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Abstract 

An approximate invariant is found for sextupole transverse dynamics. It is rep­
resented in terms of the elements of a Lie algebra associated with a sextupole 
contribution to the time-dependent Hamiltonian for transverse dynamics. 

I. INTRODUCTION 

It is well known that the Courant­
Snyder [1] invariant is particularly useful for 
studying the phase-space pattern associated 
with the transverse dynamics of a particle stor­
age ring. Using the Hamiltonian for a time­
dependent simple harmonic oscillator, one can 
obtain the relevant invariant. When the 
Hamiltonian applies to a storage ring, time, 
usually denoted by s, has the dimensions of 
length and corresponds to distance along the 
ideal orbit. When there are non-linear contri­
butions to the Hamiltonian, little success has 
been achieved in finding generalizations of the 
Courant-Snyder invariant. In order to better 
understand the behaviour of a particle beam, 
it is useful to find an approximate invariant, 
which is associated with a non-linear time­
dependent Hamiltonian. A method, based on 
using the Lie algebra associated with elements 
obtained from the products of the position 
and conjugate momentum coordinates, is ap­
plied to a non-linear system. To illustrate the 
method, an example is given for the linear sys­
tem, where the invariant is exact, and the rel­
evant algebra is SU(1,1) [21. The method used 
for the linear system can be easily generalized 
to study a non-linear one-dimensional system. 

·Operated by the Universities Research Associa­
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For classical one-dimensional transverse 
dynamics, an approximate invariant, associ­
ated with a time-dependent Hamiltonian con­
taining a non-linear sextupole term [3], is 
found. It is obtained using the elements of 
a Lie algebra constructed from the products 
of the transverse position and momentum co­
ordinates. Both the Hamiltonian and the 
approximate invariant can be represented as 
linear sums of the elements of the Lie alge­
bra. For the approximate invariant the time­
dependent coefficients of the elements satisfy 
a system of linear first-order differential equa­
tions. The invariant is approximate in the 
sense that terms of order greater than three, 
resulting from the Poisson bracket of elements 
of the algebra, are neglected. This results in a 
closed Lie algebra. 

II. THE COURANT SNYDER INVARIANT 
AND SU(1,1) 

The time-dependent Hamiltonian for one­

dimensional transverse dynamics is written in 
terms of the position coordinate q and the con­
jugate momentum pas 

p2 q2 
H(t) = "2 + K(t)2"' (2.1) 



The invariant associated with this Hamilto-
man IS 

let) = j3(t)p2 + 2o(t)pq + J(t)q2, 
2 

(2.2) 

which satisfies the partial differential equation 

d~~t) = 8~~t) + {H(t), let)} = 0, (2.3) 

with Poisson bracket 

{H(t), let)} = 8H 81 _ 81 8H. (2.4) 
8p 8q 8q 8p 

The functions o(t), j3(t), and J(t) satisfy the 
equations 

do(t) d:t = K(t)j3(t) - J(t), 

dj3(t) = -2o(t) 
dt ' 

d:~t) = 2K(t)o(t), 

where J(t) = (1 + 02(t))/j3(t). 

(2.5a) 

(2.5b) 

(2.5c) 

Both the Hamiltonian (2.1) and the invari­
ant (2.2) may be expressed in terms of the 
elements of the Lie algebra SU(1,l). If one 
introduces the coordinates 

q + ip * q - ip 
a= y'2,a= y'2' (2.6) 

with Poisson bracket {a, a*} = i, then the 
functions 

A - 2 t-a, A *2 A * 2 = a, 3 = a a, (2.7) 

satisfy the Lie algebra of SU(l,l). Namely, 

This form of the algebra is useful for determin­
ing the quantum uncertainties of q, p, and the 
Courant-Snyder invariant [4]. 

In terms of the elements of the algebra 
(2.7), the Hamiltonian and the invariant be­
come 

H(t) = ol(t)A1 + o2(t)A2 + o3(t)A3 

let) = j3t(t)Al + j32(t)A2 + ,33(t)A3' (2.9a) 

Requiring let) to be real gives the relations 

(2.9b) 

When these are substituted into (2.3), one 
finds, using (2.8), the set of linear differential 
equations 

The functions Oi(t) and j3i(t) satisfy the rela-
tions 

K(t) - 1 
Ot(t) = 02(t) = 4 

03(t) = K(t; + 1, (2.11) 

and 

(2.12) 

With initial values given for (3(t) and d{3(t)/dt, 
the system of equations (2.10) can be inte­
grated. Using (2.11) and (2.12), one can show 
that (2.10) is equivalent to the system (2.5). 

