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RELIABILITY OF NUMERICAL SOLUTIONS OF A DIFFUSION EQUATION 

MODELING RF NOISE-INDUCED DILUTION IN PARTICLE BEAMS 

H.-J. Shih, J. A. Ellison,' and W. E. Schiesser 
Superconducting Super Collider Laboratoryt 

2550 Beckleymeade A venue 
Dallas, TX 75237 

The dilution process in particle beams caused by noise in the rf accelerating system has been modeled 
using a diffusion equation. Particle tracking can also be undertaken to determine the effects of rf noise, 
though it is much more computationally extensive than integrating the diffusion equation. In this paper 
we present the integration results using the Method of Lines (MOL) for certain important classes of noise. 
We will describe the numerical algorithms in detail, including those that are made to remove anomalous 
solutions. Reliability of the numerical results will be checked using both finite-difference and finite-element 
(Galerkin) methods in discretization and applying the same algorithms to the cases of linear and quadratic 
diffusion coefficients where exact solutions are known. 

1.0 THE DIFFUSION EQUATION 

We begin this section with a brief description of motion of particles in a circular accelerator in order to 
indicate how the diffusion equation of interest arises. In a circular accelerator charged particles, guided by 
bending and focusing magnets, move along the design orbit in a horizontal plane. The deviations of motion 
from the design orbit in both horizontal and vertical directions constitute the transverse motion. A device, 
called the rf cavity, accelerates or decelerates the particles each time they pass through it by providing an 
electric voltage that varies in time sinusoidally. A synchronous particle, which moves on the design orbit at a 
constant momentum, will pass through the cavity at the zero crossing of the rf wave. The deviations in both 
momentum and phase from the synchronous particle constitute the longitudinal motion. The rf cavity is not 
noise-free; it has phase noise, which changes the synchronous phase, and amplitude noise, which changes the 
peak rf voltage. With rf noise, the longitudinal motion of a single particle is described by [1] 

~ = p + ~(t), 
P = -n2{1 + a(t» sin tP, 

(1.1a) 

(1.1b) 

where P is a quantity proportional to the relative momentum deviation, ¢> the phase deviation, t/J(t) the 
phase noise, and a( i) the amplitude noise. Without rf noise, particles move on the closed orbits in the P - c/> 

phase space, as shown in Figure 1. Under the perturbation of rf noise, particles gradually move onto bigger 
closed orbits and eventually cross over the so-called separatrix. When particles come close to the separatrix, 
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a device called the collimator is usually employed to remove them from the beam. This defines a critical 
orbit bevonn which particles are removed. 

p 

T1P.Q3OII5 

Figure 1. Particle orbits in longitudinal phase space. 

If we define action (times 211") to be the area in the P - ¢ phase space enclosed by the unperturbed closed 
orbit, then the effect of rf noise is to induce a diffusion of particles in action. There is now a good theoretical 
model [1] in which this diffusion process is approximated by a Markov process, and the evolution of the 
probability density in action, p(x, t), is governed by the following diffusion equation: 

op = !.... (D(X/P) . 
at ox ox 

(1.2) 

Here x is the normalized action with x = 1 at the critical orbit, and D(x) is the diffusion coefficient. The 
theory gives provision for computing the diffusion coefficient from the noise spectral density. In Figure 2 
we show the diffusion coefficients for four types of noise: white phase, notched phase, white amplitude, 
and notched amplitude. In the white noise cases, the spectral density is constant in the entire range of 
frequency. The notched noise cases are obtained from the white noise cases by filtering out a range of 
frequency components of the noise. This results in a discontinuous diffusion coefficient for notched noise, as 
can be seen in Figure 2. It can be shown from the theory (and indeed is seen in Figure 2) that the asymptotic 
behaviors of the diffusion coefficients for small x are: D( x) ...., x for white phase noise, D( x) ...., x2 for white 
amplitude noise, D( x) ...., x3 for notched phase noise, and D( x) ...., x· for notched amplitude noise. If we 
identify D(opjox) as the probability flux, Eq. (1.2) just expresses conservation of probability. It is obvious 
that there cannot be any flux crossing x = 0, so the boundary condition at x = 0 is 

op 
D(O) ox (0, t) = O. (1.3) 

For our application this condition is always satisfied because D(O) = 0 and op/ox is bounded. Since particles 
are removed at the critical orbit, the boundary condition at x = 1 is 

p(l, t) = O. 

