SSCL-Preprint-122

SSCL-Preprint-122

Supercubnducting Super Collider Laboratory

Object-Oriented Simulation for the
Superconducting Super Collider

] Zhou

June 1992

SSCL-Preprint-122

Object-Oriented Simulation for the Superconducting Super Collider*

J. Zhou

Superconducting Super Collider Laboratory’
2550 Beckleymeade Ave.
Dallas, TX 75237

June 1992

*To be presented at the 1993 Object Oriented Simulation Conference (00S ‘93) San Diego, California,
January 17-20.

TOperated by the Universities Research Association, Inc., for the U.S. Department of Energy under
Contract No. DE-AC35-89ER40486.

Object-Oriented Simulation for the Superconducting Super Collider

Jiasheng Zhou
Superconducting Super Collider Laboratory™
2550 Beckleymeade Avenue, MS 4011
Dallas, Texas 75237
Tel#: 214-708-3461, email: zhouj@poplar.ssc.gov

Abstract

This paper describes the design and implementation of an object-oriented simulation environment called OZ for
the Superconducting Super Collider (SSC). The design applies objgct-on'ented technology to data visualization, behav-
ior modelling, dynamic simulation and version control. A meta class structure is proposed to model different types of
objects in large systems by their functionality. OZ provides a direct-manipulation user interface which allows the user
to vi§ualize the data as an object in the database and interactively model the component of the system. Modelling can
be exercised at different levels of the class hierarchy and then can be dynamically bound into a system for simulation.
Inheritance is used to derive new configurations of the system or subsystem from the existing one, and specify an
object’s behavior. Delegation is used to construct a system by instantiating existing objects and “stealing” their meth-
ods by delegators.

The implementation uses C++, GLISTK[Kan91] library, InterViews 2.6[Linto90], ISTK [Saltm91] library, GNU
C++ library[Stall90], GLISH event sequencer{Paxso911, NIH class library[Gorle91], and ObjectStore[ObjecS1].

1. Operated by the Universities Research Association, Inc., for the U. S. Department of Energy under Contract
No. DE-AC35-89ER40486.

Object-Oriented Simulation for the Superconducting Super Collider

Jiasheng Zhou
Superconducting Super Collider LaboratoryT
2550 Beckleymeade Avenue, MS 4011
Dallas, Texas 75237
Tel#: 214-708-3461, email: zhouj@poplar.ssc.gov

1. Introduction

This paper describes the mechanisms used to build an integrated environment for dynamical modelling and simu-
lation of large complex systems using object-oriented methods. The SSC is a complex machine constructed to perform
high energy physics experiments. Each machine design has a configuration based on structured data residing in a data-
base. Our goal is to build an environment which enables visualization of design data, aids interactive modelling and
simulation to exercise the accelerator before it is really built. To achieve our goal, we propose an object-oriented par-
adigm. In our paradigm, data are modelled as objects that can be manipulated through graphical interfaces. The
dynamic behavior of particles and the accelerator are modelled using these data objects in a particular configuration.
Simulation results are created by applying the specified model to the simulator. Designs are managed using version
control schema, and persistent object. Class hierarchy greatly facilitates the decomposition of a large complex system.
Inheritance allows behavior sharing among objects while still focusing on their difference, thus making the system
simpler at each level of the hierarchy. Dynamic binding makes dynamic modelling possible and delegation simplifies

the aggregation of the system for simulation.

A meta class structure is proposed in this paper for organizing class hierarchies by their functionality to aid large
system design (here meta class is different from SmallTalk’s metaclass. We emphasize the structure and relations
among classes). Deriving every class from the same root is undesirable, especially for large, complex systems such as
the Super Collider. Window classes simply cannot be derived from animal classes because they are totally different in
nature. A multi-level of inheritance is also confusing and low in efficiency. In a large simulation system, objects of
various kinds will likely be designed, developed, and debugged in a different environment by different people in their
knowledge domains. Each type of object needs its own inheritance hierarchy. The relations between these hierarchies
are described by the meta class structure.

Objects in such a system can be classified into four categories:

® DATA: objects handling data transmission and providing services for modeiling and simulation. These objects
make the details of data transmission transparent to the rest of the system. At the SSC, data describing the struc-

ture and attributes of the accelerator (called lattice structure for each accelerator) is stored in a relational database

1. Operated by the Universities Research Association, Inc., for the U. S. Department of Energy under Contract
No. DE-AC35-89ER40486.

management system (Sybase [Trahe91]). A Self-Describing Standard (SDS) [Saltm91] is used as a vehicle to
move data structures between the application and database. DATA maps generic structured data into application
oriented data for other parts of the system such as simulator and graphic plotter.

e MODELLER: objects organizing the information from DATA based on their relations. It creates meta data
which specify the configuration of data objects. Class hierarchy can be used to decompose a large system by their
inter-component relationships: is-a — an attribute hierarchy, and part-of — an aggregation hierarchy. Delegation
can be used to represent a complex system by their component structures. Class hierarchy facilitates inheritance
and makes dynamic binding possible. But sometimes hierarchy structure is less efficient as the object becomes
“‘heavier” (memory intensive). Delegation is a better way to create a “light” and “cheaper” object by instantiating
its component objects through delegators (such as pointers to an object).

o SIMULATOR: objects to practice dynamic simulation. Simulation algorithms are likely to be developed inde-
pendently by domain specialists. It is not necessary to design, test and debug those parts with the entire system.
They can be built separately and connected to the system later. For example, it is not necessary to change the
terminal each time the CPU is upgraded. For the same reason, when you design your new CPU, you don’t need
to worry about the type of terminal you will use if a standard interface is defined between them. Both the CPU
and terminal can have their own class hierarchies and design procedures. A simulator (instance of SIMULATOR)
can be built by deriving it from an existing one, or by aggregating existing ones through delegation.

