
SSCL-Preprint-148

Superconducting Super Collider Laboratory

Obj eet-Oriented Simulation for the
Supereondueting Super Collider

.I

!
i ,

/

e

J. Zhou and M.-J. Chung

October 1992

SSCL-Preprint-148

Object-Oriented Simulation for the
Superconducting Super Collider

J. Zhou

Superconducting Super Collider Laboratory'
2550 Beckleymeade Avenue

Dallas, TX 75237

and

M.-J. Chung

Department of Computer Science
Michigan State University

East Lansing, MI 48824

October 1992

• Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

OBJECT-ORIENTED SIMULATION FOR THE SUPERCONDUCTING SUPER COLLIDER

ABSTRACT

Jiasheng Zhau
SupetConducting Super Collide! Laboratoryt

2550 BeckJeymeade Avenue, MS 4011
Dallas. Texas 75237

Tel.: 214-708-3461. email: zhouj@poplar.ssc.gov

This paper describes the design and implementation of an object-oriented
simulation environment called OZ for the Superconducting Super Collider
(SSe). The design applies object-oriented technology to data visualization.
behavior modelling. dynamic simulation and version control. A meta class
structure is proposed to model different types of objects in large systems by
their functionality. OZ provides a direct-manipulation user interface which
allows the user to visualize the data as an object in the database and interac­
tively model the component of the system. Modelling can be exercised at dif­
ferent levels of the class hierarchy and then can be dynamically bound into a
system for simulation. Inheritance is used to derive new configurations of the
system or subsystem from the existing one, and specify an object's behavior.
Delegation is used to consttuct a system by instantiating existing objects and
"stealing" their methods by del_gaton.

The implementation uses C++. GLISTK[Kan91] library. InterViews
2.6[Linto901. ISTK [Salnn911library. GNU C++ library[StaII901. GLlSH
event seqoencer[Paxs0911. NIH class library[Gorle911. and ObjectSton:[Ob­
jec911.

!. !NTR0DJJCDQN

This paper describes the mechanisms used to build an integrated environ­
ment for dynamical modelling and simulation of large complex systems
using object-oriented methods. The SSC is a complex machine consttucted
to perfonn high enetgy physics eJq>eriments. Each machine desigo bas a con­
figuration based on structured data residing in a database. Our goal is to build
an environment which enables visualization of design data. aids interactive
modelling and simulation to exercise the accelerator before it is really built.
To achieve our goal. we propose an object.-oriented paradigm. In our para­
digm, data are modelled as objects that can be manipulated through graphical
interfaces. The dynamic behavior of particles and the accelerator are mod­
elled using these data objects in a particular configuration. Simulation results
are created by applying the specified model to the simulator. Designs are
managed using version control schema, and peISistent object. Class hierar­
chy gn:atly facilitates the decomposition of a laqe complex system. inherit­
ance allows behavior sharing among objects while still focusing on their
difference. thus making the system simpler at each level of the hierarchy.
Dynamic binding makes dynamic modelling possible and delegation simpli­
fies the aggregation of the system for simulation.

A meta class structuIe is proposed in this paper for organizing class hier­
archies by their functionality to aid huge system design (here meta class is
different from SmaUTalk's metaclass. We emphasize the structure and rela­
tions among classes). Deriving every class from the same root is undesirable.
especially for large. complex systems such as the Super Collider. Wuuiow
classes simply cannot be derived from animal classes because they are totally
different in nature. A multi-level of inheritance is also confusing and low in
efficiency. In a large simulation system., objects of various kinds will likely
be designed, developed, and debugged in a different environment by differ­
ent people in their knowledge domains. Each type of object needs its own
inheritance hierarchy. The relations between these hierarchies are described
by the meta class structure.

Objects in such a system can be classified into four categories:
• DATA: objects handling data transmission and providing services for
modelling and simulation. These objects make the details of data transmis-

Moon-Jung Chung
Department of Computer Science

Michigan State University
East Lansing. Ml48824

Tel#: 517-353-4392. email: cbung@cpswh.cps.msu.edu

sion transparent to the rest of the system. At the SSC, data describing the
structure and attributes of the accelerator (called lattice structure for each
accelerator) is stored in a relational database management system (Sybase
[Trahe9IJ). A Self-Describing Standard (SDS) [Salnn911 is used as a vehi­
cle to move data structures between the application and database. DATA
maps generic sttuctured data into application oriented data for other parts

of the system such as simulator and graphic plotter.
• MODELER: objects organizing the infonnation from DATA based on
their relations. It creates meta data which specify the configuration of data
objects. Class hierarchy can be used to decompose a large system by their
inter-component relationships: is-a - an attribute hiemrchy. and pan-oj
- an aggregation hiemrchy. Delegation can be used to represent a com­
plex system by their component structures. Cass hierarchy facilitates
inheritance and makes dynamic binding possible. But sometimes hierarchy
structure is less efficient as the object becomes "heavier" (memory inten­
sive). Delegation is a benerway to create a "light" and "cheaper" object by
instantiating its component objects through delegators (such as pointers to
an object).
• SIMULATOR: objects to practice dynamic simulation. Simulation algo­
rithms an:: likely to be developed independently by domain specialists. It is
not necessary to design. test and debug those parts with the entire system.
They can be built separately and connected to the system later. For exam­
ple. it is not necessary to change the tenninal each time the CPU is
upgraded. For the same reasoo, when you design your new CPU, you doo't
need to worry about the type of tenninal you will use if a standard interface
is defined between them. Both the CPU and tenninal can have their own
class hierarchies and design procedures. A simulator (instance of SIMU­
LATOR) can be built by deriving it from an existing one. or by aggregating
existing ones through delegation.
• INTERFACE: objects providing a man-machine interface. It can be
shared among systems with little modifications. A we1l-established
INTERFACE class library can make interface prototyping easier and
faster. A predefined look-and-feel is also important to the user to learn oew
applications. INTERFACE class can be built independently from its appli­
cations.