The definition of p(x, t) is completed by specifying the initial condition 

p(x,O) = po(x), 

(1.4) 

(1.5) 

where po{x) is determined from the distributions of particles in P and ¢ which, to a good approximation, 
we take to be Gaussian. 
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Figure 2. Diffusion coefficients for noise in the rf cavity. (a) Phase noise. (b) Amplitude noise. Solid line: 
white case; dashed line: notched case. 

We have used the numerical Method of Lines (MOL) [2] to integrate the diffusion equation with the 
diffusion coefficients given in Figure 2. The system of ODEs in time resulting from discretizing the partial 
derivatives with respect to x is integrated by the nonstiff solver RKF45 [3] or the stiff solver LSODES [4]. It 
appears that our system of ODEs is stiff, for we have found that the computing time using LSODES is less 
by a factor of 5 to 10 than it is using RKF45. Because we obtain essentially identical numerical solutions 
using these two solvers, we will present only the results from LSODES. 

Since we don't have exact solutions for the diffusion coefficients shown in Figure 2, and since we observe 
numerical anomalies in some cases, it is then necessary to check the reliability of our numerical solutions. 
We have done this in three ways: (1) We employ two different methods (finite-difference and Galerkin finite
element) to discretize the partial derivatives with respect to x. (2) We check if our solutions don't change 
with an increasingly larger number of grid points or basis functions in the two discretization methods. (3) We 
apply the same numerical procedure to the cases of D(x) = x and x2 for which we know the exact solutions. 

This paper is organized as follows: (1) In Section 2.0 we describe our discretization algorithms, including 
those that we use to remove the numerical anomalies. (2) In Section 3.0 we integrate the diffusion equation 
for the diffusion coefficients shown in Figure 2 and discuss the reliability of our numerical results. (3) In 
Section 4.0 we integrate the diffusion equation for D( x) = x and x2 and compare with the exact solutions. 
(4) Conclusions are given in Section 5.0. 

2.0 MOL DISCRETIZATION 

2.1 Finite-difference Methods 
In our standard finite-difference method, a uniform grid, with the grid points at Xl = 0, X2 = l:lx, 

X3 = 2l:lx,"', XN = (N - l)l:lx = 1, is used, and the following three-point, second-order formulas [2] are 
then employed to approximate the partial derivatives of function I(x, t) with respect to x at grid point i: 

1 
Ix,i'l-I,N = 2l:lx (fi+l - Ii-I) 

1 
Ix,i=1 = 2l:lx (-311 + 412 - fa) (2.1) 

1 
fx,i=N = 2l:lx(fN-2 - 4/N-l + 3/N). 



Here Ix denotes the partial derivati\'e of I with respect to x, and the subscript i denotes the \'alue of I or 
Ix at grid point i. Discretization of the left-hand side of Eq. (1.2) at grid point i proceeds in three steps: 
(1) Eq. (2.1) is used to obtain px,i. (2) D(xj) is multiplied by Px,i. (3) Eq. (2.1) is used again to obtain 
(Dpx )x,i. To ensure the absorbing boundary condition at x = 1 (grid point i = N), we always set Pt,i=N = O. 