o INTERFACE: objects providing a man-machine interface. It can be shared among systems with little modifi-
cations. A well-established INTERFACE class library can make interface prototyping easier and faster. A pre-
defined look-and-feel is also important to the user to leam new applications. INTERFACE class can be built

independently from its applications.

m SIMULATOR

A1)

DATA MODELLER m

Figure 1: a meta class structure INTERFACE

The relations among those four class hierarchies are shown in Figure 1 (arrow points the dataflow). Each node rep-
resents one or possibly several class hierarchies. Application users can derive their own domain specific classes from
high-level generic classes. A simulation application can be built by using objects from those four node libraries. Nota-
ble features of meta class structure are encapsulation and code reusability. A well-encapsulated object can be instanti-
ated to build a more complicated object while the original object need not be modified and understood. Different

applications may use similar objects to save coding effort. Once the interfaces among the nodes are clearly specified,

development can proceed in parallel among class hierarchies. Independent development also makes testing and debug-
ging much easier and more efficient.

As mentioned earlier, the SSC is an accelerator built to perform high energy physics experiments. It mainly consists
of magnets with various attributes. Experimental particle beams are injected from a linear accelerator (Linac), then
further accelerated at different energy levels through a low energy booster (LEB), medium energy booster (MEB), and
high energy booster (HEB) which are connected by beam transfer lines. Beams are then injected in opposite directions
into two collider (TC and BC) rings. These 20GeV beams finally collide in the interaction region (IR).

Simulation uses both static and dynamic data. Static data created in the design are stored in the database by different
versions. These data can be manipulated using a particular model to create simulation results. Dynamic data is the foot-
print of such results subject to a particular configuration of the lattice. So simulation is a process of manipulating static
data based on a model to create dynamic data. The goals of the OZ project consist of four parts:

‘oA graphical browser for visualizing lattice database. This browser includes: (1) a geometric view of the accel-
erator complex at three dimensions (top, side, and front views) with zooming and scrolling functions, (2) a sym-
bolic representation of the lattice structure and configuration, (3) a beamline locator which locates a beamline in
the selected lattice with a name and expands it into its components, and (4) a plotter for examining various lattice
optics functions.

@ A dynamic optics function simulator. Users can change the attributes of the accelerator (such as initial settings),
strength of the magnet and injection position of the particles. A feedback can be obtained from the dynamic optics
function simulator which tells the user the effect of these changes.

® A particle tracking simulator which simulates a bunch of particles distributed in a predefined pattern passing
through each accelerator several tums. It can also simulate particles passing transfer lines between accelerators.
The simulator aids research in beam synchronization, timing and transfer of a trajectory within a given aperture
in the accelerator.

® A basic problem in accelerator physics is how to keep beam on the correct trajectory, i.e., to avoid losing the
beam. Beam is basically guided by magnets. Most magnets have fixed strength and are designed to bend the beam
in a certain angle at specified locations. To correct dynamic errors which may affect the beam trajectory, hundreds
of adjusting magnets (kickers) are placed among the built-in magnets. There are also hundreds of detectors (beam

‘position monitors, BPMs) near those kickers to monitor the result of the correction and to locate the beam posi-
tion. For a particular BPM reading, a model and simulator are needed to predict the adjusting value for each
kicker, especially those kickers near the BPM being monitored.

@ Version control for dynamic data. How to record the evolution of the design, to capture the configuration which

produces an good result. Version control has two goals:
1) Version control for attribute hierarchy to record different versions of basic building objects. For example, an
accelerator can operate at different energies such as injection and collision. The magnet field strengths will be
different in these different operation modes.
2) Version control for configuration of different system or subsystem designs. For example, an accelerator can
be linear or circular.

Currently, most simulation and modelling tools are designed either for small applications or static batch mode sim-
ulation. Such tools generally are not object-oriented and lack graphical and interactive capabilities. Most are not sup-
ported by object-oriented databases or persistent object management. ABLE[Rou89] is a knowledge-based simulator
for particle acclerator control developed at Stanford University. ABLE does not support interactive modelling and sim-
ulation. Its simulation capability is limited to beam trajectory fitting. It is difficult to change the lattice configuration.
DIMAD(Servi85] is another lattice development tool created at TRIUMF in Vancouver, Canada. DIMAD is based on
FORTRAN and its graphical interface is based on C and X. It does not have the capability to directly interface with a
database. It also does not support direct behavior modelling.

The rest of the paper will discuss OZ, an SSC project for doing object-oriented dynamic simulation.

2. Object-Oriented Database Visualization

Two problems need to be solved in data visualization: (1) how to retrieve data from the database, and (2) to map

data for visualization. The first problem is about data modelling, and the second is about visualization.

2.1.0bject-oriented data modelling

At the SSC, static data for each lattice are stored in several database tables. Each table consists of rows and col-
umns. There is an index number (ID#) associated with each row (also called an entry, or a record) in the table. Each
column corresponds to a particular attribute in that table. A table called GEQO records all the geometrical information
from the first to the last magnet through the lattice. Each magnet has an entry through GEO. Attributes could be point-
ers referencing to other tables that contain detailed information about that magnet such as length, and strength. Sybase
1s used to manage the database through multi-threaded client-server model.