III. THE NON-LINEAR 
SEXTUPOLE SYSTEM 

The method described above can be ex­
tended to the case when a non-linear term is 
added to the Hamiltonian. However, an ap­
proximation is made to obtain a finite closed 
Lie algebra which contains seven elements. As 



an example, one considers an Hamiltonian of 
the form 

2 2 

H{t) = ~ + f{{t) ~ + S{t)q3, (3.1) 

where S{t) is the strength of the sextupole 
term. Defining functions of a and a* as 

A 2 A *2 A * A 3 1 = a, 2 = a , 3 = a a, 4 = a , 

A *3 A 2 * A *2 S = a , 6 = a a, 7 = a a, (3.2) 

one finds, keeping terms of order less than four 
in a and a*, the closed Lie algebra 

{At, A4} = 0, 

{AI, As} = 6iA7, {At, As} = 2iA4' 

{At, A7} = 4iAs, 

{A2 , A3} = -2iA2 , {A2 , A4} = -6iA6, 

{A2' As} = 0, 

{A2' As} = -4iA7, {A2' Ad = -2iAs, 

{A3, A4} = -3iA4' 

{A3' As} = 3iAs, {A3' As} = -iAs, 

{A3' A7} = iA7' 

{A4' As} = {A4' A6} = {A4' A7} = 0 

{As, A6} = {As, A7} = {A6' A7} = o. 
(3.3) 

The Hamiltonian (3.1) may be written in 
the form 

7 

H{t) = L a(,(t)A" (3.4) 
,=1 

where ai(t), i = 1 -+ 3 are given by (2.11), 
and 

f(2)S(t) 
a4(t) = as(t) = 4 

a6(t) = a7(t) = 3a4(t). (3.5) 

One can now seek an approximate time­
invariant associated with the Hamiltonian 
(3.1). This is assumed to be of the form 

7 

let) = L ,8j(t)Aj, (3.6a) 
j=l 

which contains terms up to third order in a 

and a*. Since let) must be real, one finds 

!3l(t) = ,8i(t), !33{t) = ,8;(t) 

,84 ( t) = ,8;( t), ,86 ( t) = ,8;( t). (3.6b) 

When this, along with the Hamiltonian (3.1), 
is substituted into (2.3), one finds, using the 
algebra (3.3), the system of linear first order 
differential equations 

d~;t) = M(t),B(t), (3.7) 

where 

( 

,8l(t») 
,B(t) = : , 

,87 ( t) 

and M(t) is 

2i0'3 0 -2iO'l 0 0 0 0 
0 -2i0'3 2;0'2 0 0 0 0 

-4i0'2 4iO'l 0 0 0 0 0 
2i0'6 0 -3i0'4 3i0'3 0 -2iO'l 0 

0 -2;0'7 3i0'5 0 -3i0'3 0 2i0'2 
4i0'7 -6i0'4 -i0'6 6i0'2 0 i0'3 -4iO'l 
6i0'5 -4i0'6 i0'7 0 -6iO'l 4i0'2 -i0'3 

In these expressions the a(t)'" are given 
in (2.11) and (3.5). The first three !3(t)'- are 
given in (2.12). The remaining ,8(t)'tI are found 
as solutions to a system of first order differen­
tial equations. Using (3.6), the approximate 
invariant may be written in the form 

The first term lo(t) is the function (2.2), which 
is an invariant for the linear system. The re­
maining term may be expressed in the form 



with 

V2CI(t) = ?R!34(t) + ?R!36(t) 

V2C2(t) = -(3~!34(t) + ~!36(t)) (3.9) 

V2C3(t) = -(3?R!34(t) - ?R!36(t)) 

V2C41(t) = r:}!34(t) - r:}!36(t). 