S1MULATOR

INTERFACE

Figure I: a meta class structure

The relations among those four class hierarchies an:: shown in Figure 1
(arrow points the dataflow). Each node represents one or possibly several
class hierarchies. Application users can derive their own domain specific
classes from high-level generic classes. A simulation application can be built
by using objects from those four node libraries. Notable features of meta
class structure are encapSUlation and code reusability. A weU~ncapsulated
object can be instantiated to build a more complicated object while the orig­
inal object need oot be modified and understood. Different applications may
use similar objects to save coding effort. Once the interfaces among the
nodes are clearly specified. development can proceed in parallel among class
hierarchies. Independent development also makes testing and debugging

tOperated by the Universities Research Association, Inc .• for the U. S. Department of Energy under Contract No. DE-AC35-89ER40486.

much easier and more efficient
As mentioned earlier, the SSC is an accelerator built to perform high

energy physics experiments. It mainly consists of magnets with various
attributes. Experimental particle beams are injected from a linear accelerator
(Linac), then fwther accelerated at different energy levels through a low
energy booster (LEB), medium energy booster (MEB), and higb energy
booster (HEB) which are connected by beam transfer lines. Beams are then
injected in opposite directions into two collider (TC and BC) rings. These
20GeV beams finally collide in the interaction region (IR).

Simulation uses both static and dynamic data. Static data created in the
design are stored in the database by different versions. These data can be
manipulated using a particular model to create simulation results. Dynamic
data is the footprint of such results subject to a particular configuration of the
lattice. So simulation is a process of manipulating static data based on a
model to create dynamic data. The goals of the OZ project consist of four
parts:

• A graphical browser for visualizing lattice database. This browser
includes: (1) a geomettic view of the accelerator complex at three dimen­
sions (top, side. and front views) witb zooming and scrolling functions. (2)
a symbolic representation of the lattice structure and configuration. (3) a
bcamline locator which locates a bcamline in the selected lattice with a
name and expands it into its components, and (4) a plotter for examining
various lattice optics functions.
• A dynamic optics function simulator. Users can change the attributes of
the accelerator (such as initial settings). strength of the magnet and injec­
tion position of the particles. A feedback can be obtained from the dynamic
optics function simulator which tells the user the effect of these changes.
• A particle tracking simulator which simulates a bunch of particles dis­
tributed in a predefined pattern passing Ihrnugb each accelerator sevcml
tums. It can also simulate particles passing transfer lines between acceler­
ators. The simulator aids research in beam synchronization. timing and
transfer of a trajectory within a given aperture in the accelerator.
• A basic problem in accelerator physics is how to keep beam on the cor­
rect trajectory, i.e .• to avoid losing the beam. Beam is basically guided by
magnets. Most magnets have fixed strength and arc designed to bend the
beam in a certain angle at specified locations. To conect dynamic errors
whieb may affect the beam trajectory, hundJcds of adjusting magnets
(kickers) arc phoccd among the built-in magnets. There arc also hundreds
of detectors (beam position monitors, BPMs) near those kickers to monitor
the result of the correction and to locate the beam position. For a particular
BPM lOading, a model and simulator arc needed to predict the adjusting
value for each kicker, especially those kickers Dear the BPM being moni­
tored.
• Version control for dynamic data. How to record the evolution of the
design, to capture the configuration which produces an good result. Ver­
sion control has two goals:
1) Venion control for attribute hierarchy to record different versions of
basic building objects. For example. an accelerator can operate at different
energies such as injection and collision. The magnet field strengths will be
different in these different operation modes.
2) Version control for configuration of different system or subsystem
designs. For example. an accelerator can be linear or circular.
Currently, most simulation and modelling tools are designed either for

small applications or static batch mode simulation. Such tools generally are
not object-oriented and lack graphical and interactive capabilities. Most are
not supported by object-oriented databases or persistent object management
ABLE[Rou89] is a knowledge-based simulator for particle acclerator control
developed at Stanford University. ABLE does not support interactive model­
ling and simulation. Its simulation capability is limited to beam trajectory fit­
ting. It is difficult to cbange the lattice configuration. DIMAD[SeM8S] is
another lattice development tool created at TRIUMF in Vancouver. Canada.
DIMAD is based on FORTRAN and its graphical interface is based on C and
X. It docs not have the capability to directly interface with a database. It also

2

does not support direct behavior modelling.
The rest oftbe paper will discuss Oz. an SSC project fordoing Object-ori­

ented dynamic simulation.

2. OBffiCT-ORJENTED DATABASE YISJJAPZ,\TJON

Two problems need to be solved in data visualization: (1) how to rettieve
data from the database, and (2) to map data for visualization. The first prob­
lem is about data modelling, and the second is about visualization.

a J OI)fed-nrtcUtesi dlta maddllpg

At the SSC, static data for each lattice are stored in several database tables.
Bach table consists of rows and columns. There is an index number (10#)
associated with each row (also called an entry, or a reconf) in the table. Each
column corresponds to a particular attribute in that table. A table called GEO
records all the geometrical information from the fint to the last magnet
Ihrnugb the lattice. Each magnet has an entry Ihrnugb GEO. Attributes could
be pointers referencing to other tables that contain detailed information about
that magnet such as length. and strength. Sybase is used to manage the data­
bose Ihrnugb multi-threaded client-server model.

Data are shipped among database and different platforms of workstations
throughout the network in SDS. SOS can pack a record in a database with its
attributes into a C++ structure, assemble them into an object. and load it to a
SDS file. So a database table will correspond to an array of persistent struc­
ture. in the SDS file. DATA object will map these SDS files into objects in
C++.