Data are shipped among database and different platforms of workstations throughout the network in SDS. SDS can
pack a record in a database with its attributes into a C++ structure, assemble them into an object, and load it to a SDS
file. So a database table will correspond to an array of persistent structures in the SDS file. DATA object will map these
SDS files into objects in C++.

Data in the database are modelled at three levels. Each level can be treated as an object derived from DATA. A data

retrieval is equivalent to a message passing to that object.

e Database object. When a particular design version of static data is selected, the corresponding database is
loaded as an object D,. D, actually loads a particular SDS file into memory and returns a pointer to that SDS
object.

@ Table object. If necessary, a particular table can be loaded as an object T, This object is dynamically created
and pointed by a member variable of D,. In SDS, the table is an array of C++ structures.

e Column object. An attribute (corresponding to a column) is an object A, which can be loaded when necessary.
A, is pointed by a member variable of D,,. A, is able to extract a particular field from an array of structures. Usu-
ally only some of the attributes are involved in the simulation at one time. Loading a database table into memory
takes time and space, and is not efficient for such simulations. So making an attribute as an object is very useful.

The database itself will not provide any application-oriented data manipulation support. The main purpose for cre-
ating an object-oriented data model is to facilitate data manipulations. A standard well-encapsulated interface between
DATA and other parts of the system will keep the implementation detail transparent to the user no matter what kind of
database structure is to be used. Data manipulations are supported by a set of methods. Among the available methods
are:

e Loading a data object: D, T,, or A, implemented by polymorphism.

o Dynamic mapping: dynamically mapping data between lattice databases. For example, particle beam tracking
can go from one accelerator to another. DATA should be able to handle such shifting automatically between dif-
‘ferent databases. k

o Geometrical functions: area intersection, viewpoint transformation, zooming and scrolling, symbolic creation
based of magnet type, finding a magnet based on its name or type, and selecting a magnet based on its position;
e Application-oriented functions: user-defined one dimensional scaling;

These methods can be designed as virtual functions for functional or signature sharing. Methods can also be
designed to fit specific needs for DATA objects at different levels.

Magnet has two kinds of attributes. Basic attributes Ay are those attributes which can be directly retrieved from
DATA objects. Composite attributes A, are those attributes which are function of basic attributes and exclusive to a
specific application.

Ao = F(ALL Ap2, . AL, O<il<i2<.. <ik<=n, O<k<=n. n is the number of basic attributes. f is the function.

By making DATA object persistent, composite attributes can be saved in an object-oriented database (such as
ObjectStore). For large lattices or complicated compositions, loading a persistent object will usually much faster than
constructing them at the beginning of the program. Persistent objects also provide record of footprint and sharable

results.

ObjectStore is used in the development. DML (Data Definition and Manipulation Language) in ObjectStore can be

embedded in the existing C++ code to make object persistent. Detailed implementation is based on database version
control. When a new version is loaded, DATA object will compute all composite attributes A, with available Ag and
make itself a persistent object. When the same version is loaded again later, all persistent data A, need not to be recom-
puted. Version control will keep the freshness of these persistent data automatically. Persistent data is only validated
when it is fresh, i.e., the version of the database it is created from has not yet been modified.

In DATA object, composite attributes are persistent data members. It can be accessed by other objects in the system
as well as basic attributes. An attribute modification can either directly go to the persistent memory or kept in a tem-
porary copy A, These temporary copies are updated when necessary during the modelling and simulation processes.
But A.'is transient data and will not be kept after a session. User has to make the decision whether to make them per-

sistent or not.

2.2.0bject-oriented data visualization

Data visualization is handled by objects in INTERFACE. INTERFACE classes are developed using the GLISTK
and InterViews libraries. There are two important components in building a graphic interface: (1) the layout of the
interactive interface and connections among control elements such as buttons and menus, and (2) is the interactive
graphics (view). A static non-interactive graphics is called an image.

eControlLayout is aclass to layout graphical user interface. ControlLayout is derived from class Gorgan in
GLISTK which is in turn derived from InterViews’ Scene.

e ViewPlot is another class to plot dynamic graphics controlled by ControlLayout. ViewPlot is a GLISTK
which is derived from InterViews’ Interactor.

qually ControlLayout only instantiates its control element through delegation. It only keeps a pointer pointing to
its control element. Control elements are created not inside the constructor but by another virtual method called Cre-
ateAndInsert(). Different versions may derive CreateAndInsert() to create and insert their own control elements. Del-
egation often creates a “cheap” object, which only keeps what it needs, and is more dynamic and efficient for
derivation.

Control elements are derived from LabelGlistk, which has a label, size, position, state and control action. Label can
be text or attached to a bitmap. State is a vaniable with a valid C++ type. State is associated with an object called Com~
munistk. Communistk focuses on the value of the state and has a list of ControlLayout to notify when this vatue, or
the focus, changes.

Every Communistk has a CommuList which is a list of ControlLayout which is informed any time the value of
state that Communistk is focused on is changed by Communistk::SetValue. Every object that attaches to a Communistk
is automatically added to that Communistk’s CommuList. When the value that a Communistk is focused on is changed

by Communistk::SetValue, the Communistk calls its Hit CommuList method, which informs every ControlLayout

in its CommuList by calling their CommuHit method. Such notification can also be put on hold by calling Commu-
nistk::SetValueNoHit.

A message not only can be sent back and forth between control element and ControlLayout, but also can be send
out to another application using GLISH event sequencer. For the Communistk to notify the outside world, a message
must have a name, which will become a GLISH event name. An event name must be registered though GorganMaster,
which is a GLISTK class derived from InterViews’ World. Any change to the Communistk’s focus will trigger the Gor-
ganMaster to build an event frame and message body and give it to a GLISH executive. An incoming event will be
checked against registered Communistks and the indicated change, if any, will be presented to the Communistk to
accept or reject and to notify its attached control element.