However, the standard method gives anomalous results in some cases, as we will see in Section 3.0, so 
we have two variations of it that we describe below. Variation I is used to deal with the case where the 
density at the origin is fixed and the slope there steepens in time. This can occur when D( x) '" x 2 as x 
approaches 0, since Pt = DxPx + Dpxx (from Eq. (1.2)) and (Px)t = DxxPx + 2Dz pxx + Dpnx, and thus 
Pt = 0 and (Px)' '" pz at x = O. To obtain a better approximation of partial derivatives with respect to x 
near x = 0, we use a variable grid with a finer mesh near x = O. Specifically, the grid points are generated 
by 

i(i - l)d 
Xi = 2 ' i = 1,2'00' ,N, (2.2) 

where d is the spacing between the first and second grid points. Since XN = 1, we have 

2 
d= N(N-l)" (2.3) 

A feature of this variable grid is that the spacing between two successive grid points is linearly increasing 
with i. The approximation of the left-hand side of Eq. (1.2) is given by 

'" 2 (Di+l + Di PHI - Pi Di + Di-l Pi - Pi-I) 
Pt ·.J.l N - -

,I~, - aXi + aXi-l 2 aXi 2 aXi-I' 

. ~ _2_ (D2 + DI P2 - PI _ 0) 
Pt,I=1 - A 2 A , 

~XI ~XI 

(2.4) 

Pt,i=N = O. 

Here aXj = Xi+l - Xi, and we have approximated the flux at the center between grid points i and i + 1 by 

(D ) . '" Di+l + Di Pi+l - Pi 
pz I'" 2 aXi' 

(2.5) 

Also we have used the fact that the flux at x = 0 (grid point i = 1) is zero. 
Variation II is used to deal with the case where the diffusion coefficient is discontinuous at some x. The 

integration of the diffusion equation is done not only at the grid points in a uniform grid but also at the 
discontinuity point to preserve conservation of probability across that point. The following approximations 
are employed at the discontinuity point Xc and its two neighboring grid points Xj and Xj+l (Xj < Xc < Xj+l): 

. 2 (D-; + Di pc - Pi Di + Di-l Pi - Pi-I) 
Pt,1 ~ ax- + ax 2 ax- - 2 ax' 

2 (Di+l + Dt Pi+l - Pc D; + Di Pc - Pi) 
Pt,c ~ ax- + ax+ 2 ax+ - 2 ax- , (2.6) 

2 (Di+2 + Di+l Pi+2 - PHI Di+l + Dt Pi+l - pc) 
Pt,J+I ~ ax + ax+ 2 ax - 2 ax+' 



where pc is the action density at Xc: nt and n-; are the limiting values of the diffusion coefficient at .l·c 

from the right and left sides. respectively; ~x- = Xc - Xj: and ux+ = X}+l - Xc. For other grid points. the 
approximations (2.4) are used. 

2.2 Galerkin Method 

In our Galerkin approximation [5J of p(x, t) 

/I' 

pc(x, t) = L Ci(t)~i(X), (2.7) 
i=1 

the basis functions ~i(X) are piecewise linear, as shown in Figure 3(a). Here ~i(X) is centered at Xi, and the 
centers are equally spaced by ~x = 1/(N -1). The derivatives of ~i(X), ~~(x), are shown in Figure 3(b). 
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Figure 3. (a) Basis functions in the Galerkin approximation. (b) Derivatives of (a). 

The system of ODEs for time-dependent coefficients Ci(t) are determined by applying the Galerkin condition 

1 J ~j(x)R(x,t)dx = 0 
o 

for each basis function. Here the residual function R(x, t) is defined by 

R(x,t) = a~c - ! (D(X/::). 
The absorbing boundary condition at X = 1 gives 

N 

CN(t) = LCi(t)~i(XN) = P(XN,t) = 0, 
i=l 

(2.8) 

(2.9) 

which follows from ~N(XN) = 1 and ~i(XN) = 0 for i:l N in Figure 3(a). Thus we need only determine 
Ci(t),i = 1,2,··· ,N -1. Let 

C(t) = 
( 

Cl(t) ) 
C2(t) 

CN~l(t) . 

