the electrical field (E" Eo, Ez ) for each grid. This can be done by comput­

ing <p using Eqs. (7), (8), (9), and (10). 

5. Compute the momentum changes for each particle from its surrounding fields and 

update its coordinates and other attributes. 

3.0 PARALLEL IMPLEMENTATION 

The key to a parallel implementation of a computational model into a MIMD hypercube 

parallel computer is to distribute the computation and data into the separate nodes such 

that each node has an equal share of computations, while communication between nodes is 

minimized. Though the principle is simple, the practice is more complicated, and a given 

implementation must take advantage of the available hardware features and take care of 

subtle issues with each parallel scheme-I/O and memory problems, numerical stability, 

and hardware failures-to achieve high performance for a large scientific application. 

To take advantage of scalable parallel computers, it is necessary to understand the 

characteristics of the problem so that the program can be implemented correctly and 

efficiently (with performance scalable to the number of computing nodes available). The 

characteristics of particle tracking with space charge effects are summarized below. 

3.1 Characteristics 

• Particles are tracked in 6-D phase space, and they can be tracked independently in 

BASE3D(). 

• Particles are lost when they collide with the wall of the machine. 

• The 3-D PIC method requires a large number of field quantities defined on a 3-D 

mesh. The memory requirements of a complete problem exceed the limit of 8 Mbytes 

of memory of a single node, so domain decomposition is required. 

• Communication between a particle and its eight nearest grid points is required to 

allocate charge and to interpolate the fields. 
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• A large data set must be produced for the visualization of tracking results and for 

re-start capability (primarily to permit recovery from hardware failure). 

3.2 Implementation Schemes and Techniques 

For reasons that will be explained in the next section, the main task of parallel implemen­

tation is to ensure that each computing node has the same number of particles in order to 

achieve load-balancing. This is very important, since tracking the non-interacting particles 

in the magnetic lattice occupies most of the computational time. The second primary task 

is to decompose the 3-D grids in KICK3DO. The constraints are 1) the space charge code 

should fit into an 8-Mbyte node; 2) each node should have the same amount of workload 

in computing the loops over particles (for allocating charge to grids and retrieving field 

information from grids) as well as the loops over 3-D grids (for computing electromagnetic 

force); and 3) communication among nodes should be minimized. 

Below we consider partition schemes for particles in the tracking phase and 3-D grids in 

space charge. 

3.2.1 Partition Scheme for Particle Tracking 

So that each computing node has the same workload, particles are assigned equally into 

computing nodes by the block or cyclic method; Since particles are frequently lost during 

tracking when they run into a wall, a load imbalance situation will develop. That is, 

some nodes might have many more particles to track than the others. The cyclic method 

is usually a better approach to deal with a load-imbalance situation. However, such an 

approach is not adequate when space charge is introduced. Figure 4(b) demonstrates a case 

using a cyclic approach, which will produce busy communications between all nodes since 

~ Assume that the index set of all particles is [O,1, .. ,15J and the index set of all nodes is 

[O,1,2,3J. In the block method, the particle index set [4,5,6,7J is assigned to node 1, while 

in the cyclic method, the particle index set [1,5,9,13J is assigned to node 1. 
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it violates the data locality principle. In practice, we found that a block decomposition is 

a proper way to deal with our problem as long as particles are not lost dramatically. 

3.2.2 3-D Grid Decomposition Schemes for Space Charge 

There are several ways to map the 3-D grids into computing nodes. It depends on how 

the hypercube is connected as a ring, a 2-D mesh, or a 3-D hypercube. For programming 

simplicity, we will use block mapping from 3-D grids into a I-D array of computing nodes. 

The cylinder is partitioned in the longitudinal direction (see Figure 3(c)). The partition 

method can be based on the equal number of grids (Equal-Grid) strategy or equal number 

of particles (Equal-Particle) in a sub-cylinder strategy. 

In the Equal-Grid approach, each node gets a nearly equal size of sub-cylinder (or the 

same number of mesh points). If particle distribution is uniform in the longitudinal direc­

tion, then each sub-cylinder will contain the same amount of particles. Therefore, there 

is little or no communication between nodes. Figure 4( a) shows the best-case situation, 

in which all the particles and their grid neighbors belong to the same node; therefore, 

little or no communication is needed. In practice, the distribution of particles tends to 

be non-uniform during simulation. Figure 4( c) shows a non-uniform particle distribution 

case in which not only is communication necessary, but some nodes have to update grid 

information for the other nodes as well. As a result, load-balancing among nodes is uneven. 