There are two ways to issue an action: one is deriving a speciﬁc GLISTK, for example, QuitButton, with its own
PerformAction method. The other way is associating its Communistk with a particular ID and adding its ControlLayout
to its CommuList. ControlLayout’s CommuHit will be called when the Communistk vatue is changed. CommuHit can

control the action based on CommulD. Table ! summarizes methods provided by ControlLayout.

Table 1: Method in class ControlLayout

method name function description

CreateAndInsert() |create control elements and insert them in a proper form using alignment variables. ControlLayout records
these alignments in a table and possible reposition and resize.

RaiseAndLower() |element popup control, such as popup menu and popup message, dialogue, etc.

LockAndUnlock() |provides availability control to control elements.

CommuHit() provides communication among objects, including between ControlLayouts and between its elements.

Stoplnput() Some actions need a start event to enter its mode and wait for end event to exit its mode. Such action should
be registered with ControllLayout. Then the end event can be directed to its target by StopInput()

ViewPlot is derived from LabelGlistk. It provides a dynamic graphic view of objects from the database.

After a particular lattice has been loaded, the position and size of each object can be extracted from DATA object.
ViewPlot scales these data based on current plotting size and displays the object on the screen.

When resize occurs, ViewPlot will rescale the position and size of all objects and replot them. The whole plot can
be zoomed in. When a plot is zoomed in, the plot boundaries are pushed on the stack. Zooming boundaries become
new boundaries for the new plot. ViewPlot rescales the new plot based on new boundaries. Undo operation is equiva-
lent to a zoom out. The previous boundaries will be popped up from the stack and become the current boundary.

Space is dynamically allocated for all plotting data used in the preceding method. In order to keep all information
available for redraw, space is only deleted when new data are loaded in from DATA object. Figure 2 shows some exam-
ples.

By taking advantage of dynamic binding of C++ virtual function, all methods for graphic manipulation are virtual.
A zooming operation on an optics function plotting will cause a one-dimensional zoom in. The same operation on a

geometrical representation of an accelerator will cause a two-dimensional zoom in. If several plots have to be zoomed

A
. T
e

— I] 1 i :

A zoom the transfer line region A static p function plot for the entire
between MEB and HEB. A side view is top collider (TC). A central region
in the up right corner. blowup is given to its right

Figure 2. Examples of data visualizations

in simultaneously with the same scaling, a virtual function call of zoom operation on all these plots will work poly-
morphically.

Most dynamic graphics requires incremental drawing. The result of several simulations can be superposed or plot-
ted in different areas of the screen one-by-one at different times. But what will happen if the window is closed and
opened later? The current image on the screen should be “remembered” so when the window is opened later, the pre-

vious image can be restored as is. It is not realistic to repeat all the simulation again to recreate these images.

ViewPlot: :Refresh () { ViewPlot::CreateDynamicData () {
MapRawDataToDrawableData () ; CreateSimulationResults () ;
DrawStaticData ()} ; SizeOfIDQ++;
if (SizeOfIDQ>0) RegistexrTolIDQ () ;

Draw(); Push (IDQ, CurrentDrawingData);
Draw();

vViewPlot::Draw() {
If (AnythingNewInIDQ({())
DrawViewAtTheTopOfTheStack();

Figure 3. How to do incremental drawing

A feasible solution is to create an incremental drawing queue IDQ to record incremental drawing data. Two meth-
ods are used for drawing. Refresh handles initial drawing such as legend, measurement, symbolic representation and
marks. We call these graphics static graphics and they should be always on the screen. To draw something dynamic on
the screen, call Draw and push data into the IDQ. Draw will pick up the data from the top of the IDQ and draw it on
the screen. If the window is closed and then opened again, then Refresh will get called. Refresh will in turn call Draw
to accumulative draw everything in the IDQ, if any. Figure 3 illustrates how incremental drawing queue works.

Because of a large number of magnets (thousands) may need to be drawn on the screen, making each magnet as a
structured graphics object in InterViews is not realistic. If we make the whole accelerator as an object, then it is difficult
to pinpoint an individual magnet object. A feasible solution is to make the whole accelerator as an object. At the same

time, design a set of methods to do the mapping among objects on the screen, their [D# in ViewPlot, and their data in

DATA. Figure 4 shows such a mapping;:
attributes of the object

Eiement attribute:

A part of screen

object

Figure 4. Object mapping

object ID# in ViewPlot

In ViewPlot, the screen position of each object gets registered when it is drawn. A mouse down event catches an
object if it occurs within the sensitive boundary of that object on the; screen. ViewPlot keeps a list of all types of mouse-
sensitive objects, such as magnet, adjuster, and detector. Sensitivity can also be screen out. A caught object is called a
focusing object Oy. ViewPlot will do a binary search within the current plotting boundaries to find ID#(Oy). Then all

information of that O¢can be found through DATA. Some member functions of ViewPlot are listed in Table 2:

Table 2: Members and methods in class ViewPlot

name function
myModel pointer pointing to MODELLER object
realBoundary the real dimension of visual target. For example, optics function of HEB
visualBoundary current dimension of the visual target. This is used by zooming and strolling
StretchAndFit() stretch the view and fit it to the size of the window.
CatchAndZoom() handle zooming base on size of the rubber box created by a mouse down.

Scroll(currentPosition) |handle scrolling from current position to a new position.

Redo(), Undo() handle unzooming

EventHandler(event) for event, there is a event handler.