Data in the database are modelled at three levels. Each level can be treated
as an object derived from DATA. A data retrieval is equivalent to a message
passing to that object.

• Database object. When a particular design venion of static data is
selected. the corresponding database is loaded as an object Do. Do actually
loads a particular SOS file into memory and returns a pointer to that SDS
object.
• Table object. If necessary, a particular table can be loaded as an object
To. This object is dynamically created and pointed by a member variable
of Do. In 50S. the table is an array of C++ structures.
• Column object. An attribute (corresponding to a column) is an object Ao
which can be loaded when necessary. A, is pointed by ~ member variable
of Do' AD is able to extract a particular field from an array of structures.
Usually only some of the attributes are involved in the simulation at one
time. Loading a database table into memory takes time and space. and is
not efficient for such simulations. So making an attribute as an object is
very useful.
The database itself will not provide any application-oriented data manipu­

lation support. The main purpose for creating an object -oriented data model
is to facilitate data manipulations. A standard weU-cncapsulated interface
between DATA and other parts of the system will keep the implementation
detail transparent to the user no matter what kind of database structure is to
be used. Data manipulations are supported by a set of methods. Among the
available methods are:

• Loading a data object: Do, To. or Ao implemented by polymorphism.
.Dynamic mapping: dynamically mapping data between lattice databases.
For example. particle beam tracking can go from one accelerator to
another. DATA should be able to handle such shifting automatically
between different databases.
• Geometrical functions: area intersection. viewpoint transfonnation.
zooming and scrolling, symbolic creation based of magnet type, finding a
magnet based on its name or type, and selecting a magnet based on its posi­
tion;
• Application-oriented functions: user-defined one dimensional scaling;
These methods can be designed as virtual functions for functional or sig-

nature sharing. Methods can also be designed to fit specific needs for DATA
objects at different levels.

Magnet has two kinds of attributes. Basic attributes Ab are those attributes

which can be directly rebieved from DATA objects. Composite attributes Ac
are those attributes which are function of basic attributes and exclusive to a
specific application.

Ac = f(Ab
il

• Ab12.···Ablk). 0<i.1<i2< ... <ik<=n, D<k<=n. n is the number of
basic attributes. f is the function.

By making DATA object persistent, composite attributes can be saved in
an object-oriented database (such as ObjectStore). For large lattices or com­
plicated compositions. loading a persistent object will usually be much faster
than constructing them at the beginning of the program. Persistent objects
also provide record of footprint and sharable results.

ObjectStore is used in the development. DML (Data Definition and Manip­
ulation Language) in ObjectStore can be embedded in the existing C++ code
to make object persistent. Detailed implementation is based on database ver­
sion control. When a new version is loaded, DATA object will compute all
composite attributes Ac with available Ab and make itself a persistent object.
When the same version is loaded again later. Version control will keep the
freshness of these persistent data automatically. Persistent data is only vali­
dated when it is fresh. i.e., the version of the database it is created from bas
not yet been modified.

In DATA object, composite attributes are persistent data members. It can
be accessed by other objects in the system as well as basic attributes. An
attribute modification can either directly go to the persistent memory or kept
in a temporary copy Ac'. These temporary copies are updated when necessary
during the modelling and simulation processes. But Ac' is transient data and
will not be kept after a session. User has to make the decision whether to
make them persistent or not.

2 tOblcd=orlented dp" """pUzeUM

Data visualization is handled by objects in INTERFACE. INTERFACE
classes are developed using the GLISTK and InterViews libraries. There are
two important components in building a graphic interface: (1) the layout of
the interactive interface and connections among control elements such as but­
tons and menus, and (2) is the interactive graphics (view). A static non-inter­
active graphics is called an image.

eControlLayout is a class to layout graphical user interface. Control­
Layout is derived from class Gargan in GUSTK which is in tum derived
from InterViews' Scene.
eViewplot is another class to plot dynamic graphics controlled by Con­
trolLayout. ViewPlot is a GUSTK which is derived from InterViews'
Interactor.
Usually ControlLayout only instantiates its control element through dele­

gation. It only keeps a pointer pointing to its control element. Conttol ele­
ments are created not inside the constructor but by another virtual method
called CreateAndInsert(j. Different versions may derive CmUeAndlnscrt()
to create and insert their own control elements. Delegation often creates a
"cheap" object, which only keeps what it needs, and is more dynamic and
efficient for derivation.

Control elements are derived from LabeIGlistk. which has a label, size,
position, state and control action. Label can be text or attached to a bitmap.
State is a variable with a valid C++ type. State is associated with an object
called Communis tk. Communistk focuses on the value of the state and bas
a list of ControlLayout to notify when this value. orthe focus, changes.

Every Communistk. bas a CommuList which is a list of ControlLayout
which is informed any time the value of state that Communistk is focused on
is changed by Communistk::SetValue. Every object that attaches to a Com­
munistk is automatically added to that Communistk's CommuList. When the
value that a Communistk: is focused on is changed by Communistk:::­
SetValue, the Communistk calls its HitCommuList method. which
informs every ControlLayout in its CommuList by calling their CommuHi t
method. Such notification can also be put on hold by calling Communistk::­
SetValucNoHit.

A message not only can be sent back and forth between control element
and ControlLayout. but also can be sent out to another application using

3

GUSH event sequencer. For the Communistk to notify the outside world, a
message must have a name, which will become a GLiSH event name. An
event name must be registered though GorganMaster. which is a GLISTK
class derived from InterViews' World. Any change to the Communistk's
focus will bigger the GorganMaster to build an event frame and message
body and give it to a GLiSH executive. An incoming event will be checked
against registered Communistks and the indicated change, if any, will be pre­
sented to the Communistk to accept or reject and to notify its attached control
element.