In the Equal-Particle approach, the cylinder is partitioned into sub-cylinders, each of 

which contains a nearly equal number of particles. When the particle distribution is non­

uniform, each node will have an unequal sub-cylinder (see Figure 4( d)). This strategy gains 

a performance advantage by keeping communication minimal at the expense of uneven 

grids in each node's domain. To achieve high parallel efficiency, an effective mechanism is 

necessary to maintain the "Equal-Particle" structures and to minimize the load-imbalance 

effect of uneven grids. 

Both approaches have their advantages and drawbacks. (See Table 1 for a comparison.) 

In general, there is a trade-off between speed and memory. Since a memory upgrade for 
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iPSC /860 is relatively expensive, it would be very desirable to combine both approaches 

to compromise parallel efficiency and memory to achieve high parallel efficiency within the 

limit of node memory. 

Table 1. Comparison of Equal-Grid and Equal-Particle Partition. 

("Non-Uniform" refers to the distribution of particles.) 

Equal-Grid Equal-Particle 

Load-Balance (Loops over Particles) No (Non-Uniform) Yes 

Load-Balance (Loops over Grids) Yes No (Non-Uniform) 

Communication Overhead Large (Non-Uniform) Small 

Memory(Grid) Size Scalability Yes No (Non-Uniform) 

Programming Effort Easy Difficult 

3.2.3 First Try 

Since we want to keep the code size as small as possible to fit into 8 Mbytes of available 

memory, we have chosen the simplest strategy to implement particle tracking with space 

charge code. That is, particles are partitioned using the block method, and 3-D grids 

are decomposed using block mapping with the "Equal-Grid" approach in the z direction. 

This approach can be implemented more quickly than alternative methods. We made no 

assumption about spatial relationships between particles and their surrounding grids. Par­

ticles can move anywhere (e.g., across several domains (sub-grids» between calculations. 

This approach is very general and could be implemented with moderate effort should a 

parallel compiler, which can effectively solve irregular communication within a parallel 

loop, become available in the future. 

3.2.4 Communication Patterns and Programming Techniques 

In the following, we discuss briefly the techniques used to solve irregular communications 

in space charge. We consider the case where a particle needs to allocate charge to its eight 

nearest neighbor grid points (referred to as allocating process). The inverse process of 
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interpolating field information to the particle location (referred to as interpolating process) 

can be treated similarly. For clarity, only one grid point with index (0,0,0) is shown in 

the following sequential code. Note that particles and 3-D grids are partitioned based on 

the strategies described above. A particle and its nearest neighbors might not belong to 

the same node. That is, zi(ipart) and density(ipart,*,*) do not necessarily belong 

to the same node. 

vol = dr*dz*dth 

do ipart=mpar, npar 

irO = ri(ipart)/dr 

ithO = thi(ipart)/dth 

izO = zi(ipart)/dz 

ratio(ipart,O,O,O)=«(irO+l)*dr-ri(ipart)) 

+«ithO+l)*dth- thi(ipart))+«izO+l)*dz-zi(ipart)))/vol 

density(irO,ithO,izO) = density(irO,ithO,izO)+ratio(ipart,O,O,O) 

enddo 

The current parallel-programming tool available to us is the Mimdizer from Pacific Sierra, 

Inc., which has an automatic decomposition tool at the loop level. However, the per­

formance we obtained with this tool has not been acceptable. Another tool reported by 

Hiranandani et al. (1991) as being able to transform this kind of code into explicit message­

passing routines without much programming effort is FORTRAN D by Rice University. 

However, FORTRAN D is still under development and was not available to us when we 

developed the code. The communication strategy, therefore, had to be developed by hand. 

The strategy that we use is similar to the approach proposed by Saltz et al. (1990). The 

idea is based on block I/O transfer to minimize the communication between nodes. That 

is, all information that a node needs to communicate with other nodes is accumulated 

into a buffer. A global communication table that describes how a pair of nodes should 
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communicate with one another is computed first. Each node then sends out self-descriptive 

informallon to the other nodes. The information received by a node includes the position 

and fractional density for each grid that should be updated by this node. An advantage of 

this approach is that the global communication table needs to be computed only once in 

KICK3D() at each time step. Therefore, it results in a reduction of communication time 

that would be very difficult to achieve even using future automatic parallel compilers, since 

such an automatic parallelizer will not be able to plan ahead and collect operations as a 

human programmer can. This strategy provides a reliable and effective communication 

mechanism for FORTRAN implementation. 