Refresh() Refresh() handles initial drawings. It keeps a pointer an object called IncrementalDrawingQueue.
Refresh will call Draw if there is anything in the queue. Dynamic drawing is handled by Draw().

Draw() Handle add on (or called incremental) drawing.

ID# Find(position) return object ID# based on its current registered position

ShowValue(ID#) show attributes of the object with ID# (focusing object Oy)

3. Modelling Dynamic Behavior

A model is an abstraction (possibly a mathematical abstraction) of something for the purpose of understanding it
before building it [Rumba91]. Because a model usually focuses on some essential issues of the simulation entity, it is
easier to manipulate and simulate than the original entity.

Object-oriented modelling abstracts an entity in the real system as an object. It is natural to represent entities in an
application domain as objects which respond to a well defined set of messages. For example, in an accelerator system
model, domain objects might be magnets, particles, and accelerators. New types of objects may be created by special-

izing existing ones. Complex systems can be modelled with composite objects (also called submodels) and can be used

in other models. A model as a whole is itself a composite object which responds to a set of messages. Object’s identity
is modelled as member variables (also called attributes). The tolerant threshold towards certain attributes is called con-
straints, which is defined as a function f; of some attributes for a particular object, C, = f(A,). Behavior of the object
is modelled as a set of methods My, which is a function of attributes A, and constraints C, based on algorithms devel-
oped domain specifically. Dynamic behavior describes those aspects of the object concerned with time and sequencing
of operations, such as events that mark changes, sequences of events, states that define the context of events, and the
configuration of the system where object is placed.

In this paper, we emphasize the difference among the following concepts [Zeigl90]:

e the real system, in existence or proposed, which is regarded as fundamentally a source of data, which in OZ is
provided by DATA.

@ the model, which is a set of methods for generating dynamic data to that observable in the real system. The
structure of the model is its set of methods. The behavior of the model is the set of all possible data that can be
generated by faithfully executing the model methods.

@ the simulator which exercises the model’s methods to actually generate its behavior.

At the SSC, there are three objects to be modelled. The particle beam, the magnet in the accelerator, and the accel-
erator itself.

The behavior of a particle (proton at the SSC) depends on its momentum, position and distribution of magnet field
strength around it. Particle momentum and magnet strength distribution are decided by the accelerator a particle is
passing through. So the behavior of a bunch of particles (beam) will be more interesting. Particle distribution hierar-
chy (PDH) is used to record such modelling.

The root class Beam has only one particle and it is placed at the origin. Some standard statistical distribution with

a certain number of particles are its subclass, such as normal and average distributions. Beam has 5 instance variables

listed in Table 3:
Table 3: instance variables in beam class

instance variable name illustration
num number of particle in the beam
Position *pos{num] position of those particle, displacement d
Deflection *dp{num] angular deflection of the particle d’
Deviation *delta[num)] momentum deviation of the particle 5
distribution form statistic distribution of those particles.

Vector D = [d, d', 8}is called principle vector (PV). Beam object can be created by using beam class library with a
graphic interface. Either by picking up an existing beam from the library or create one by rearranging the particle dis-
tribution or changing the amount of the particles (Figure 5), a new beam configuration can be created. A new beam

can also be created as a result of beam tracking simulation.

10

Figure 5 beam objects created from PDH

After beam is created, it is sent to an acceleration pattern (which is the logical path from its launch position to its
end observing position through accelerators) for simulation. The momentum will be dynamically bound to the particle
when passing though the corresponding accelerator.

The behavior of the magnet depends on its magnet type(s), magnet strength(s), length(J), tilt(o), linearity(m), its
optics functions (such as function), its phase advantage (¢) and other attributes. Magnet attribute hierarchy is used
to record such modelling.

The principle magnet hierarchy(PMH) is shown in Figure 6.

[Magnet | e tlement Attributes:
| prft | | Bending | RF Cavity | | _FD \
magnets to tranfer beam megocts w bend begm in Redio Frequeacy umit ‘magpets Lo focus sod
in the streit section. mughlwm t0 wcoclerste the beam defocus the beam

direction cavelope

02 [<JIN -6] [>]

Figure 6 Principle magnet hierarchy and its interface
T e e——" |

A prototype of the magnet attributes modelling system is shown in Figure 4, 6. Magnet instances are represented
by a collection of icons (Figure 4). A magnet class is represented by a list of attributes (Figure 6). Different models of
magnets are constructed from their own class category using this interface. After a sub-model is created in the hierar-
chy, it is added back to the list as a part of the new hierarchy.

Based on Steffens’ theory[Steff85], the behavior of the magnet can be modelled as a 3 by 3 transformation matrix
M(t, s, 1,0, m). M is defined as a function of ¢, s, /, 0, and m for a particular magnet. D; and D;,; are the principle vectors

of a particle at position i and i+ respectively. And we have D;,; = M*D;, i.e.:

d; displacement
is...called...principle...vector (PV) d'; deflection
L 6;” deviation

diﬂ]{ lc s D ‘ﬂ d;
&y = {C' s D |d VectorD, |d";
5. o0 1_] 5, 5,

i+ 1

Magnet class definition is partially given in Table 4:
Table 4: Magnet class

members function illustration

Class category There are four categories: drift, bending magnet, RF cavities and focus/defocusing magnets.
Attributes *myAdttributes Attributes is a C++ class with all attributes: basic and composite

virtual Matrix* CreateTM() |Create transformation matrix for that magnet

virtual PV* BehaviorMap() |create a result principle vector (PV) from the previous one.

