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RECENT EFFORTS ON NONLINEAR DYNAMICS 

A.Chao 

Superconducting Super Collider Laboratory· 
2550 Becldeymeade Ave. 

Dallas. TX 75237 

ABSTRACT 

lhis is a brief survey of the recent efforts made during the past few 
years on the subject of nonlinear dynamics. A list of contributions 
on this subject. including some on nonlinear spin dynamics. to this 
conference is given in Refs. [1-13.47-54). 

INTRODUCTION 

The motion of a charged particle in a circular accelerator is typically 
predominantly linear in the sense that it can be rather accurately 
described by the Courant-Snyder analysis [14). With increasingly 
demanding requirements on accelerator performance. however. the 
weak and subtle nonlinear effects become important. and the subject 
of nonlinear dynamics 1X:Comes a focus of study efforts. 

In the 1960s and 1970s. nonlinear dynamics are treated using a by­
now-traditional approach based on the canonical perturbation theory 
and its equivalents. [15) Concepts such as tune shifts and resonance 
widths were introduced and calculated. and important advances were 
made. However. these approaches do not extend easily to higher 
orders in the nonlinear perturbation. lhis was addressed by the Lie 
algebra technique. introduced for accelerator applications in the 
early 1980s by Dragt. [16) The Lie algebra technique provides a 
framework in nonlinear dynamics which is a natural generalization 
of the Courant-Snyder analysis for the linear dynamics. The concept 
of Lie maps. for example. is a generalization of the Courant-Snyder 
matrix. and the concept of normal forms parallels the Courant­
Snyder transformation and the Courant-Snyder invariant. Armed 
with this analysis tool. the question is then how to generate the Lie 
maps efficiently to sufficiently high orders to represent the 
accelerator. 

lhis question was resolved in the second half of the 1980s when the 
differential algebra (DA) was introduced to the field by Berz. [17) 
DA is a technique to obtain Taylor expansion expressions of any 
output quantity in terms of the input parameters once an algorithm 
relating the outputs and the inputs is given. The DA and the Lie 
algebra fram~work constitute a powerful combination of tools. based 
on which a proliferation of ideas and techniques are being developed 
as we speak. 

Equally important to the advance in nonlinear dynamics is the fact 
that the computing power has been increasing exponentially. lhis 
has much extended the numerical capacity which allowed new 
simulation and analysis techniques to be explored. 

·Operated by the Universities Research Association. Inc .• 
for the U.S. Department of Energy under Contract No. 
DE-AC35-89ER40486. 
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Nonlinear dynamics is currently an active topic in accelerator 
physics. lhis survey hopes to catch a glimpse of these (mostly on­
going) developments. The following categories of the recent efforts 
come to mind: 

(a) Lo02 term stability One of the most challenging problems in 
nonlinear dynamics is to predict the long term stability of particle 
motion. Since it is unpractical to perform long-term tracking 
simulations for all cases of interest. methods to extract some weak 
signals from shorter-term tracking results to serve as early warning 
signs of possible long-term particle loss becomes a topic of 
importance. (The fact that this is not an easy task can be appreciated 
by noting that. when a long-term loss occurs in a tracking 
simulation, the amplitude of the particle often behaves normally for 
a long time until the very last 20 turns of its lifetime.) Recent efforts 
in this direction include searching for: 

- the Lyapunov exponent. [18. 19) 
- time evolution of a Lie invariant, [20) 
- a mathematical bound in canonical transformation. [21) 

(b) Maps Another way to deal with the long-term problem is to 
search for a one-tum map that faithfully represents the accelerator. 
Once found, it can be used for long-term tracking because it takes 
much less computer time to track a map then to track all the 
accelerator elements. One challenge. then. is how to write a 
computer code that best meets specific accelerator physics goals, is 
efficient in manipulating a large number of indices for the maps and 
is most user friendly. lhis effort has caught the interest of computer 
experts and accelerator physicists alike. [22) 

As to the application of maps, their application to the traditional 
analysis (tune shifts, resonance widths, etc.) is not in question. 
Given a high-order map, these traditional quantities can be 
calculated to high orders. Another notable application is the search 
of high order achromat designs. [23) More of debate is whether 
these maps also can be trusted for long term tracking. 

