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Abstract 
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This paper describes the design and implementation of an object-oriented simulation environment called OZ for 

the Superconducting Super Collider (SSC). The design applies object-oriented technology to data visualization, behav

ior modelling, dynamic simulation and version control. A meta class structure is proposed to model different types of 

objects in large systems by their functionality. OZ provides a direct-manipulation user interface which allows the user 

to visualize the data as an object in the database and interactively model the component of the system. Modelling can 

be exercised at different levels of the class hierarchy and then can be dynamically bound into a system for simulation. 

Inheritance is used to derive new configurations of the system or subsystem from the existing one, and specify an 

object's behavior. Delegation is used to construct a system by instantiating existing objects and "stealing" their meth-

ods by delegators. 

The implementation uses C++, GLISTK[Kan91] library, InterViews 2.6[Linto90], ISTK [Saltm91] library, GNU 

C++ library[StalI90J, GLISH event sequencer[paxso91], NIH class library [Gorle91], and ObjectStore[Objec9l]. 
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Object-Oriented Simulation for the Superconducting Super Collider 

1. Introduction 

Jiasheng Zhou 
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Tel#: 214-708-3461, email: zhouj@poplar.ssc.gov 

This paper describes the mechanisms used to build an integrated environment for dynamical modelling and simu

lation of large complex systems using object-oriented methods. The SSC is a complex machine constructed to perform 

high energy physics experiments. Each machine design has a configuration based on structured data residing in a data

base. Our goal is to build an environment which enables visualization of design data, aids interactive modelling and 

simulation to exercise the accelerator before it is really built. To achieve our goal, we propose an object-oriented par

adigm. In our paradigm, data are modelled as objects that can be manipulated through graphical interfaces. The 

dynamic behavior of particles and the accelerator are modelled using these data objects in a particular configuration. 

Simulation results are created by applying the specified model to the simulator. Designs are managed using version 

control schema, and persistent object. Class hierarchy greatly facilitates the decomposition of a large complex system. 

Inheritance allows behavior sharing among objects while still focusing on their difference, thus making the system 

simpler at each level of the hierarchy. Dynamic binding makes dynamic modelling possible and delegation simplifies 

the aggregation of the system for simulation. 

A meta class structure is proposed in this paper for organizing class hierarchies by their functionality to aid large 

system design (here meta class is different from SmailTalk's metaclass. We emphasize the structure and relations 

among classes). Deriving every class from the same root is undesirable, especially for large, complex systems such as 

the Super Collider. Window classes simply cannot be derived from animal classes because they are totally different in 

nat~e. A multi-level of inheritance is also confusing and low in efficiency. In a large simulation system, objects of 

various kinds will likely be designed, developed, and debugged in a different environment by different people in their 

knowledge domains. Each type of object needs its own inheritance hierarchy. The relations between these hierarchies 

are described by the meta class structure. 

Objects in such a system can be classified into four categories: 

• DATA: objects handling data transmission and providing services for modelling and simulation. These objects 

make the details of data transmission transparent to the rest of the system. At the SSC, data describing the struc

ture and attributes of the accelerator (called lattice structure for each accelerator) is stored in a relational database 

t. Operated by the Universities Research Association, Inc., for the U. S. Department of Energy under Contract 
No. DE-AC35-89ER40486. 



management system (Sybase [Trahe91D. A Self-Describing Standard (SDS) [Saltm91] is used as a vehicle to 

move data structures between the application and database. DATA maps gen'.!ric structured data into application 

oriented data for other parts of the system such as simulator and graphic plotter. 

• MODELLER: objects organizing the information from DATA based on their relations. It creates meta data 

which specify the configuration of data objects. Class hierarchy can be used to decompose a large system by their 

inter-component relationships: is-a - an attribute hierarchy, and part-of - an aggregation hierarchy. Delegation 

can be used to represent a complex system by their component structures. Class hierarchy facilitates inheritance 

and makes dynamic binding possible. But sometimes hierarchy structure is less efficient as the object becomes 

"heavier" (memory intensive). Delegation is a better way to create a "light" and "cheaper" object by instantiating 

its component objects through delegators (such as pointers to an object). 

• SIMULATOR: objects to practice dynamic simulation. Simulation algorithms are likely to be developed inde

pendently by domain specialists. It is not necessary to design, test and debug those parts with the entire system. 