There are two ways to issue an action: one is deriving a specific GLlSTK.
for example, QuitButton, with its own PerformAction method. The other way
is associating its Communistk with a particular lD and adding its Control­
Layout to its CommuList. ControlLayout's CommuHit will be called when
the Communistk value is changed. CommuHit can control the action based
on CommulD. Table 1 summarizes methods provided by ControlLayout.

'nlbIe 1: Metbod in .. ControlLayoot

method name function description

OeatoAodlnsenO emile conuol elements aDd iDsert them ill a proper form using
aligmnent variables. ControlLayout records these alignments
in a table and possible reposition and resize.

RaiseAndLower() element popup conuol, such as popup menu and popup mes-
sage, dialogue, etc.

LockAndUniockO provides availability conuol to control elements.

CommuHitO provides communication among objects, including between
ControlLayouts and between its elements.

SoopInpu'O Some actions need a start evenllO enter its mode and wait for
end event to exit its mode. Such action should be registered
with ConuolLayout 1ben the end event can be directed to its
target by Sooplttput()

ViewPlot IS denved from LabeIGhstk. It proVIdes a dynanuc graphiC View
of objects from the database.

After a particular lattice has been loaded. the position and size of each
object can be extracted from DATA object. ViewPlot scales these data based
on current plotting size and displays the object 00 the saeeD.

When resize occurs, V.ewPlot will rescale the position and size of all
objects and replot them. The whole plot can be zoomed in. When a plot is
zoomed in. the plot boundaries are pushed on the stack. Zooming boundaries
become DeW boundaries for the new plot. ViewPlot rescales the new plot
based on new boundaries. Undo operation is equivalent to a zoom out. The
previous boundaries will be popped up from the stack and become the current
boundary.

Space is dynamically allocated for all plotting data used in the preceding
method. In order to keep all information available for redraw, space is only
deleted when new data are loaded in from DATA object. Figure 2 shows
some examples.

By taking advantage of dynamic binding of C++ virtual function. all ... th­
ods for graphic manipulation are virtual. A zooming operation on an optics
function plotting will cause a one-dimensional zoom in. The same operation
on a geomebical representation of an accelerator will cause a two-dimen­
sional zoom in. If several plots have to be zoomed in simultaneously with the
same scaling. a virtual function call of zoom operation on all these plots will
work polymorphically.

Most dynamic graphics requires incremental drawing. The result of several
simulations can be superposed or plotted in different areas of the screen one­
by-one at different times. But what will happen if the window is closed and
opened later? The current image on the screen should be "remembered" so
when the window is opened later. the previous image can be restored as is. It
is not realistic to repeat all the simulation again to recreate these images.

A feasible solution is to create an incremental drawing queue IDQ to
record incremental drawing data. TWo methods are used for drawing. Refresh
handles initial drawing such as legend. measurement, symbolic representa·
tion and marks. We call these graphics static graphics and they should be
always on the screen. To draw something dynamic on the screen, call Draw

A ZOOIII in lillie tnIIJfecliK rq;ioD
~ MEB and HEB. A lide view is
allIIe up riP' comer.

Figure 2 Examples of data visualizations

A IWic I' fImctioa !Hot for die catire
lOp co1lider (TC). A ceatraI ~
blowup II llvealO ill riPt

and push data into the IDQ. Draw will pick up the data from the top of the
IDQ and draw it on the screen. If the window is closed and then opened
again. then Refresh will get called. Remsh will in tum call Draw to accumu­
lative draw everything in the IDQ, if any. Figure 3 illustrates how incremen­
tal drawing queue works.

ViewPlot"Refr •• bll(
HapRawDataToDrawableDete();
DrewStaticDat.i);
if ISizllOfIDQ>O)

Drawl) ;

ViewPlot: :Draw() {
If (AnythingNewlnIDQ ())

DraWVieNAtTbeTopOfTbeStackl);

ViewPlot, ,CreateDynaaicData i) (
createSimulationResultal);
SizeofIDQ++;
RegbterroIDQ(J;
Puab(IDQ. CUrrentDrawingData):
DrawlJ ;

)

Fipre 3. How to do iDcremcotal drawiDi

Because of a large number of magnets (thousands) may need to be drawn
on the screen, making each magnet as a structured graphics object in inter­
Views is not realistic. If we make the whole accelerator as an object. then it
is difficult to pinpoint an individual magnet object. A feasible solution is to
make the whole accelerator as an object. AX the same time. design a set of
methods to do the mapping among objects on the screen, their 10ft in VIeW­
Plot. and their data in DATA. Figure 4 shows such a mappiDg:

aUributes of the object

A part of screen

object

Figwe 4. Object mappins.

In VtewPlot. the screen position of each object gets regislered when it is
drawn. A mouse down event catches an object if it occurs within the sensitive
boundary of thai: object on the screen. VtewPlot keeps a list of all types of
mouse-sensitive objects. such as magnet, adjuster. and detector. Sensitivity
can also be screened out. A caught object is called a focusing object Or.
ViewPlot will do a binary search within the cu~nt plotting boundaries to
find ID#(Or). Then all infonnation of !bat 0rean be fouod through DATA.
Some member functions of ViewPlot are listed in Table 2:

'IlIble 1: Maben aad metbodI ill daII ViewPiot

name function

myModel pointer pombng ~o MODELER object

=I8_ the real dimension of visual target For example, optics
function of HEB

4

'IlIble 1: Memben aad metbodI ill eM VlewPlot

name fuoction

visu&U::Souudary curreDt dimension ~r the visual target.1DlSlS used by
zooming and strollina

StletchAndFitO metch the view ud fit it to the size of the window.

CatohAndZoomO handle zooming base on size of the rubber box created
by a IDOUIC down.