A straightforward application of DA yields an expression of Xc as 
an N-th order Taylor series of Xi for a pre-chosen N, where Xi and 
Xf are the initial and final values of the phase space variables 
(x, x', y. y', z. ~) for one tum around the accelerator. However. the 
Taylor map is symplectic only up to order N. The search for 
alternative symplectic representation of maps has been a focus of 
attention. Various proposals were made: 

- generating function [24). 
- kick maps [25). 
- interpolation maps [26), 
- monomial maps [2). 
- dynamic rescaling [4). 



Once a symplectic map is found, the hope is that it can be tracked 
for long-term purposes. It remains to be seen whether this hope can 
be fulfilled. 

(c) Nonlinear <lYnamics experiments Testing the theories in existing 
accelerators is critical in confirming the theories. Systematic 
nonlinear dynamics experiments have been performed since the 
mid-1980's and this trend continued in recent years with increased 
sophistication. [27-31] 

(d) Nonlinear SPin <lYnamics. Polarized beams have been a focus of 
attention recently, with applications to LEP, HERA and SSC. 
Nonlinear dynamics also plays an important role here. For each 
nonlinear dynamics technique developed for orbital motions, there is 
an extention of the technique that deals with the spin dynamics. 
Recent efforts on spin nonlinear dynamics include Refs.[9-13] and 
the Siberian snake experiments at Indiana University Cyclotron [32] 
and the AGS. [33] 

An outline of some of the above-mentioned developments are given 
next Interested readers should consult the original papers for details. 

2 LYAPUNOVEXPONENT 

Stability of the motion of a particle is related to chaos of its motion 
in phase space. The short-term dynamic aperture, for example, is 
related to large-scale chaos (in the sense of Chirikov criterion of 
overlapping resonances). It is conceivable that the long-term 
dynamic aperture is related to weak local chaos (in the sense of 
Arnold diffusion). Detection of a weak local chaos therefore 
provides a possible early signal of long-term instability. 

A large-scale chaos can be revealed by tracking a single particle. To 
detect a local chaos, two particles initially very close to each other in 
phase space are tracked and their distance registered as a function of 
time. A local chaos is identified when this distance grows 
exponentially. It occurs often that when a single particle is tracked, 
nothing obviously a1anDing is observed. indicating no large-scale 
chaos, but local chaos is detected by running two neighboring 
particles. According to the Lyapunov method, a particle with this 
initial amplitude is likely to be lost eventually. 
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'Figure I shows the survival plots [34] (the number of turns a particle 
survives as a function of its initial launching amplitude) in an LHC 
simuiation.[18] The survival plots can be used to give an upper 
bound of dynamic aperture. With the detec~n threshold of 
Lyapunov exponentiation carefully chosen, the Lyapunov method 
presumably gives a lower bound because local chaos is a necessary­
but-not-sufficient condition for long-term particle loss. 

Some insight can be gained from a slight variation of this method, as 
shown in Fig. 2. [18]. The unperturbed tunes are represented as a 
star. The instantaneous tunes are obtained by sampling 1000 turns 
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Figure 1: Survival plot for the LHC illustrating the dynamic 
apertures detemined by detecting the Lyapunov exponentiation 
compared with tracking results for two random number sets of 
multipole errors. 
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Figure 2: The wondering paths of the instantaneous tunes of two 
neighboring particles in the (Qx, Qy) plane for the LHC. 
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for each reading on the tune path. The two neighboring particles 
start with the same tunes, follow each other closely for 4000 turns 
and then depart to take on their own destiny, encountering very 
different sets of resonances. Resonances up to the 29-th order are 
indicated by dotted lines in Fig. 2. Eventually both particles are lost, 
one in 65000 turns, the other in 15000 turns. 