11

All principle magnet classes are predefined and created from DATA. Each Magnet instance has a pointer pointing
to a Magnet class in the PMH. When new a Magnet class has to be created, a particular Magnet instance will be
selected. By changing the proper attributes, a new class will be created with that magnet as its first instance. The new
class will inherits all methods from its parent, such as CreateTM and BehaviorMap.

Behavior modelling is supported by two approaches:

1) A text window is provided for examining and overriding the previous behavior model (such as method Behav-
iorMap) by using C++ code. Behavior binding is implemented by taking advantage of dynamic binding of C++
virtual function. New C++ code has to be recompiled and linked into the system and then the whole process
needs to be restarted.

2) Several models (such as linear and nonlinear method) can be predefined based on knowledge and domain spe-
cific rules. Virtual function dynamically bind the rule number (set by the user through interface) with a pointer
of a member function to construct behavior. Interactive modelling basically becomes rule-picking and function
binding. Rules can also be added off-line by using C++ code.

Modelling accelerator uses configuration binding techniques. An accelerator can be decomposed into beamline,
which is a set of magnets placed in a specific order as a design component. Accelerator is on the top of this configura-
tion hierarchy. It is decomposed into major beamlines. And these major beamlines are further decomposed into smaller
beamlines, which are in tum decomposed all the way to the magnet level. Such a structure hierarchy is called a lattice
configuration for an accelerator.

The class Beamline is derived from the base class DList, which implements a doubly linked list (NIHCL and
GNU all have that type of class). Beamline holds a pointer pointing to its component, which may be smaller beam-
lines or magnets. Beamline class is also derived from Magnet class that makes it easy to insert in, replace by

another beamline or magnet. Multiple inheritance (Figure 7) is used to make such a class possible.

Beamline

Figure 7 Beamline: multiple inheritance from Magnet and DList

Beamline inherits all members and methods from Magnet. But Beaml ine has its own methods to specify its

structure. Members and methods of Beamline are listed in Table 5.

Table 5: Beamline class

members function illustration

Beamline* bmLnElmnt; bmLnEImnt point to the current component (smaller beamline or magnet)

12

Table 5: Beamline class

members function illustration

Insert(W hichSide); All these methods are inherited from DList class.
Insert() inserts a beamline before/after (depends on the value of WhichSide) the current beam-
line. Replace() and Delete() replaces and deletes the current beamline. Get() moves the bmL-

Replace(Position, Beamline*);

Delete(Position); nElmnt to another beamline.
Get(Position);
virtual Tracking(Particle*) Beamline’s own method, which accepts a particle (or beam that is derived from particle) object

as its argument, does straightforward, magnet-by-magnet tracking at the bottom of the configura-
tion hierarchy through the beamline. The keyword “virtual” means that each beamline or magnet
object must implement such a method. One of the extraordinarily useful features of the virtual
method is that it allows us to perform polymorphism on all kinds of beamline and magnet which
is 8 component.

A new Iattice contiguration can be created by replacing a beamline by a new design. In Figure 8, a new design for

the beamline triwm’ creates a new configuration for the LEB. Configuration binding is deferred at the simulation stage
and the binding actually occurs at the bottom level of this hierarchy, i. e. magnet level. Configuration binding will also

be discussed in version control later.

L 00 | L
l arcwm I I ssewm | |arcwm] [ssewminj l ‘ arcwm L_gl ssewmext tsewmext l

Figure 8. Lattice configuration hierarchy

4. Dynamic Simulation

SIMULATOR is a class which exercises the model’s methods to actually generate its dynamic behavior. In OZ,
simulation might deals with several kinds of models, such as beam model, magnet model and lattices configuration
model. The behavior of each object in the interactive simulation process is important to adjust the model for better
performance. When DATA and MODELLER are created, simulator (an instance of SIMULATOR) will be triggered
to launch the simulation. Simulator is the manager of the entire simulation. Objects are controlled under simulator to
interact with each other to create dynamic behavior. Figure 9. gives an example for “BumpView” simulation, which
meets the fourth goal of the OZ system.

The bottom part of the window is a graphical representation of the lattice structure of the LEB. Above it is the
graphical representation of the detectors and adjustors along the LEB. All objects in the representation are active (sen-
sible‘ and associated with actions). In the middle of the window is the dynamic aperture of the LEB which basically
depends on the attributes of the magnet at each point. The middle part is expanded at the up right comer. The dashed
bar is the BPM reading set by the user. A bumpview simulation will give the following:

e Three white points (actually a three green bar) stands for the settings of three kickers around that BPM. The

actually values are given as deltaX ', deltaX’, deltaX,' in the “Adjuster settings” box at the bottom of the control

13

=] Bump View

Operaiion Winsew ' Low Energy Besster

panel.
e To make modelling simpler, we assume that the adjusting will only affect 3 BPM readings nearest to the BPM
selected. All other BPM should have zero readings. The simulation proves the model is correct. From the picture,
there are only 3 solid bars in the middle.

The up part of the window is the p-tron oscillation along the LEB.

Dynamic simulation allows user to pinpoint objects (magnets) in the lattice, modify their attributes and rerun the

simulator interactively.

N particles lost M
. \ ¢ Cj‘/# - : 4 . ; /‘ﬁ"ﬂ sperture
SRR ‘- :
a. dynamic optics function b. dynémic-: particle tracking ¢. dynamic tracking particle 4. dynamic launch a beam for
creation of the MEB. Here in LEB for 100 turns and for one ture and recording 10 turns to see how many
is a function recording its d and 4" after its d and d’ after each magnet. particles are still in the
each turn. survival aperture. Beam is in
solid dot. Survival particle is
Figure 10. Dynamic simulation is small circle.