3.2.5 Performance Tune-up 

A particle can move from one grid to another grid between space charge calculations and 

is in fact unlikely to keep the perfect spatial position seen in Figures 4(a) and 4(d) all the 

time. It is probable that a situation like that in Figure 4( c) will happen during a long run. 

One way to keep the particles and their associated grid points in the same memory is to 

sort the particles in the z direction and to remap into computing nodes. The best sorting 

algorithm requires order of (n log n)jp operations (O(n)jp if bucket sort is used), where p 

is the number of nodes. When n is large, the overhead will be exceptionally high. Since 

particles change their relative position and surrounding grids in the longitudinal direction 

gradually, it is necessary to sort these particles only occasionally (about every 50 turns). 

Another approach is to have sub-cylinder guards for each node. Here, sorting is re­

duced to sub-cylinder guard communication between two neighbor nodes. This approach 

usually assumes that particles can move only from a sub-cylinder to the next neighbor 

sub-cylinder between space charge calculations. Such a constraint is imposed by numerical 

stability considerations for any explicit time advance algorithm. Therefore communication 

is performed only between neighboring nodes. A combination of the above tune-up strate­

gies with our current scheme makes it possible to provide better performance than either 

of the above approaches with only a little extra memory expense. 
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3.3 Code Development 

The particle tracking with space charge code was first written for the CRAY-YMP by 

Machida et al. (1992). The CRAY code that can handle 10,000 particles in an LEB lattice 

utilized about 19 Mbytes of memory, which includes 11 Mbytes space charge (KICK3D) 

code. This code was analyzed with FORGE (Pacific Sierra, Inc.) to identify the most com­

putationally intensive portion. The most time-consuming routine is the particle-tracking 

code (BASE3D) subroutine. The code is very complex and not well-suited for pipelining. It 

uses about 61 % total time when the time step tlt = 10 ns. The next most time-consuming 

routine is the KICK3D code, which takes about 25%. The code is tuned using the op­

timization option of FORTRAN compiler only, since the code is very complex and not 

well suited to pipelining. Parallel implementation was based on the strategies addressed 

in Section 3.2.3. 

3.4 Hardware Platform 

The SSC iPSC/860 has 64 computing nodes, 62 of which have 8 Mbytes of memory 

and two of which have 32 Mbytes. The MIMD architecture allows one to run different 

programs on different nodes simultaneously, though the programming paradigm at this 

machine tends to favor the SPMD (Single Program Multiple Data) style. For particle 

tracking with space charge we combine both paradigms, wherein the master node (node 0) 

runs a different program from the other nodes (workers). Because the worker nodes are 

utilized for tracking and kicking, they can execute in 8-Mbyte memory nodes. The master 

node, which has 32 Mbytes, is also utilized to deal with I/O and to input data. 

4.0 EMPIRICAL RESULTS AND DISCUSSION 

We have tested the program on our iPSC/860 machine, running 10,000 particles for 

500 turns in an LEB lattice that contains 693 elements. For our applications, a cylindrical 

grid size of 40 x 20 x 32 is appropriate. This suggests the maximum number of nodes used in 

this study is 32. Additional nodes will provide redundant computation using our domain 
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decomposition strategy. As mentioned previously, the fields are Fourier-decomposed in 

the azimuthal direction, with a maximum mode number of 2 utilized in this case. Using 

32 nodes, the simulation took about 26.3 hours to finish. The results of the parallel 

implementation were checked against the CRA Y version by starting a run on the CRA Y 

and tracking it for 6 turns. The two codes were exercised in tandem from this point 

and tracked for 500 turns. Differences in the random number generator required this 

type of start-up procedure. Figures 5(a), 5(b), and 5(c) show the emittance growth in 

the longitudinal 5, X, and Y directions, respectively. Readers can see that the emittance 

evolution in the 5 direction is identical, but it differs slightly in both the X and Y direction 

after about 0.2 msec (100 turns). However, they almost converge at 1.2 msec (500 turns) 

in both the X and Y direction. The differences in numerical results between the two 

supercomputers are small and are probably due to differences in word length. 