3 TIME EVOLUTION OF LIE INVARIANTS 

Another proposal to detect an early warning of long-term particle 
loss is to look for the time evolution of an alleged invariant, such as 
the Taylor expression obtained using Lie algebra and DA up to some 
convenient order. The idea is that any deviation from the alleged 
invariance could be attributed, at least partially, to chaos. Near the 
dynamic aperture, the second order (Courant-Snyder) invariant 
typically varies markedly with time, indicating it is not a good 
invariant. A higher order invariant is then used instead. Using a 6-th 
order invariant, Fig. 3 indicates that the long-term dynamic aperture 
is between 6.0 and 6.6 mm for the simulated SSC. The same 
accelerator model was tested using the Lyapunov method, and it is 
found that locaf chaos also seems to occur between 6.0 and 6.6 mm. 
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Figure 3: The 6-th order invariant as a function of tum number for 
the SSC. Three different launching amplitudes x=y=5.4, 6.0 and 
6.6 mm are used. 

4 BOUND ON CANONICAL TRANSFORMATION 

Consider a 2-D system which is nearly integrable and we have an 
approximate expression J=(11,lV of the invariants. If J 1,2 are truely 
invariants, we have a stable system (away from resonances), but 
being approximate invariants, their values vary with time. Consider 
a region R in the (11,12) space; let OJ 1,2 be the maximum amount of 
variation in R during N turns. Then it can be shown [35] that 
particles in R will stay in R for N(AII/0Jl} turns [or N(AIpOJ2} 
turns, whichever is smaller] if they stay away from the boundary of 
R by a distance AI 1,2. Once an approximate expression is found for 
the invariants, therefore, this technique allows prediction of an lower 
bound of the particle lifetime. 

To apply the above observation, one needs to find a good expression 
of the invariants to make oJ as small as possible. One example of 
invariant expressions is the Taylor expression used in Fig. 3. 
Another example is to apply an interpolation technique which, by 
tracking a mesh of initial conditions for, say, 1000 turns and 
interpolating between the results, allows a numerical relation 
between the invariants J as functions of I and 1\). [21] This technique 
was applied to the ALS (ignoring synchrotron radiation) and the 
region R=(2.5l<.J 1<2.82 J.1m, 1.34 <12<1.64 J.1ffi}. It was found by a 
numerical search (not a simple procedure due to the necessarily 
granular nature of this search) that OJ=(Z.8, 4.0) x 10-6 J.1m during 
N=I04 turns. This means particles in the sub-region 
(2.54<Jl<2.79 J.1ffi, 1.38<12<1.60 J.1ffi) will not get out of region R in 
loS turns. 
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5 TAYLOR MAP TRACKING 

As mentioned, a straightforward application of the DA yields an 
N-th order Taylor map, which is symplectic up to order N. Once 
obtained, this Taylor map gives a straightforward means to track 
particles. However, it was observed [36] in the SSC application that . 
the Taylor map must be of sufficiently high order (N) II) in order to 
describe the long-term behavior accurately. Furthermore, the reason 
of needing N> II is not due :0 dynamics, but simply due to 
kinematics, i.e., the map must be sufficiently symplectic. A 
relatively low-ordered Taylor map (N=7) suffices as long as it is 
somehow symplectified, even though artificially. For long-term 
purposes, therefore, it is important to keep the map symplectic. A 
similar observation was obtained when a detailed comparison was 
made between one-trun Taylor map and element-by-element 
tracking for the cases of LHC and SSC [42]. 

6 KICKMAP 

One way to symplectify an N-th order Taylor map is to represent it 
by a sequence of nonlinear "kicks" connected by linear maps. Both 
the linear and the kick maps are symplectic; thus the total map is 
symplectic. The representation is such that the total map is the same 
as the original Taylor map up to the N-th order. Beyond the N-th 
order, the Taylor map is terminated, but the kick map contains 
additional artificial terms when expanded as Taylor series. The 
simplest linear map is the Courant-Snyder type. The simplest kick is 
of the type ,ix'=f(x) in the I-D case. More sophisticated alternative 
forms of both linear and kick maps can be employed to reduce the 
number of kicks required to represent the Taylor map. 