ScroIl(c:u.rmJtPosition) handle scrollina from current position to a new position.

RodoO. UDdoO handle unzooming

EventHandler(tvtnt) for event, there is • event handler.

RcfrcshO ReheshO handles initial drawings. It keeps: a pointer an
object called 1ncremeDtalDrawiD&Queuc. Refresh will
call Draw if there is aoytbiD.g in the queue. Dynamic
drawing is baodled by DrawO.

DrawO Handle add on (or called incremenIaI) drawing.

IDlY Fiod(position) return object IDlY based on its curmlt ~aistercd position

ShowValuo(IDII) show attributes of the object wilh IDlY (focusing object
Or)

3 MODEI.I.ING DYNAMIC BEHAVIOR
A modtl is an absttacti.on (possibly a mathematical absttacti.on) of some­

thing for the purpose of understanding it before building it [Rumba91 J.
Because a model usually focuses 00 some essential issues of the simulation
entity. it is easier to manipulate and simulate than the original entity.

Object-oriented modeUing abstracts an entity in the real system as an
object. It is natural to represent entities in an application domain as objects
which respond to a well defined set of messages. For example. io an acceler­
ator system model. domain objects might be magnets. particles. and acceler­
ators. New type. of objects may be =aIed by .pecializing existing one •.
Complex systems can be modelled with composite objects (also called sub­
models) and can be used in other models. A model as a whole is itself a com­
posite object which responds to a set of messages. Object's identity is
modelled as member variables (also called attributes). The tolerant threshold
towards certain attributes is called constraints. which is defined as a function
j, of some attributes for • particular object. C. = MA,;). B.havior of the
object. is modelled as a set of methods M.,. which is a function of attributes
Ao and constraints Co based on algorithms developed domain specifically.
Dynamic behavior describes those aspects of the object concerned with time
and sequencing of operations, such as events that mark changes, sequences
of events, states that define the context of events. and the configuration of the
.ystem where object is placed.

In this paper, we emphasize the difference among the following concepts
[Zeigl90J:

• the real system. in existence or proposed, which is regarded as fundamen­
tally a source of data, which in OZ is provided by DATA .
• the model. which is a set of methods for generating dynamic data to that

observable in the real system. The structure of the model is its set of meth­
ods. The behavior of the model is the set of all possible data that can be
generated by faithfully executing the model methods.
• the simulator which exercises the model's methods to actually generate
its behavior.
At the sse, there are three objects to be modelled. The particle beam, the

magnet in the accelerator. and the accelerator itself.
The behavior of a particle (proton at the SSe) depends on its momentum.

position and distribution of magnet field StreDgth around it. Panicle momen­
tum and magnet strength distribution are decided by the accelerator a particle
is passing through. So the behavior of a bunch of particles (beam) will be
mOte intetesting. Particl~ distribution hi~rarchy (POR) is used to record
such modelling.

The root class Beam has only one particle and it is placed at the origin.
Some standard statistical distribution with a certain number of particles are
its subclass. such as nonnal and average distributions. Beam has 5 instance
variables listed in Table 3:

'nlbIe 3: instanee vuUbles In beam dills

instance variable name illustration

Dum number of panicle in the beam

Position ·pos[num) position of those particle. displacement d

Deftect:ion ·dp[num] angular deflection of the particle d'

Deviation ·deha[num] momentum deviation of the particle a
distribution form statistic distribution of those particles.

-Vector D _ [d, d, &]IS called pnnClple vector (PV). Beam obJCCt can be
created by using beam class library with a graphic interface. Either by pick­
ing up an existing beam from the library or creating ODe by rearranging the
particle distribution or changing the amount oftbe particles (Figure 5), a new
beam configuration can be created. A DeW beam can also be created as a
result of beam tracking simulation.

[[3+j·:['1
Fi_ S beam objocb aooIod from PDH

After beam is created. it is sent to an acceleration pattern (which is the log­
ical path from its launch position to its end observing position through accel­
erators) for simulation. The momentum will be dynamically bound to the
particle when passing though the corresponding accelerator.

The behavior of the magnet depends on its magnet type(t), magnet
strength(s),length<O, tilt(o),linearity(m), its optics functions (sucb as ~ func­
tion), its phase advantage (4)>) and other attributes. Magnet attribute hierarchy
is used to record such modelling.

The principle magnet hierarchy(PMH) is shown in Figure 6.

Figure 6 Principle magnet hierarchy aDd its interface

A prototype of the magnet attributes modelling system is shown in Figure
4,6. Magnet instances are represented by a collection of icons (Figure 4). A
magnet class is tepresented by a list of attributes (Figure 6). Different models
of magnets are constructed from their own class category using this interface.
After a sub-model is created in the hierarchy, it is added back to the list as a
part of the new hierarchy.

5

Based on Steffens' tbeory[Steff85], the behavior of the magnet can be
modelled as a 3 by 3 transfonnation matrix M(t, s, I, 0, m). M is defined as a
function of t, s, I, 0, and m for a particular magnet. OJ and 0i+1 are the prin­
ciple vectors of a particle at position i and i+ 1 respectively. And we have 0i+1

=M-Dj.i.e.:

[
d'] [d" diSPI.oem,"]

Vector D. d'; ;s ... cllllt!d ... principlt ... vt!clor (PV) d',~ dt!jl.t!C~jon

a; af dt!vlatlOn

Magnet class definition is partially given in Table 4:
Table 4: Magnet dus

membm function illustration

Qus category There are four categories: drift. Nnding magnt!t, RF
Cll"t'Wes andjocusltkjocUJing magnt!lS.

Attributes ·my Attributes Attributes is a C++ class with all attributes: basic and
composite

virtual Matrix· CreareTMO Creale traDSfonnatiOD matrix for that magnet

virtual PV· BehaviorMapO create a result principle vector (PV) from the previous
one.