Figure 10 and 11 gives more examples of dynamic simulations. In Figure 10. a is the optics function of LEB created
by Twiss derived from SIMULATOR. b and c¢ are dynamic particle tracking by tums or by every magnet using
Track. d is dynamic tracking of a beam created from beam class hierarchy by using Emit, which is also a simulator
from SIMULATOR class hierarchy. Emit can also be used to aid the research of relations between particle distribution
in the beam and beam survivability.

A particle could be lost during the acceleration. It is important to know where it is lost in order to make the correc-

tion by using BumpView simulator. Figure 11 gives such an example.

14

0F Centre! ¥indow 1 Operuion Windew
|

a. Tracking a particle for certain turns
to check its survivability under the
current lattice configuration.

b. launch a beam with certain distribution. Check
its distribution after several turns to research the
relation with lattice configuration and magnet
attributes.

showing how many
turns that particle

survives! Figure 11. Beam survivability research

5. Version Management and Release Control
As the design complexity increases, OZ needs to support cooperative work by a number of physicists on the same
design. As a result, a requirement has emerged for version management mechanisms that record every stage of a
design, merge individual designs to a complete design and make alternative designs available. Version management
and release control needs to deal with the following issues:
@ how to document an alternative design?
o how to document the design evolution?
@ how to merge individual design into a complete design?
In previous sections, magnet attribute hierarchy and lattice configuration hierarchy have been mentioned for
dynamic behavior modelling. This section will discuss how to manage these hierarchies.
OZ version management system is a version hierarchy (Figure 12). VersionManager sits at the top of this hierarchy

to manage the version control.

VersionManager

design [design2 design3 designi6 Design level
(LEB:ssc10f) (LEB:sscoct) (LEB:ssc91) (HEB:sscl1lf)
l triinj | | triext | | triwm ' Ty I triinj’ l I triext’ | lmwm.l
L vion]

/ designer work on
templete templete of triwm component
and register to
designl

Figure 12. Version management hierarchy

A design in this paper is a generic configuration shared by designers. it is implemented as a top level Version Man-

15

agement Unit (VMU) for the purposes of versioning. For example, the LEB of the SSC has three different designs:
SSCI10F, SSCOCT and SSC91. Each designer has to register to a design. Registration makes the current work tied with
a specific design. Component is also a VMU which sits below the design and it is used to built up to a design. Config-
uration is the intemnal structure or attributes (if at the bottom level of the version hierarchy) of a component. Template
is a working space for private development on a particular component to yield a altemative configuration.

Each designer can create a template at each component node. The component in the node is frozen as “official”
configuration(OC). When a template is created, a copy of the OC is checked out into the template. Template can be
made public to form an alternative configuration library. A configuration also can be checked into the node and frozen
to be official. Currently check-in is controlled by the VersionManager through the design the designer registered.

By using version management hierarchy, altemative designs (configurations) by different designers are kept in their
own templates. A design is originally created in the MODELLER and then put into the version management hierarchy.
VersionManager records its creator, and check-in date. The individual designer will be assigned to each of its compo-
nent to exercise the configuration using modelling and simulation in its own template. Release control is through
dynamic configuration binding. The component will be bound to its OC by default if there is no template created by
the designer at that node, otherwise it will be bound to the current configuration the designer is working on. As a matter
of fact, that configuration is derived from OC. When a new configuration is created in the template, the pointer (which
is inside its parent configuration) pointing to the OC or previous configuration will “float” to the new one. Then all
messages sent to the configuration pointed by that pointer will be dynamically bound to the new configuration. The
new configuration can be checked into the node as OC, made public as an alternative of OC along with a performance
testing report for reference, or just left in the template for further development.

A configuration is usually created from the bottom using magnets available. A configuration may instantiate sub-
configurations as its components by picking up candidates from the component library consisting of OC (default) and
al} its public alternatives, or just from the scratch (magnet). A complete design is created in such a bottom-up fashion.
A new configuration can also be created by inheritance. A special version of a component can be naturally derived
from existing one by using a template.

Our version management mechanism supports configuration hierarchy and multiple configurations in the template.
Cross referencing between different designs are also available. It also allows deriving classes directly from version
management hierarchy and sharing its capability through multiple inheritance. Therefore, version management can be
handled automaticaily.

Version management and release control are still in prototyping stage. Future research includes manage concurrent

check-out configurations, and a graphic interface for version management.

16

6. Conclusion

In this paper, we have described our experience with designing and implementing an object-oriented simuiation
environment OZ. The issues of building a generalized simulation system have been addressed by proposing a meta
class structure which decomposes a system into four types of classes that handles data acquisition, user interface, mod-
elling and simulation respectively.

In our object-oriented data modelling, data, meta data, and procedures that handle data accessing and manipulation
are combined together as an object. Data as an object is able to describe itself and provide information to the modelling
and simulation. Data object has its view which can be directly manipulated through a graphic user interface. A dynamic
system can be decomposed into objects with dynamic behaviors. Attributes and constraints are used to modet dynamic
behavior of the object with a class hierarchy. Attributes and constraints can be dynamically bound to an object in an
inheritance hierarchy. Different configuration can also be dynamically bound to an object through configuration hier-
archy. Simulation can be exercised using a particular configuration with data objects as parameters in our modelling
system. Version management and release control, which are important aspects in dynamic modelling, are implemented
using configuration hierarchies and persistent objects.