In general, the Taylor expansion of a Lie map does not terminate; it 
terminates if and only if it can be written as a kick map. A study of 
kick map (called a "jolt" map in Ref. [2]) is carried out for a simple 
examl'le of an anharmonic oscillatior with Hamiltonian 
H=(~+q2)/2 - q4/4. It is found that a 7-th order Taylor map, a Lie 
map of the form exp(:!4:)exP(:16:)exp(:fg:), and a kick map 
consisting of 9 kicks, all represent the motion reasonably well for 
one tum. Although the Taylor map sems to be most accurate as one­
tum map, it is not suitable for long-term tracking because it is non­
symplectic. 

Kick maps can be rather efficient; for the case of 6-D phase space, 
9 kicks can represent a 3-rd order Taylor map, and 48 and 68 kicks 
can represent an 7-th and Il-th order map respectively [37]. On the 
other hand, for a given Taylor map, its kick map representation is 
not unique. How to choose a kick map optimally is a subtle issue. 

7 INTERPOLATION MAP 

Another way to assure symplecticity is to deal with a generating 
function 0(1,1\)') that brings (1,1\) for one turn to (I',I\)')-the map is 
exactly symplectic even if the generating function is approximate. 
One approach, similar to that used to find the long-term bound for 
the ALS, is based on fitting a one-tum tracking of a mesh of initial 
conditions and interpolation in between to obtain G [Z6]. Unlike the 
Taylor maps, a generating function, tracking can only be implicit in 
the sense that a generating function necessarily mixes the old and 
new dynamic variables. This technique is not based on an expansion 
in terms of some small parameters, and is sometimes referred to as 
nonperturbative. 

8 MONOMIAL MAP 

Although a Lie map exp(:F(X):) is formally symplectic, when it is 
applied for tracking purposes, it is truncated to some order and 
symplecticity is restored only when, after truncation, a generating 
function is introduced [24]. It was then discovered [38] that if the 
function F(X) contains only a single monomial term in X, there is an 
exact formula which does not require expansion. In the I-D case 
with phase space coordinates (q,p), this remarkable formula reads 



exp(a :qnpm:) q = q [ 1 + (n-m) a qn-lpm-l ] mI(m-n) ifm" n 

q exp( _amqm-lpm-l) ifm =n 

exp(a: qnpm:)p= p[ 1 + (n-m)a qn-lpm-l )nI(m-n) ifm .. n 

pexp(am~-lpm-l) ifm=n 

(1) 

with the convergence condition l(n_m)aqn-lpm-11 <1. Equation (1) 
is exact and is symplectic. Given a Lie map for which F(X) is Taylor 
series in X. we can factorize the Lie map into a product of monomial 
maps. each being a Lie map with a monomial exponent. Symplectic 
tracking can then be performed using Eq.(I). 
It is worth mentioning here that the various forms of maps (the 
Taylor map. the Lie map. the Dragt-Finn factorized Lie map. the 
normal form Lie map. the monomial map. the kick map. and perhaps 
to a lesser degr~. the interpolation map) can be transformed into 
one another if desired. One needs only to determine which map to 
use for the current applications. 

9 DYNAMIC RESCALING 

Still another proposal to symplectify a Taylor map is by an artificial 
rescaling of the phase space coordinates instead of adding artificial 
higher order terms [4]. Strictly speaking. this proposal enforces not 
the complete symplecticity condition but a weaker condition that 
phase space volume is preserved (Liouville theorem). To apply this 
method. a particle is tracked with a Taylor map and its 
corresponding element-by-element map for. say. 1000 turns. The 
phase space amplitudes as a function of time for the two tracking 
results are slightly different partly because of the non-symplecticity 
of the Taylor map. The difference is then minimized by applying 
scale factors fx• fy and fsto the Taylor tracking results. These scale 
factors are different for ditTerent initial conditions. This allows a 
partial symplectification up to the dynamic aperture. Having 
obtained the scale factors. the particle can conceivably be tracked 
for long term purposes. 