All pnnctple magnet classes are predefioed and created from DATA. Each
Magnet instance bas a pointer pointing to a Magnet class in the PMH.
When new a Magnet class has to be created. a particular Magnet instance
will be selected. By changing the proper attributes. a new class will be cre­
ated with that magnet as its first instance. The DeW class will inherits all
methods from its parent, such as CreateTM and BehaviorMap.

Behavior modelling is supported by two approaches:
1) A text window is provided for examining and overriding the previous
behavior model (such as method BehaviorMap) by using c++ code.
Behavior binding is implemented by taking advantage of dynamic binding
of C++ virtual function. New C++ code has to be recompiled and linked
into the system and then the whole process needs to be restarted.
2) Several models (such as linear and nonlinear method) can be predefined
based on knowledge and domain specific rules. Vtrtual function dynami­
cally bind the rule number (set by the user through interface) with a pointer
of a member function to construct behavior. Interactive modelling basi­
cally becomes rule-picking and function binding. Rules can also be added
off-line by using C++ code.
Modelling accelerator uses configuration binding techniques. An acceler­

ator can be decomposed into beamlin~. which is a set of magnets placed in a
specific order as a design component. Accelerator is on the top of this con­
figuration hierarchy. It is decomposed into major beamlines. And these major
beamlines are further decomposed into smaller beamlines. which are in tum
decomposed all the way to the magnet level. Such a structure hierarchy is
called a lattice configuration for an accelerator.

The class Beamline is derived from the base class DList. which imple­
ments a doubly linked list (NIHCL and GNU all have that type of class).
Beamline holds a pointer pointing to its component, which may be smaller
beamlines or magnets. Beamline class is also derived from Magnet class
that makes it easy to insert in, teplace by another beamline or magnet. Mul­
tiple inheritance (Figure 7) is used to make such a class possible.

Bearnline inherits all members and methods from Magnet. But Beam­
line has its own methods to specify its structure. Members and methods of

Figure ? Bcamlioe:: multiple inherirance from Magnet and Wst

Beamline are listed in Table 5.
'Iahlo 5: BaunIlDe

memben function illustration

Beamlioc* bmLntJmnt; bmLnElDJI?t pOInt to the current compo-
Dellt (smaller bcamliDc or J:IlIIDCl)

baert(WhicbSide); AlltbcsemetbodsareiDberitcdfrom

Rcplace(polition. Bcamfi:De*);
DUttclass.
InscrtO inserts a beamliDe bcforeIafter

Dclete(Position); (depends on the value ofWbichSldc) the

Get(Position);
.".,... beamlliJe. ReplacoO...t Ddete()
replaces aDd delcteI cbe cunent beamline.
GetQ move. the brnLDElmnt to another
lteamIine.

virtual Ttacking(Panicle*) Beamline', own method. which aecepts a
panicle (or beam IbaI: it derived from par~
ticle) object as its aqument, does straigbt~
forward, mapet~by~magDet trackiog al
dJc houom of dJc COJItigurUion hferarchy
Ihrouah!be _ ... The koyword "vir-
tual" JDCaDIIhat each beamline or magnet
object must implement such a method.
One of cbe exttaordinarily useful fe:atum
of tbe virtual met:hc)d is that it allows us to
perform polymorphism on all kinds of
beamUoc and magnet which is a compo-
nent

A new Iatti<:e configurallon can be created by replllClllg a beamlino by a
new design. In Figwe 8, • new design for die beamIine triwm' =ales a new
cOnfiguration lor die LEB. Configuration binding is deferred at die simula­
tion stage and !be biDding a<:tuaIJy occun at die bottom level of Ihis himr­
chy, i. e. magnet level. Configuration binding will also be discussed in
version cODttOllater.

Fiaure 8. Lattice CODfigundion bicrarcby

4. DyNAMIC S!MUI,ATIQN

SIMULATOR is a clnss which e_ die model's methods to a<:tuaIJy
generate its dynamic behavior. In OZ, simulation might' deal with several
kinds of models. such as beam model, magnet model and lattices configura~
don model. The behavior of each object in the interactive simulation process
is important to adjust die model lor better performance. When DATA and
MODELER are created, simw- (an instance 01 SIMULATOR) will be
triggmed to launch the simulation. Simulator is the manager of the entire sim~
ulation. ObjectJ are controlled UDder simw- to _ with each other to
create dynamic behavior. Figure 9. gives an example for "BumpVlCw" sim~
ulation, which meets the fourth goal of the OZ system.

The bottom pan of the window is a graphical representation of the lattice.
structure olthe LEB. Above it is the graphical representation of the detectors
and adjuston along the LEB. All objects in the representation are active (sen~
sible and associated with actions). In the middle of the window is the
dynamic _ oldie LEB which basically depends on die attributes 01 the
magnet at each point. The middle part is expanded at the up right corner. The
dashed bar is the BPM reading set by the user. A bumpview simulation will
give the (ollowing:

• Three white points (actually a three green bar) stands for the settings of
dtree kickers around that BPM. '!'be actuaUy values are given as deltaX:,
deltaX', deltaX+' in the "Adjuster settings" box at the bottom of the control
panel.
• To make modelling simpler, we assume that die adjusting will only affect
3 BPM readinp nearest to die BPM selected. All other BPM should have
zero readings. The simulation proves the model is correct. From the pic­
t then: "'" only 3 solid bars in die middle.
'!'be up part oldie wiadow is the I\-tron oscillation along the LEB.
Dynamic simDlaDon allows user to pinpoint objects (magnets) in die lat-

tice. toodify their attributes and mun die simoIntor interactively.
Figwe 10 and 11 gives more examples 01 dynamic simulations. In FIiUn:

10. a is die optics function olLEB created by Twiss derived from SIMU­
LATOR. b and c dynamic particle tracking by turDS or by every magnet
using Track. d is dynamic tracking of a beam created from beam class hier~
archy by using Emi t, which is also a simulator from SIMULATOR class
hierarchy. E:mi t can also be used to aid the research of relations between par ~
ticle distribution in the beam and beam survivability.