(2. lOa) 



Then the system of ODEs for C;(t) is given by 

C'(t) = (A-1B)C(t), 

1 
B=-

6x2 

-dl 

d} 

0 

o 
o 

2 

1 

A= 6x 0 

6 

0 

0 

d} 0 

-(d} + d2) d2 

d2 -(d2 + da) 

o 
o 

1 0 0 0 

4 1 0 0 

1 4 1 0 

0 1 4 1 

0 0 1 4 

0 

0 

da 

dN-3 -(dN-3 + dN-2) 

o dN-2 

o 
o 
o 

dN-2 

-(dN-2 + dN-l) 

(2.lOb) 

(2.10c) 

(2.10d) 

Here d; is the integral of D(x) from Xi to Xi+l. To obtain Eq. (2.10), we note that for j = 1,2,···,N -1, 
we have 

(2.l1a) 

and 

(
f)) z=} Jl ( f) ) = ~j(x)D(x)f)xPG(x,t) z=o - D(x)axPG(x,t) ~j(x)dx 

o 
(2.l1b) 

} 

= - f (D(X) !PG(X, t») ~j(x)dx 
o 

1 (N 1 ) = -/ D(x) ~ Ci(t)~i(x) ~i(x)dx. 



For j = L Eq. (2.lla) becomes 

S-1 1 

L Gi(t) J <Pl(xl<pi(X)dx 
1=1 0 

I 1 

= G~(t) J <P1(X)<P1(X)dx + G~(t) J <P1(X)<P2(X)dx 
o 0 

(2.12a) 

which follows from the properties of <Pj(x) shown in Figure 3(a), and Eq. (2.11b) becomes 

N-I 1 

- L Ci(t) J D(x)<pi(x)<p;(x)dx 
.=1 0 

I I 

= -CI(t) J D(x)<pi(x)<pi(x)dx - Cz(t) J D(x)<p~(x)<pi(x)dx 
o 0 (2.12b) 

which follows from the properties of <P~(x) shown in Figure 3(b). For j = 2,3"" ,N -1, Eq. (2.11a) becomes 

N-I 1 

L C:(t) J il!j(x)il!j(x)dx 
.=1 0 

1 I 

= Cj_l(t) J il!j(x)il!j_l(x)dx + Cj(t) J il!j(x)il!j(x)dx 
o 0 

1 

+ Ci+l(t) J <Pj(x)il!j+1(x)dx 
o 

, () (~x) , (2~X) , (~x) = Cj _ 1 t "6 + CN) -3- + Cj+l(t) 6 

(2.13a) 



and Eq. (2.11b) becomes 

N-l 1 

- L Ci(t) J D(x)~~(x)~j(x)dx 
1=1 0 

1 1 

= -C}-l(t) J D(X)~j_I(X)~j(x)dx - Cj(t) J D(x)~j(x)~j(x)dx 
o 0 

I 

- Cj+l(t) J D(X)~j+I(X)~j(x)dx 
o 

~ ~ 

= -Cj-l(t) J D(x) (- ~x) (+ ~x) dx - Cj(t) J D(x) (+ ~x) (+ ~x) dx 
~~ ~~ 

1 
= ~x2 (Cj-l(t)dj-l - Cj(t)(dj-l + dj) -t: Cj+l(t)dj). 

(2.13b) 

Again, Eq. (2.13) follows from the properties of ~i(X) shown in Figure 3. Equation (2.10) is then obtained 
by equating Eqs. (2.12a) and (2.12b) for j = 1, and Eqs. (2.13a) and (2.13b) for j = 2,3, .. ·, N - 1. 

3.0 NUMERICAL RESULTS FOR RF NOISE 

Figure 4 shows the integration results for white phase noise and N = 251 in time steps of 2. The dashed 
line is the initial distribution, the solid curves are results from the standard finite-difference method, and 
the crosses are from the Galerkin method. They are in very good agreement. We have also checked that the 
numerical results in each method are essentially the same for N = 501. 