They can be built separately and connected to the system later. For example, it is not necessary to change the 

terminal each time the CPU is upgraded. For the same reason, when you design your new CPU, you don't need 

to worry about the type of terminal you will use if a standard interface is defined between them. Both the CPU 

and terminal can have their own class hierarchies and design procedures. A simulator (instance of SIMULATOR) 

can be built by deriving it from an existing one, or by aggregating existing ones through delegation. 

• INTERFACE: objects providing a man-machine interface. It can be shared among systems with little modifi

cations. A well-established INTERFACE class library can make interface prototyping easier and faster. A pre

defined look-and-feel is also important to the user to learn new applications. INTERFACE class can be built 

independently from its applications. 

SIMULATOR 

[2)J-~1 
DATA 

Figure 1: a meta class structure INTERFACE 

The relations among those four class hierarchies are shown in Figure I (arrow points the dataflow). Each node rep-

resents one or possibly several class hierarchies. Application users can derive their own domain specific classes from 

high-level generic classes. A simulation application can be built by using objects from those four node libraries. Nota

ble features of meta class structure are encapsulation and code reusability. A well-encapsulated object can be instanti

ated to build a more complicated object while the original object need not be modified and understood. Different 

applications may use similar objects to save coding effort. Once the interfaces among the nodes are clearly specified, 
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development can proceed in parallel among class hierarchies. Independent development also makes testing and debug

ging much easier and more efficient. 

As mentioned earlier, the SSC is an accelerator built to perform high energy physics experiments. It mainly consists 

of magnets with various attributes. Experimental particle beams are injected from a linear accelerator (Linac), then 

further accelerated at different energy levels through a low energy booster (LEB), medium energy booster (MEB), and 

high energy booster (HEB) which are connected by beam transfer lines. Beams are then injected in opposite directions 

into two collider (TC and BC) rings. These 20GeV beams finally collide in the interaction region (IR). 

Simulation uses both static and dynamic data. Static data created in the design are stored in the database by different 

versions. These data can be manipulated using a particular model to create simulation results. Dynamic data is the foot

print of such results subject to a particular configuration of the lattice. So simulation is a process of manipulating static 

data based on a model to create dynamic data. The goals of the OZ project consist of four parts: 

• A graphical browser for visualizing lattice database. 11lis browser includes: (1) a geometric view of the accel

erator complex at three dimensions (top, side, and front views) with zooming and scrolling functions, (2) a sym

bolic representation of the lattice structure and configuration, (3) a beamline locator which locates a bearnline in 

the selected lattice with a name and expands it into its components, and (4) a plotter for examining various lattice 

optics functions. 

• A dynamic optics function simulator. Users can change the attributes of the accelerator (such as initial settings), 

strength of the magnet and injection position of the particles. A feedback can be obtained from the dynamic optics 

function simulator which tells the user the effect of these changes. 

• A particle tracking simulator which simulates a bunch of particles distributed in a predefined pattern passing 

through each accelerator several turns. It can also simulate particles passing transfer lines between accelerators. 

The simulator aids research in beam synchronization, timing and transfer of a trajectory within a given aperture 

in the accelerator. 

• A basic problem in accelerator physics is how to keep beam on the correct trajectory, i.e., to avoid losing the 

beam. Beam is basically guided by magnets. Most magnets have fixed strength and are designed to bend the beam 

in a certain angle at specified locations. To correct dynamic errors which may affect the beam trajectory, hundreds 

of adjusting magnets (kickers) are placed among the built-in magnets. There are also hundreds of detectors (beam 

position monitors, BPMs) near those kickers to monitor the result of the correction and to locate the beam posi

tion. For a particular BPM reading, a model and simulator are needed to predict the adjusting value for each 

kicker, especially those kickers near the BPM being monitored. 

• Version control for dynamic data. How to record the evolution of the design, to capture the configuration which 
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produces an good result. Version control has two goals: 

1) Version control for attribute hierarchy to record different versions of basic building objects. For example, an 

accelerator can operate at different energies such as injection and collision. The magnet field strengths will be 

different in these different operation modes. 

2) Version control for configuration of different system or subsystem designs. For example, an accelerator can 

be linear or circular. 

Currently, most simulation and modelling tools are designed either for small applications or static batch mode sim

ulation. Such tools generally are not object-oriented and lack graphical and interactive capabilities. Most are not sup

ported by object-oriented databases or persistent object management. ABLE[Rou89] is a knowledge-based simulator 

for particle acclerator control developed at Stanford University. ABLE does not support interactive modelling and sim

ulation. Its simulation capability is limited to beam trajectory fitting. It is difficult to change the lattice configuration. 