A particle coold be lost during die acceleration. It is important to know
where it is lost in order to make the conection by U&ing Bump View simulator.
Figure 11 gives such an example.

Figure 9. 3-bwnp simulation using Bump View simulator

6

Ir !

I~l' '" h I .. ,
II ,

I hi
L-,

,
J I , . .' t. d,...- .,.nkte tnclIJq:

In LEB IDr tit
~ ... tludl""

-.~

I ~ ... -~
-----! I ...

iiJ. i

7f! i /"

Figme 10. Dynamic simulation

~""","""."'Ior
1 • ..,..1O_ ~
,..ticIa aft.ia ..
.m", apertIIft.
IOIId dot. 5uYiYaI perdde It

Figme 11. Beam survivability raearch

5 VERSION MANAGEMENT AND BET,E4SE cQNTBm,

As the design complexity increases. OZ needs to support cooperative work
by a number of physicists on the same design. As a result. a requirement has
emerged for version management mechanisms that record every stage of a
design, merge individual designs to a complete design aDd make alternative
designs available. Version management and release control needs to deal
with the following issues:

.how to document an alternative design?
• how to document the design evolution?
• how to merge individual design into a complete design?
In previous sections. magnet attribute hierarchy and lattice configuration

hierarchy have been mentioned for dynamic behavior modelling. This sec·
tion will discuss bow to manage these hierarchies.

OZ version management system is a version hierarchy (Figure 12). Vt-r­
sionManager sits at the top of this hierarcby to manage the version control.

Figure 12. Version management bieruchy

A cksign in this paper is a generic configuration shared by designers. it is
implemented as a top level Version Management Unit (VMU) for the pur­
poses of versioning. For example. the LEB of the sse bas three different
designs: SSCIOF. sscocr and SSC91. Each designer has to rr!gister to a
design. Registration makes the current work tied with a specific design. Com­
ponent is also a VMU which sits below the design and it is used to built up
to a design. Configuration is the internal structure or attributes (if at the bot­
tom level of the version hierarchy) of a component. T~mplau is a working
space for private development on a particular component to yield a alterna-
tive configuration. '

Each designer can create a template at each component node. The compo-

7

nent in the node is frozen as "official" configuration(OC). When a template
is created, a copy of the OC is checked out into the template. Template can
be made public to fonD an alternative configuration library. A configuration
also can be checked into the node and frozen to be official. Currently check­
in is controlled by the VersionManager through the design the designer reg­
istered.

By using version management hierarchy. alternative designs (configura­
tions) by different dcsigne!s &Ie kept in their own templates. A design is orig­
inally created in the MODELER aDd then put into the version management
hierarchy. VersionManager records its creator, and cbeck.-in date. The indi­
vidual designer will be assigned to each of its component to exercise the con­
figuration using modelling and simulation in its own template. Release
control is through dynamic configuration binding. The component will be
bound to its OC by default if there is no template created by the designer at
that node. otherwise it will be bound to the cunent configuration the designer
is working on. As a matter of fact. that configuration is derived from OC.
When a new configuration is created in the template. the pointer (which is
inside its parent configuration) pointing to the OC or previOUS configuration
will "float" to the new one. Then all messages sent to the configuration
pointed by that pointer will be dynamically bound to the new configuration.
The new configuration can be checked into the node as oc. made public as
an alternative of OC along with a performance testing report for reference, or
just left in the template for further development.

A configuration is usually created from the bouom using magnets avail­
able. A configuration may instantiate sub-configuratioDS as its components
by picking up candidates from the component library consisting of OC
(default) and all its public alternatives. or just from the scratch (magnet). A
complete design is created in such a bottom-up fashion. A new configuration
can also be created by inheritance. A special version of a component can be
naturally derived from existing one by using a template.

Our version managerrent mechanism supports configuration hierarchy and
multiple configurations in the template. Cross referencing between different
designs are also available. It also allows deriving classes directly from ver­
sion management hierarchy and sharing its capability through multiple inher­
itance. Tbereforc:. version management can be bandled automatically.

Version management and release control are still in prototyping stage.
Future research includes managing concunent check-out configurations, and

a graphic interface for version management.

6. CQNCIJJSWN

In this paper. we have described ourexpcrience with designing and imple­
menting an Object-oriented simulation environment OZ. The issues of build­
ing a generalized simulation system have been addressed by proposing a
meta class structure which decomposes a system into four types of classes
that handles data acquisition, user interface. modelling and simulation
respectively.

In our object -oriented data modelling, data, meI8 data, and procedures thai
handle data accessing and manipulation are combined together as an object.
Data as an object is able to describe itself and provide infonnation to the
modelling and simulation. Data object has its view which can be directly
manipulated through a graphic user interface. A dynamic system can be
decomposed into objects with dynamic behaviors. Attributes and constraints
are used to model dynamic behavior of the object with a class hierarchy.
Attributes and constraints can be dynamically bound to an object in an inher­
itance hierarchy. Different configuration can also be dynamically bound to an
object through configuration hierarchy. Simulation can be exercised using a
particular configuration with data objects as parameters in our modelling sys­
tem. Version management and release control. which are important aspects
in dynamic modelling, an: implemented using configuration bieran:hios and
persistent objects.