Although our goal in using parallel computers is to reduce the computation time in 

tracking study, readers are often interested in the scalability issues such as whether the 

performance of implementation is scalable to the number of processors. From what we 

learned in using massively parallel computers, such issues can be observed in the following 

ways. First, in the absence of space charge force, our problems have a natural granularity 

that makes it "embarrassingly parallel," one simply distributes the particles over available 

nodes and track. The number of nodes should not exceed the number of particles tracked 

and the overall performance of the calculation is dominated by single node performance. 

In this context, obviously, the scalability is limited by the number of particles studied. 

Secondly, in the space charge case, there is also a natural granularity of the grid size 

(32 in our test case) which limits its scalability to the number of processors as explained 

previously. It is also obvious that the space charge is communication code intensive which 

will be the bottleneck eventually as the number of processors increases. To show the 

performance of our parallel implementation, a speed-up performance graph and a parallel 

efficiency figure are shown in Figures 6(a) and 6(b), respectively. The speed-up comparison 
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is based on the performance of the original code (1" on-parallelized version) running on a 

big (32 Mbytes) node versus 8-node, 16-node, and 32-node parallel versions. Both figures 

represent the performance of the overall loop, the performance of the BASE3D routine 

for particle tracking, and the performance of the KICK3D routine for space charge at a 

time step (see Figure 2). The parallel efficiency of the tracking code is 80-92%, while the 

parallel efficiency of the space charge code is about 75-88%. The overall loop performance 

is slightly lower than the performance of tracking and of space charge code because we 

need to check the particle loss situation and collect emittance information at each time 

step. The above facts indicate that our parallel algorithm does not provide the optimal 

solution, but it does a fairly reasonable job. Using 32 nodes, we are able to obtain a speed­

up in overall performance by a factor of 22. A more significant fact is that the 32-node 

performance makes space charge simulation feasible, which otherwise would be impossible 

using SUN-SPARC II, and eliminates a month of computations. 

The use of advanced visualization techniques as an aid to understanding coherent wave 

motions in plasma simulation is well accepted. Part of the parallel space charge simu­

lation effort is to develop high bandwidth visualization techniques capable of displaying 

simulation results from the hypercube. To this end, we have integrated a Silicon Graphics 

CrimsonjVGX to the hypercube and have begun the software development task. 

Figure 7 shows the motion of 6,000 particles in the first six consecutive time steps. The 

transverse dimension is scaled by a factor of 100 relative to the longitudinal direction. Eight 

different particles are shown in the figure; particles with the same number are assigned 

into the same nodes. An optimal algorithm must maintain the same identification number 

of particles in the same contiguous slices of cylinders to minimize communication among 

nodes and to maintain workload balance. 

5.0 CONCLUSION AND FUTURE RESEARCH DIRECTION 

We have successfully implemented particle tracking with space charge effects using the 

3-D PIC method with an explicit time advance on our iPSCj860 parallel computer. The 
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numerical results are compared with CRAY. We show that the new version of iPSCj860 

code does the right physics and is very effective and scalable for our applications. The 

current implementation is very effective and can be implemented quickly to suit our oper­

ational needs. 

For future research directions, we are investigating the use of 3-D visualization techniques 

in order to visualize collective phenomena. This requires normalization of the motion with 

respect to the local (3 function ratio. 
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FIGURE CAPTIONS 

Figure 1. Schematic Layout of the SSC Complex. The 54-mile SSC will be the largest and 

most powerful particle accelerator ever built. 

Figure 2. Computational Model. 

Figure 3. 3-D Grid Decomposition. (a) 3-D grids of bounding cylinder of particles; (b) com­

munication between a particle and its neighbor grids; (c) grid decomposition in longitudinal 

direction. 

Figure 4. Possible Spatial Position of Particles and Sub-cylinder with Equal-Grid and 

Equal-Particle Approach. Each rectangle is the side view of the cylinder. (a) equal size 

sub-cylinder, uniform particle distribution; (b) equal size sub-cylinder, uniform particle 

distribution, cyclic particle mapping; (c) equal size sub-cylinder, non-uniform particle 

distribution; (d) non-equal size sub-cylinder, non-uniform particle distribution. 

Figure 5. Emittance Growth (a) in the S direction; (b) in the X direction; (c) in the 

Y direction. 

Figure 6. (a) Speed-up Performance and (b) Parallel Efficiency. 

Figure 7. The Motion of 6,000 Particles at the First 6 Time Frames. 
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