Figure 5 shows the integration results for white amplitude noise and N = 251 in time steps of 1 from 
the standard finite-difference method. Here we observe some numerical anomaly: oscillations appear and 
become more pronounced as time progresses. We have mentioned in Section 1.0 that the diffusion coefficient 
for white amplitude noise is quadratic near x = O. Thus, according to the discussion in Section 2.1, p(O, t) 
is fixed and Pz(O, t) increases in magnitude in time, leading to poorer approximation in time for pz near 
x = 0 in the finite-difference method with a uniform grid. This is probably the cause of the anomaly we 
observe in Figure 5. To resolve this, we employ finite-difference method variation I in which, as mentioned 
in Section 2.1, the grid is finer near x = O. Figure 6 shows the integration results in time steps of 2 for 
]V = 251 (solid curves) and for]V = 101 (crosses). They are in very good agreement. This approach seems to 
give results that converge sooner. The integration results using the Galerkin method are shown, by crosses. 
in Figure 7(a) for N = 251, and in Figure 7(b) for N = 501. Also shown in these figures, by solid curves, 
are the results for N = 251 using finite-difference method variation I. Here we see that the Galerkin results 
converge more slowly than the results using finite-difference method variation I. 

Figure 8 shows the integration results for notched phase noise and N = 251 from the standard finite
difference method. Here again we observe numerical anomaly: oscillations similar to those in Figure 5 
occur, though they seem to diminish as time progresses. Since the diffusion coefficient is discontinuous in 
this case, and since the discontinuity point is not one of the grid points, we suspect the anomaly is caused by 



the inaccur.ate approximation of the fluxes on either side of the discontinuity point. To settle this, we employ 
finite-difference method variation II in which. as mentioned in Section 2.1. an extra difference equation at 
the discontinuity point is also integrated. Figure 9 shows the results using this approach for ~y = 251 (solid 
curves) in time steps of 4, as well as the Galerkin results for N = 251 (crosses). Both are in very good 
agreement. Here the Galerkin method appears more robust. Since the results for notched amplitude noise 
are similar to those for notched phase noise, they are not presented here. 
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Figure 4. Integration results in time steps of 2 
for white phase noise (whose diffusion coefficient is 
shown in Figure 2(a» and N = 251. Solid curves: 
standard finite-difference; crosses: Galerkin. The 
dashed line is the initial distribution. 
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Figure 5. Integration results in time steps of 1 
for white amplitude noise (whose diffusion coeffi
cient is shown in Figure 2(b)). The standard finite
difference method with N = 251 is used in dis
cretization. The dashed line is the initial distribu
tion. 
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Figure 6. Integration results in time steps of 2 for same white amplitude noise as in Figure 5. Finite-difference 
variation I is used in discretization. Solid curves: N = 251; crosses: N = 101. The dashed line is the initial 
distribution. 
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Figure 7. Same as Figure 6, except that crosses are the Galerkin results. (a) N = 251. (b) N = 501. 
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Figure 8. Integration results in time steps of 1 for 
notched phase noise (whose diffusion coefficient is 
shown in Figure 2(a» and N = 251. The stan
dard finite-difference method is used in discretiza
tion. The dashed line is the initial distribution. 
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Figure 9. Integration results in time steps of 4 
for same notched phase noise as in Figure 8 and 
N = 251. Solid curves: finite-difference variation II; 
crosses: Galerkin. The dashed line is the initial dis
tribution. 

4.0 SOLUTIONS OF THE D(x) = x AND x 2 CASES 

4.1 Case of D(x) = x 

The general solution in this case is found by separation of variables to be 

00 

p(x, t) = L an e-~~ t/4 JO(AnVX), ( 4.1) 
n=l 



where 10 is the Bessel Function of order zero and An is the nth root of 10. To test our numerical procedure. 
we have simply used the n = 1 term: 

(4.2a) 

where a1 is given by 

(4.2b) 

so that the integral from 0 to 1 of p(x, t) is normalized to 1 at t = O. 
Figure 10 compares the exact solutions with the integration results for N = 251 in time steps of 0.2. The 

dashed line is the initial distribution; the solid curves are the exact solutions; and crosses and circles represent 
the results from standard finite-difference and Galerkin, respectively. They are all in good agreement with 
the exact solutions. 
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Figure 10. Integration results and exact solutions in time steps of 0.2 for D(x) = x. Solid curves: exact 
solutions; crosses: standard finite-difference with N = 251; circles: Galerkin with N = 251. The dashed line 
is the initial distribution. 