10 IUCF EXPERIMENT 

In the Indiana University Cyclotron. the electron-cooled beam has a 
small transverse emittance and a small energy spread. which makes 
it ideal for probing the transverse and longitudinal phase spaces. To 
explore the transverse phase space. the electron-cooled beam is 
kicked and its subsequent motion detected by 2 position monitors. 
Cooling is turned off just before the kick is applied. The 3-rd and 
4-th order resonances were studied with tunes Vx close to 1113 and 
15/4 respectively. The measured phase spaces are shown in Fig. 4 
[27]. These explorations of the phase space using a "pencil" beam 
give detailed information about the effective Hamiltonian near those 
resonances. In particular. the island tune for the 4-th order islands is 
found to be 0.0013. Continuation of this experiment includes the 
study of 2-D coupled nonlinear resonances. 

To explore the longitudinal phase space. the rf phase is first shifted. 
and the beam phase relative to the rf and the beam energy error 
(using a beam position monitor located with large dispersion) are 
measured. The signals can be frequency-analyzed to find the 
synchrotron tune vs. Fig. 5 shows Vs as a function of the synchrotron 
oscillation amplitude which is determined by the rf phase shift. The 
solid curve is the theoretical prediction. which is found to agree well 
with the data. The response of the beam to a sinusoidal modulation 
of the synchronous phase has also been studied, yielding good 
agreement between experiment and theory. Once the longitudinal 
exploration is established. one could next study the dynamic 
aperture as a function of synchrotron oscillation amplitude. 
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Figure 4: Transverse phase space behavior in the IUCF (a) near 
vx=1113. and (b) near vx=15/4. 
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Figure 5: Measured synchrotron tune versus synchrotron amplitude 
for the IUCF. The solid curve is theoretical prediction. 



II SPS EXPERIMENT 

Long-term diffusion effects in the presence of intentional 
nonlinearities (8 sextupoles) and tune ripple were studied 
experimentally at SPS. TIle beam is kicked horizontally and beam 
loss occurred mostly in the vertical dimension. Figure 6 shows some 
of the results. In the absence of tune ripple, the beam has a long 
lifetime. When a tune ripple with an amplitude of 1.65 x 10-3 and 
frequency of 9 Hz is introduced, the lifetime drops to 7 hr. When the 
same rippling amplitude is divided into two rippling frequencies at 
9 Hz and 180 Hz, the lifetime drops further to 2 hr. TIle observations 
that a tune ripple of 10-3 causes significant diffusion and that 
richness of rippling frequency enhances the diffusion agree 
qualitatively with the simulation results. A quantitative comparison 
of the experimental and the simulation results has been inconclusive 
so far. 
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Figure 6: Diffusion measurements at SPS in the presence of 
nonlinearities and tune ripple. 

12 TEVATRON EXPERIMENT 

This experiment explores the transverse dynamics using a set of 
16 sextupoles. TIle recent efforts include the study of the slow 
diffusion effects and the island modulation effects. To study the 
slow diffusion effects, the beam is kicked horizontally and flying 
wire scan was made once per minute for 30 minutes. A diffusion 
constant D(J) is then obtained as a function of amplitude J by fitting 
the observations. TIle experiment was repeated for two values of 
tunes, one slightly above 215 and one slightly below 215, and two 
different sexiupole configurations. It is found that D(J) depends 
strongly on J, and is very different for different sextupole 
configurations and the choice of tune. 