The functions Ci(t), i = 1 -+ 4, satisfy the fol­
lowing system of first order differential equa­
tions: 

CI(t) = K(t)C2(t) + 3S(t)a(t) 

C2(t) = -3Cl(t) + 2K(t)C3(t) + 3S(t)!3(t) 

C3(t) = -2C2(t) + 3K(t)C4(t) 

C4(t) = -C3(t). (3.10) 

IV. RESULTS AND CONCLUSIONS 

Numerical results are given which con­
firm the analytical development in the previ­
ous section. The equation of motion for the 
non-linear time-dependent Hamiltonian (3.1) 
is found from Hamilton's equations 

. 8H(t) 
q= 

8p 

. 8H(t) 
p= -

8q 
( 4.1) 

to be 
q + K(t)q + 3S(t)q2 = O. (4.2) 

The approximate invariant associated with 
this Hamiltonian is 

-=- = let) = f3(t)p2 + 2a(t)pq + l'(t)q2 
2~ 2 

+Cl (t)q3 + C2( t)q2p + C3(t)qp2 + C4(t)p3, (4.3) 

where f. is the emittance. The time-dependent 
functions a(t), f3(t), I'(t), f34(t), and !36(t) can 
be found from (2.5), (3.9), and (3.10). This 
system of equations is equivalent to the system 
of linear equations (3.7). 

The periodic nature of the functions Ci(t) 
allows the determination of their values at a 

fixed point in the lattice. The values of the 
functions q and p are determined from (4.2) 
using non-linear tracking for the first five cir­
cuits of the lattice. At the ph turn, the ap­
proximate invariant becomes 

l(j) = lo(j) + cl(j)g(l,j) + c2(j)g(2,j) 

with 

(4.4) 

g(l,j) = q(j)3, g(2,j) = q(j)2p(j), 

g(3,j) = q(j)p(j)2, g(4,j) = p(j? 
(4.5) 

From the requirement that 

I(k) - 1(1) = 0, 

for k = 2 -+ 5, one finds the system of linear 
equations 

with 

4 

~(k) = L e;(j)~g(i, k), 
i=1 

~(k) = -(loCk) - 10(1)) 

~g(i, k) = g(i, k) - g(i, 1). 

(4.6a) 

(4.6b) 

The system (4.6) is solved numerically to find 
the coefficients e;(j). The thin lens approxi­
mation is used for a lattice made of a single 
thin sextupole element and identical cells of 
length L. Each cell consists of a focusing and 
a defocusing magnet separated by a bending 
drift magnet, i.e. a FODO lattice. The focal 
length of the focusing and defocusing magnets 
is j, and the phase advance per cell J.' is found 
from 

sin(J.'/2) = ~. (4.7) 

The tune 11 is obtained from 

(4.8) 

where Nc is the number of cells. The maxi­
mum value of fi(t) occurs when a(t) = 0, and 



f3(t) = 1/,(t), and it is found to be 

f3(t)mar = 2f (1 + S~n(Jl/2)). 
1 - sm(Jl/2) 

(4.9) 

The results for the invariant Io( t) for the 
linear system and the approximate invariant 
I(t) are shown in Figure. 1. For the example 
considered, the values Nc = 4, Jl = 90°, L/2 = 
8875 cm, and v = 0.33666667 + NcJl/360 have 
been used. The initial values q = .1 cm, 
f3marP = 0, along with the sextupole strength 
3se = .1 X 10-5 cm-2 , have been used. The 
sextupole function is approximated by S(t) = 
(s,)3)b(t- jTo), where To is the orbital period. 
For the present case, the values of the periodic 
functions are 

Cl = -7.6159501059673D - 06 cm-2 

cd 13m=: = -6.720747 4250385D - 07 cm-2 

C3/f3!ar = +2.2284434898092D - 05 cm-2 

C4/f3!ar = -9.0800984544563D - 08 cm-2
, 

(4.10) 

with f3mar = 38389.279 cm. It is clear from 
the Figure 1. that the approximate invariant 
is nearly stable. It remains this way for in­
creasingly larger number of turns, and it oscil­
lates with small amplitude and with a period 
of 100 turns. The amplitude of the oscillation 
depends upon the strength of the sextupole 
non-linearity, and the period results from the 
nearness of the fractional tune to the reso­
nance value at 1/3. Although, the present ap­
proximate invariant, which includes terms in 
q and P through third order, becomes increas­
ingly unstable for large values of the sextupole 
strength or large initial values of the amplitude 
q, it is clear that the method can be extended 
to include arbitrarily higher order corrections 
which will improve the stability of the approx­
imate invariant. 
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Figure 1. The Courant-Snyder invarIant, 
eo/27r = 10 cm, and the approximate invari­
ant, f./27r = I cm, for the non-linear sextupole 
system as a function of turn-number. 
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