DIMAD[Servr85] is another lattice development tool created at TRIUMF in Vancouver, Canada. DIMAD is based on 

FORTRAN and its graphical interface is based on C and X. It does not have the capability to directly interface with a 

database. It also does not support direct behavior modelling. 

"Ipe rest of the paper will discuss OZ, an SSC project for doing object"oriented dynamic simulation. 

2. Object-Oriented Database Visualization 

Two problems need to be solved in data visualization: (1) how to retrieve data from the database, and (2) to map 

data for visualization. The first problem is about data modelling, and the second is about visualization. 

2.1.0bject-oriented data modeUing 

At the SSC, static data for each lattice are stored in several database tables. Each table consists of rows and col

umns. There is an index number (ID#) associated with each row (also called an entry, or a record) in the table. Each 

column corresponds to a particular attribute in that table. A table called GEO records all the geometrical infonnation 

from the first to the last magnet through the lattice. Each magnet has an entry through GEO. Attributes could be point

ers referencing to other tables that contain detailed information about that magnet such as length, and strength. Sybase 

is used to manage the database through multi-threaded client-server model. 

Data are shipped among database and different platforms of workstations throughout the network in SDS. SDS can 

pack a record in a database with its attributes into a C++ structure, assemble them into an object, and load it to a SDS 

file. So a database table will correspond to an array of persistent structures in the SDS file. DATA object will map these 

SDS files into objects in C++. 

Data in the database are modelled at three levels. Each level can be treated as an object derived from DATA. A data 

retrieval is equivalent to a message passing to that object. 
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• Database object. When a particular design version of static data is selected, the corresponding database is 

loaded as an object Do. Do actually loads a particular SDS file into memory and returns a pointer to that SDS 

object. 

• Table object. If necessary, a particular table can be loaded as an object To. This object is dynamically created 

and pointed by a member variable of Do. In SDS, the table is an array of C++ structures. 

• Column object. An attribute (corresponding to a column) is an object Ao which can be loaded when necessary. 

Ao is pointed by a member variable of Do. Ao is able to extract a particular field from an array of structures. Usu

ally only some of the attributes are involved in the simulation at one time. Loading a database table into memory 

takes time and space, and is not efficient for such simulations. So making an attribute as an object is very useful. 

The database itself will not provide any application-oriented data manipulation support. The main purpose for cre

ating an object-oriented data model is to facilitate data manipulations. A standard well-encapsulated interface between 

DATA and other parts of the system will keep the implementation detail transparent to the user no matter what kind of 

database structure is to be used. Data manipulations are supported by a set of methods. Among the available methods 

are: 

• Loading a data object: Do, To, or Ao implemented by polymorphism. 

• Dynamic mapping: dynamically mapping data between lattice databases. For example, particle beam tracking 

can go from one accelerator to another. DATA should be able to handle such shifting automatically between dif

. ferent databases. 

• Geometrical functions: area intersection, viewpoint transformation, zooming and scrolling, symbolic creation 

based of magnet type, finding a magnet based on its name or type, and selecting a magnet based on its position; 

• Application-oriented functions: user-defined one dimensional scaling; 

These methods can be designed as virtual functions for functional or signature sharing. Methods can also be 

designed to fit specific needs for DATA objects at different levels. 

Magnet has two kinds of attributes. Basic attributes Ab are those attributes which can be directly retrieved from 

DATA objects. Composite attributes Ac are those attributes which are function of basic attributes and exclusive to a 

specific application. 

Ac = f(Ab
i1 , Abi2, ... Abik), O<il<i2<. .. <ik<=n, O<k<=n. n is the number of basic attributes. f is the function. 

By making DATA object persistent, composite attributes can be saved in an object-oriented database (such as 

ObjectStore). For large lattices or complicated compositions, loading a persistent object will usually much faster than 

constructing them at the beginning of the program. Persistent objects also provide record of footprint and sharable 

results. 

ObjectStore is used in the development. DML (Data Definition and Manipulation Language) in ObjectStore can be 
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embedded in the existing C++ code to make object persistent. Detailed implementation is based on database version 

control. When a new version is loaded, DATA object will compute all composite attributes Ac with available At, and 

make itself a persistent object. When the same version is loaded again later, all persistent data Ac need not to be recom

puted. Version control will keep the freshness of these persistent data automatically. Persistent data is only validated 

when it is fresh, i.e., the version of the database it is created from has not yet been modified. 