The strong dependence of D(J) on J is consistent with the strong 
dependence of the survival time 1: on the launching amplitude J as 
seen in the survival plots. On the other hand, a diffusion model may 
have its limitations. An attempt was made to explain the survival 
plOts phenomenologically using a diffusion model [39]. It is found 
that if the diffusion constant is defined from <1:>(1), a simple­
minded model leads to an internal inconsistency in that it predicts a 
<~>(1) which conflicts with the tracking results. 

In another study, the portion of the beam trapped by the islands are 
observed while the islands are modulated by a set of quadrupoles. 
The dynamics is equivalent to a driven pendulum. These 
experiments become quite sophisticated in that both the amplitude 
and frequency of the tune modulation were then ramped with time 
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(chirping). Detailed beam dynamics can be pursued along this line. 
In particular, the island tune is related to the modulation frequency 
when particles are resonantly driven out from the islands, and is 
found to be about 0.063. 

13 THIRD ORDER ACHROMATS 

An n-th order achromat means a beamline which is an identity 
transformation to n-th Qrder in X. Second order achromats have been 
well explored in the past [40]. Using the program MARYLIE, [24] 
various designs of third order achromats are proposed. [23] One 
example consists of a string of 5 cells, with each cell schematically 
shown in Fig. 7. A total of 14 variables is needed to make the 
achromat: I type of bend, 2 types of quadrupoles, 3 types of 
sextupoles and 8 types of octupoles. The tunes per cell are 
vx=vy=1/5. In this design, 2 of the 8 octupole types are used for 
compensating the 2vx-2vy=o resonance; otherwise 6 octupole types 
would be sufficient If the path length isochrony (z dependence on 
0) is not required, one may use one less sextupole and one less 
octupole types. The following table gives a few examples. of 3-rd 
order achromats (the first 5 columns are per-cell values): 

Vx Vy # quad # sext # oct isochrony #celVachr 

1/5 1/5 2 3 8 yes 5 

1/5 1/6 2 3 6 yes 30 

1/5 1/6 2 2 5 no 30 

In 217 2 3 6 yes 7 

v Bend 
01 Quad 
I Sext 

I x Oct 

,~'x Xft * XV * *1 
TIP_ 

Figure 7: A cell of a 3-rd order achromat. 

14 HIGHER ORDER ERRORS OF A BEAMLINE 

Having obtained a design of a beamline, such as an achromat of 
some kind, the higher-order residual errors can be calculated using a 
Lie algebraic technique.[3, 41]. Having obtained the beamline Lie 
map exp(:F:), the error terms are identified as the undesired higher­
order terms in F that are not taken care of by the design. These error 
tertns give an explicit handle on the cause of the errors as well as 
how to correct them if desired. This useful technique has been 
applied to the TBF final focus. TIle error terms identified agree with 
tracking results. 

15 SECOND ORDER PATH LENGTH 

The path length variation can be written as, in the absence of 
sextupoles, 

MA. = <le 0 + <'fx> Ex/4 + <:Yy> Ey/4 (2) 

where Yx,y are the Twiss parameters, Ex,y are the betatron emittances 
and <> means averaging over the accelerator circumference. The 
leading term is given by the momentum compaction <le. For a low­
<le lattice, however, the path length dependence on betatron 
amplitude is not negligible and its effect on beam stability in the 
synchrotron and betatron motions can be important This effect is 
studied in Ref. [I] for the APS. It was found that the inclusion of 
sextupoles reduces this effect substantially, as shown in Fig. 8, and 
the net effect due to the 2-nd order path length is found to be 
tolerable even though APS has a small <le. 
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Figure 8: Path length dependence on betatron amplitude for the APS 
with and without sextupoles. 

16 PARTICLE DISTRlBlfnON EVOLlfnON 

It is often important in practice to know the growth of tails in the 
particle distribution and the slow emittance growth in the presence 
of nonlinearities. This is most conveniently done by studying the 
distribution of a multi-particle system instead of individual particles 
because the statistical fluctuation is avoided. In Ref. [431. a tracking 
algorithm is developed for the beam distribution in phase space. One 
example application is seen in Fig. 9. 