OZ has been implemented and cumndy available on a local ndWOIk of
Unix and X based workstations at the sse Laboratory. We used the same
approach presented to prototype the BumpView, which is an extension to OZ
for dynamic simulation. With the experience we had in developing Oz. it
took us only one month to fiDish the prototyping of BumpView. The results
achieved with our current effort have been encouraging and lead us to believe
that the object-oriented approach will provides us more flexibility and exten­
sibility. We plan to extend our effort to build a generalized framewOlk for
building more simularion tools for the SSC.

Because of a user friendly interactive grapbic interface, most of the phys­
icists in the lab who uaed to FORTRAN have started to use OZ to design and
perform the simulation. An integrated object-oriented simulation environ­
ment such as OZ will help the design and simulation of the SSC.

7 ACKNOWI fl!GMENTS

We greaIIy appreciate the valuable con1Iibulions and advice pmvided by
Dr. Richard Talman, Dr. Gmy Trahern, Dr. Geolge Bourianoff and Ellen
Syphers at the Accelerator System Division of the SSC Laboratory. We also
appreciate the help from Dr. Chris Saltmarsh, and Matt Fryer at Laurence­
Berkeley Laboratory and Matthew Kan at Carnegie Mellon University.

References
[Beaurn90] Beaumarlage, T.; Mizc, J. H.: "Object-ori..,ted modeling:
concepts and ongoing research", Proceedings of the SCS Multiconference 00
Object-Oriented Simularion, pp. 7-12, San Diego, CA, 1990.

[Buder9l] Buder, GP.; Corbin, MJ.: "1Dtroduction to Object-oriented
Simulation", lEE Colloquium OD "object-orieoted Simulation and Control",
Digest No. OS7, pp. 1/1-3, London, UK, 1991

[Gobbe91] Gobbetti, Earico; Turner, Russc1l, "Object-orieoted Desip of
Dynamic Graphics Application", Computer Graphics Laboratory, Swiss
Federal Institute of Technology, Lausanne, New trends in AnimatiOD and
Visualization, John Wlley & Sons, 1991
[Gorle91] Gorten, Keith; Oriow, Sanford; P1exico, Peny: "Data Abstraction
and Object-Oriented Programmina in C++", March, 1991, Joho WlIey &
Sons

[Ege88] Ege. Raimund K..: "Constraint·based user interfaces for simulatioo",
Proceedings of 1988 Wmter Simulation Conference. pp263-271.
[Kan91] Kan, Matthew: ''GLlSTK: Grapbic Library for the Integrated
Scientific Tool Kit", Laurence-Bemley Laboratory, March, 1991

[K1ahr86] Klahr, P.: "&pressibility in Ross: an object-oriented simulation
system", AI Applied to Simulation, Proceeding of the European Confmnce,

8

SCS, San Diego, CA. pp. 136-139

[Linto90] LiDtOD, Mark: "InterViews Reference Manual", Version 2.6,
Computer Systems Laboratory, StanfOld University, Feb., 1990

[Objec9l] Object Design, Inc.: ''ObjectStore User Guide", Release 1.1,
March, 1991

[page89] Page, Thomas W.; Berson, Steven: "An Objoct-oriented Modeling
Environment", Proceedings of 1989 OOPSLA Conference. pp. 287-296

[PIW09I] Pus Vern: "Reference Manual for the Glish Sequencing
Language", Laurence-Bedteley Laboratory, April. 16, 1991.

[RobecK8] Robert, S. D.; Heim, J.: "A perspective on object-oriented
simulation", 1988 Winter Simulation Conference Proceedings, pp. 277·281,
San Diego, CA, 1988.

[Robin89] Robinson, J. T.; Kisner, R. A.: "An intelligent dynamic simulation
environment: an objects()riented approach", Proceedings IEEE International
Symposium on Intelligent Control, 1988, Washington, D. C., pp 687-692

[Rou89] Round, Alfred: Knowledge-based Simularion, ''The Handbook of
Artificial Intelligence", Volume IV, Chapter XXII, Addison-Wesley
Publishing Company, 1989.

[Rumba91] Rumbaugb, James; Blaha, M.; Premerlani, W.; Eddy, p.;
Lorensen, W. General Electric Co.: "Object·Oriented Modeling and Design",
Prentice Hall, 1991

[StaII90] Stallman, Richard: "Using and Poning GNU ce', version 1.37.1,
Feb. 21, 1990

[SaItm91] Saltmarsh, Chris: ''The SDS Document: A Conceptual Basic
Towards Understanding the Self-Describing Data Stanclanl", Laurence­
Bedceley Laboratory, Dec. 1, 1991.

[SteffKS] Steffen, K.: ''Basic Courae on Accelerator Optics", DESY HERA
8S/IO, Deutsohes E1e, ktronen-Syncbrotron DESY, 1IamburJ, March, 1985.

[Steph9l] Stephanie, J. C., BOIdorf, Christopher: "PSE: an object-oriented
simulation environment support persistence", Joumal of Object-Oriented
ProgranunIng, Oct., 1991, pp 30-40.
[ServrBS] Servranckx, Roger; Brown, Karl; Schacbinger, Lindsny; Douglas,
David: "User Guide to the Program D1MAD", StanfOld Linear Aocelerator
Center, Report 28S UC-28(A) May, 1985

[Tang9l] Tang, Ming Xi; Smithers, T: "Towards object-oriented simularion",
lEE Colloquium on "object-oriented Simulation and Control", Digest No.
OS7, pp. 711-4, London, UK, 1991

[Trabe91] Trahern, Gmy; Zbou, Jiashen.o: "SSC Lattice Database and
Grapbical Interface", 1991 International Conference on Accelerator and
Large Experimental Physics Control Systems, KEK, Japan, Nov, 1991.

[Zeigl90] Zeigler, Bernard P. : "Object-Oriented Simularion with
Hieran:hical, Modular Models", Academic Press, 1990.