OZ has been implemented and currently available on a local network of Unix and X based workstations at the SSC
Laboratory. We used the same approach presented to prototype the BumpView, which is an extension to OZ for
dynamic simulation. With the experience we had in developing OZ, it took us only one month to finish the prototyping
of BumpView. The results achieved with our current effort have been encouraging and lead us to be'ieve that object-
oriented approach will provides us more flexibility and extensibility. We plan to extend our effort to buiid a generalized
framework for building more simulation tools for the SSC.

Because of a user friendly interactive graphic interface, most of the physicists in the lab who used to addict to FOR-
TRAN has start to use OZ to design and perform the simulation. An integrated object-oriented simulation environment
such as OZ will help the design and simulation of the SSC.

7. Acknowledgments

We greatly appreciate the valuable contributions and advice provided by Dr. Richard Talman, Dr. Garry Trahemn,
Dr. George Bourianoff and Ellen Syphers at the Accelerator System Division of the SSC Laboratory. We also appre-
ciate the help from Dr. Chris Saltmarsh, and Matt Fryer at Laurence-Berkeley Laboratory and Matthew Kan at Camn-

egie Mellon University.

17

References

[Beaum90] Beaumariage, T.; Mize, J. H.: “Object-oriented modeling: concepts and ongoing research”, Proceedings of
the SCS Multiconference on Object-Oriented Simulation, pp. 7-12, San Diego, CA, 1990.

[Butler91] Butler, G.F.; Corbin, M.J.: “Introduction to Object-oriented Simulation”, IEE Colloquium on “object-
oriented Simulation and Control”, Digest No. 057, pp. 1/1-3, London, UK, 1991

[Gobbe91] Gobbetti, Enrico; Tumer, Russell, “Object-oriented Design of Dynamic Graphics Application”, Computer
Graphics Laboratory, Swiss Federal Institute of Technology, Lausanne, New Trends in Animation and Visualization,
John Wiley & Sons, 1991

(Gorle91] Gorlen, Keith; Orlow, Sanford; Plexico, Perry: “Data Abstraction and Object-Oriented Programming in
C++", March, 1991, John Wiley & Sons

[Ege88] Ege, Raimund K.: “Constraint-based user interfaces for simulation”, Proceedings of 1988 Winter Simulation
Conference, pp263-271.

(Kan91] Kan, Matthew: “GLISTK: Graphic Library for the Integrated Scientific Tool Kit”, Laurence-Berkeley
Laboratory, March, 1991 '

{Klahr86] Klahr, P.: “Expressibility in Ross: an object-oriented simulation system”, Al Applied to Simulation,
Proceeding of the European Conference, SCS, San Diego, CA. pp. 136-139

[Linto90] Linton, Mark: “InterViews Reference Manual”, Version 2.6, Computer Systems Laboratory, Stanford
University, Feb., 1990

[Objec91] Object Design, Inc.: “ObjectStore User Guide”, Release 1.1, March, 1991

[Page89] Page, Thomas W.; Berson, Steven: “An Object-oriented Modeling Environment”, Proceedings of 1989
OOPSLA Conference. pp. 287-296

[Paxs091] Paxson, Vern: “Reference Manual for the Glish Sequencing Language”, Laurence-Berkeley Laboratory,
April. 16, 1991.

[Rober88] Robert, S. D.; Heim, J.: “A perspective on object-oriented simulation”, 1988 Winter Simulation Conference
Proceedings, pp. 277-281, San Diego, CA, 1988.

[Robin89] Robinson, J. T.; Kisner, R. A.: “An intelligent dynamic simulation environment: an object-oriented
approach”, Proceedings IEEE Intemational Symposium on Intelligent Control, 1988, Washington, D. C., pp 687-652

[Rou89] Round, Alfred: Knowledge-based Simulation, “The Handbook of Artificial Intelligence”, Volume IV, Chapter
XX11, Addison-Wesley Publishing Company, 1989.

[Rulﬁba9l] Rumbaugh, James; Blaha, M.; Premerlani, W.; Eddy, F; Lorensen, W. General Electric Co.: “Object-
Oriented Modeling and Design”, Prentice Hall, 1991

{Stall90] Stallman, Richard: “Using and Porting GNU CC”, version 1.37.1, Feb. 21, 1950

[Saitm91] Saitmarsh, Chris: “The SDS Document: A Conceptual Basic Towards Understanding the Self-Describing
Data Standard”, Laurence-Berkeley Laboratory, Dec. 1, 1991.

[Steff85] Steffen, K.: “Basic Course on Accelerator Optics”, DESY HERA 85/10, Deutsches Ele, ktronen-Synchrotron
DESY, Hamburg, March, 1985.

[Steph91] Stephanie, J. C., Burdorf, Christopher: “PSE: an object-oriented simulation environment support
persistence”, Journal of Object-Oriented Programming, Oct., 1991, pp 30-40.

[Servr85] Servranckx, Roger; Brown, Karl; Schachinger, Lindsay; Douglas, David: “User Guide to the Program
DIMAD?”, Stanford Linear Accelerator Center, Report 285 UC-28(A) May, 1985

[Tang91] Tang, Ming Xi; Smithers, T: “Towards object-oriented simulation”, IEE Colloquium on “object-oriented
Simulation and Control”, Digest No. 057, pp. 7/1-4, London, UK, 1991

[Trahe91] Trahem, Garry; Zhou, Jiasheng: “SSC Lattice Database and Graphical Interface”, 1991 International
Conference on Accelerator and Large Experimental Physics Control Systems, KEK, Japan, Nov, 1991.

[Zeigl90] Zeigler, Bemard P. : “Object-Oriented Simulation with Hierarchical, Modular Models”, Academic Press,
1990.

18