4.2 Case of D(x) = x2 

The general solution in this case is given by 

(4.3) 

where po(x) = p(x, 0). We outline the derivation of this solution below. Under the transformation 

y = -lnx (4.4a) 

p(x, t) = x-t tfJ(y, t) (4.4b) 

we obtain in place of Eqs. (1.2), (1.4), and (1.5) the following equivalent problem 



1 
1..', = Vyy - 4t.· 

1,!!(o.t) = ° (4.5) 

W(y,O) = TPo(Y) = e- y/2 po(e-Y ). 

For -X < 1/4, the function 'P defined by 'l/J(y, t) = e->'t'P(Y, -X) cannot satisfy the boundary condition if ;p is 
nontrivial and finite. For -X ~ 1/4, we have 

'P(Y, -X) ex sin ( J-x - ~ Y) . 

Therefore, one can seek a solution of the form 

t/J(y, t) = j A(,x) e->.t sin ( J,x - ~ Y) d,x. 
1 • 

From the Fourier integral theorem, it is easy to show 

(4.6) 

(4.7) 

(4.8) 

We now have a complete solution, namely Eqs. ( 4.4b), (4.7) and (4.8). Equation (4.3) is then obtained under 
the change of variable from ,x to p. = y'-X -1/4. 

If the initial condition uo(x) is a polynomial, the two infinite integrals in Eq. (4.3) can be evaluated 
analytically. This involves two steps: (1) The inner integral is then a sum of terms of the form (Ref. 6, 
p.477) 

(4.9) 

(2) The outer integral is then a sum of terms of the form (Ref. 6, p. 497) 

(4.10) 

== F(a,b,c), 

where 4> is the error function defined by 4>(x) = (2/.ji) fo'" e-t'dt. In testing our numerical procedure, we 
have used uo(x) = 3(x - 1J2. In this case. the exact solution is given by 



p( x. t) = ~ x - t e - t { F (-In x. t, ~) - 2F (-In x. t. ~) + F (-In x. t. ~) } . (4.11) 

Figure 11 compares in time steps of 1 the exact solutions (solid curves) with the integration results ( crosses) 
for N = 101 from finite-difference method variation I. The results from the Galerkin method (crosses) are 
compared to the exact solutions (solid curves) in Figure 12(a) for ]\[ = 101, and in Figure 12(b) for X = 251. 
As in the case of white amplitude noise whose diffusion coefficient is quadratic near x = O. results from the 
Galerkin method converge more slowly toward the exact solutions. 
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Figure 11. Integration results and exact solutions in time steps of 1 for D( x) = x2. Solid curves: exact 
solutions; crosses: finite-difference variation I with N = 101. The dashed line is the initial distribution. 
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Figure 12. Same as Figure 11, except that crosses are the Galerkin results. (a) N = 101. (b) N = 251. 





5.0 CONCLUDING REMARKS 

A code has been developed to solve the diffusion equation (1.2) with the boundary conditions (1.3) and 
(1.4) using the numerical Method of Lines. Finite-difference or Galerkin finite-element approximations are 
used to convert the PDE to a system of ODEs, which are then integrated by the nonstiff solver RKF45 or the 
stiff solver LSODES. The code includes (1) computation of the diffusion coefficient from the spectral density 
for noise in the rf accelerating system, and (2) computation of the distribution of the beam in action from 
Gaussian or any other distributions in longitudinal phase space. From the discussions above, we believe the 
code gives reliable numerical results and is most efficient when finite-difference approximations (with suitable 
modifications) and the stiff solver LSODES are used. The modifications made to remove anomalous results 
from the finite-difference method with a uniform grid are also implemented in the code. Though very robust 
(in the sense that it always gives smooth solutions), the Galerkin method, as it is now implemented in the 
code, is not very computationally efficient. The efficiency presumably can be improved by taking advantage 
of the sparseness of the matrices involved and by using a non-uniform grid; however, our main interest here 
was in checking the finite-difference results. The code will be available upon request from the authors. 
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