In DATA object, composite attributes are persistent data members. It can be accessed by other objects in the system 

as well as basic attributes. An attribute modification can either directly go to the persistent memory or kept in a tem

porary copy Ac'. These temporary copies are updated when necessary during the modelling and simulation processes. 

But Ac' is transient data and will not be kept after a session. User has to make the decision whether to make them per

sistent or not. 

2.2.0bject-oriented data visualization 

Data visualization is handled by objects in INTERFACE. INTERFACE classes are developed using the GLISTK 

and InterViews libraries. There are two important components in building a graphic interface: (l) the layout of the 

interactive interface and connections among control elements such as buttons and menus, and (2) is the interactive 

graphics (view). A static non-interactive graphics is called an image . 

• ControlLayout is a class to layout graphical user interface. ControLLayout is derived from class Gorgan in 

GLISTK which is in turn derived from InterViews' Scene . 

• ViewP lot is another class to plot dynamic graphics controlled by Control Layout. ViewPlot is a GLISTK 

which is derived from InterViews' Interactor. 

Usually ControlLayout only instantiates its control element through delegation. It only keeps a pointer pointing to 

its control element. Control elements are created not inside the constructor but by another virtual method called Cre

ateAndInsertO. Different versions may derive CreateAndInsertO to create and insert their own control elements. Del

egation often creates a "cheap" object, which only keeps what it needs, and is more dynamic and efficient for 

derivation. 

Control elements are derived from LabelGlistk, which has a label, size, position, state and control action. Label can 

be text or attached to a bitmap. State is a variable with a valid C++ type. State is associated with an object called Com

mUD i s t k. Communistk focuses on the value of the state and has a list of Control Layout to notify when this value, or 

the focus, changes. 

Every Communistk has a CommuList which is a list of ControlLayout which is informed any time the value of 

state that Communistk is focused on is changed by Communistk:: SetValue. Every object that attaches to a Communistk 

is automatically added to that Communistk's CommuList. When the value that a Communistk is focused on is changed 

by Communistk::SetValue, the Communistk calls its HitCommuList method, which informs every ControlLayout 
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in its CommuList by calling their CommuHit method. Such notification can also be put on hold by calling Commu

nistk: :SetValueNoHit. 

A message not only can be sent back and forth between control element and ControlLayout, but also can be send 

out to another application using GUSH event sequencer. For the Communistk to notify the outside world, a message 

must have a name, which will become a GUSH event name. An event name must be registered though GorganMaster, 

which is a GUSTK class derived from InterViews' World. Any change to the Communistk's focus will trigger the Gor

ganMaster to build an event frame and message body and give it to a GUSH executive. An incoming event will be 

checked against registered Communistks and the indicated change, if any, will be presented to the Communistk to 

accept or reject and to notify its attached control element. 

There are two ways to issue an action: one is deriving a specific GUSTK, for example, QuitButton, with its own 

PerformAction method. The other way is associating its Communistk with a particular ID and adding its Control Layout 

to its CommuList. ControlLayout's CommuHit will be called when the Communistk value is changed. CommuHit can 

control the action based on CommuID. Table 1 summarizes methods provided by Control Layout. 

Table 1: Method in class ControlLayout 

method name function description 

CreateAndInsertO create control elements and insert them in a proper form using alignment variables. ControlLayout records 
these alignments in a table and possible reposition and resize. 

RaiseAndLowerO element popup control, such as popup menu and popup message, dialogue. etc. 

LoclcAndUnlockO provides availability control to control elements. 

CommuHitO provides communication among objects, including between ControlLayouts and between its elements. 

StoplnputO Some actions need a start event to enter its mode and wait for end event to exit its mode. Such action should 
be registered with ControlLayout. Then the end event can be directed to its target by StopInputO 

ViewPlot is derived from LabelGlistk. It provides a dynamic graphic view of objects from the database. 

After a particular lattice has been loaded, the position and size of each object can be extracted from DATA object. 

ViewPlot scales these data based on current plotting size and displays the object on the screen. 

When resize occurs, ViewPlot will rescale the position and size of all objects and replot them. The whole plot can 

be zoomed in. When a plot is zoomed in, the plot boundaries are pushed on the stack. Zooming boundaries become 

new boundaries for the new plot. ViewPlot rescales the new plot based on new boundaries. Undo operation is equiva

lent to a zoom out. The previous boundaries will be popped up from the stack and become the current boundary. 