If we are interested in the dependence of the particle distribution 
p on amplitude J. and noUoangle~. an iteration algorithm is 
developed (8) to give the time evolution of p(J) based on a 
perturbation expansion on the Vlasov equation. The ~-dependences 
are averaged out analytically. Without the +-dependences. this 
approach is potentially faster than tracking the entire distribution 
function as done in Ref. [43]. The time evolution of pO) contains 
information on diffusion. 

300tums 10000tums 

Figure 9: TIme evolution of the particle distribution in the presence 
of sextupoles and a tune close to 1/3. The result is obtained by 
tracking !he distribution instead of a collection of single particles. 
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17 NONLINEAR SPIN DYNAMICS 

One way to study the nonlinear spin dynamics is by tracking 
simulations. Refs .. [lO) and [11] desaibe such efforts for the HERA 
electron storage ring using the program SlTROS [44]. Ref.U2] 
describes the spin tracking for a proton synchrotron using spioor 
formalism. The particle energy is ramped through an isolated 
depolarization resonance. Synchrotron oscillation can be included. 
Simulations with complete and partial Siberian snakes are also 
demonstrated. The results agree well with expectation. 
Another way to study the nonlinear spin dynamics is to exploit the 
nonlinear dynamics tools developed for orbital motion. For example. 
a Lie algebra tectmique is used in Ref. [45); a perturbation tectmique 
is used in Ref. (46); the DA tectmique is applied in Ref. [9]; and the 
interpolation map tectmique is adopted in Ref. [13]. 

In Ref. (9). the one-tum maps for orbital and spin motions are first 
obtained as a Taylor expansion in terms of the betatron coordinates. 
Using DA. this map then gives a Taylor expansion of the spin tune 
and the equilibrium polarization direction as functions of the 
betatron invariants and the particle energy error. This approach can 
be useful for proton synchrotrons and has been applied to the 
Moscow Kaon Factory Booster design. 

Nonlinear dynamics applied to electron storage rings is more 
involved. as studied in Refs. [13.45.46). The equilibrium 
polarization is given by the Derbenev-Kondratenko formula in terms 
of the equilibrium spin direction n and the spin chromaticity 
d=ydnldy. The leading order in d. which is independent of h.y.s. 
gives the linear depolarization resonances. Higher order terms in d 
give higher order depolarization resonances. 

The method of Ref. [13] is as follows. Assume the orbit motion has 
been integrated and (J.'I') are the action-angle variables with Jx•y•s 
the invariants. Using an interpolation tectmique. J is known in terms 
of I and ~. Tracking a mesh of initial conditions for one tum and . 
using interpolations. one obtains the one-turn spin map T(J .'1'). 
Away from depolarization resonances. the vector n is given by 
T(J.'I')n(J.'I')=n(J.'lf+2ltV) and d is then computed by numerical 
differentiating near-by trajectories. or by the DA tectmique, or using 
a spline interpolation as done in the program SODOM. Averaging 
over the circumference and the beam distribution in (J.'I') then gives 
the equilibrium polarization. 

This method is applied to a toy FODO ring with vertical bends. Only 
linear orbital motions are considered, although the analysis is not 
restricted to it. It is found that the Jx•y dependences of d are 
negligible. but the Js dependence is important because the 
synchrotron energy deviation is non-negligible compared with 
440 Me V. the spacing between integer depolarization resonances. 
This means the synchrotron sideband resonances -ya=47+mvs are 
excited. In Fig. 10. the dotted curve is the result using a linear 
analysis using the program SLIM; the solid curve is a theoretical 
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Figure 10: Comparison of calculated equilibrium polarization using 
SODOM with other methods. 



prediction nonnalized at the first sideband; the dashed curve is a 
7-th order perturbation calculation using SMll..E; [46] and the 
crosses are the SODOM results. As can be seen, SODOM agrees 
well with existing approaches. Nonlinear orbital motions can be 
included next. 
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