Space is dynamically allocated for all plotting data used in the preceding method. In order to keep all information 

available for redraw, space is only deleted when new data are loaded in from DATA object. Figure 2 shows some exam

ples. 

By taking advantage of dynamic binding of C++ virtual function, all methods for graphic manipulation are virtual. 

A zooming operation on an optics function plotting will cause a one-dimensional zoom in. The same operation on a 

geometrical representation of an accelerator will cause a two-dimensional zoom in. If several plots have to be zoomed 
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,. 

A zoom in at the transfer line region 
between MEB and HEB. A side view is 
in the up right corner. 

A static fI 
top collider (Te). A central region 
blowup is given to its right 

Figure 2. Examples of data visualizations 

in simultaneously with the same scaling, a virtual function call of zoom operation on all these plots will work poly-

morphically 

Most dynamic graphics requires incremental drawing. The result of several simulations can be superposed or plot-

ted in different areas of the screen one-by-one at different times. But what will happen if the window is closed and 

opened later? The current image on the screen should be "remembered" so when the window is opened later, the pre-

vious image can be restored as is. It is not realistic to repeat all the simulation again to recreate these images. 

ViewPlot: :Refresh() ( 

MapRawDataToDrawableData(); 

Dra wStaticData () ; 

if (SizeOfIDQ>O) 

Draw(); 

v~ewPlot: :Draw() ( 

If (AnythingNewInIDQ()) 

DrawViewAtTheTopOfTheStack(); 

ViewPlot::CreateDynamicData() ( 

CreateSimulationResults() ; 

SizeOfIDQ++; 

RegisterToIDQ(); 

Push(IDQ, CurrentDrawingData); 

Draw () ; 

Figure 3. How to do incremental drawing 

A feasible solution is to create an incremental drawing queue IDQ to record incremental drawing data. Two meth-

ods are used for drawing. Refresh handles initial drawing such as legend. measurement. symbolic representation and 

marks. We call these graphics static graphics and they should be always on the screen. To draw something dynamic on 

the screen, call Draw and push data into the IDQ. Draw will pick up the data from the top of the IDQ and draw it on 

the screen. If the window is closed and then opened again, then Refresh will get called. Refresh will in turn call Draw 

to accumulative draw everything in the IDQ, if any. Figure 3 illustrates how incremental drawing queue works. 

Because of a large number of magnets (thousands) may need to be drawn on the screen, making each magnet as a 

structured graphics object in InterViews is not realistic. If we make the whole accelerator as an object, then it is difficult 

to pinpoint an individual magnet object A feasible solution is to make the whole accelerator as an object At the same 

time. design a set of methods to do the mapping among objects on the screen, their lOO in ViewPlot, and their data in 

8 



DATA. Figure 4 shows such a mapping: 
attributes of the object 

A part of screen 

Figure 4. Object mapping 

In ViewPlot, the screen position of each object gets registered when it is drawn. A mouse down event catches an 

object if it occurs within the sensitive boundary of that object on the screen. ViewPlot keeps a list of all types of mouse

sensitive objects, such as magnet, adjuster, and detector. Sensitivity can also be screen out. A caught object is called a 

focusing object Of. ViewPlot will do a binary search within the current plotting boundaries to find ID#(Of)' Then all 

information of that Of can be found through DATA. Some member functions of ViewPlot are listed in Table 2: 

Table 2: Members and methods in class ViewPlot 

name function 

my Model pointer pointing to MODELLER object 

reaIBoundary the real dimension of visual target. For example, optics function of HEB 

visualBoundary current dimension of the visual target. This is used by zooming and strolling 

StretchAndFitO stretch the view and fit it to the size of the window. 

CatchAndZoomO handle zooming base on size of the rubber box created by a mouse down. 

Scroll(currentPosition) handle scrolling from current position to a new position. 

RedoO, UndoO handle unzooming 

EventHandler(event) for event, there is a event handler. 

RefreshO RefreshO handles initial drawings. It keeps a pointer an object called IncrementaLDrawingQueue. 
Refresh will call Draw if there is anything in the queue. Dynamic drawing is handled by DrawO. 

DrawO Handle add on (or called incremental) drawing. 

10# Find(position) return object 10# based on its current registered position 

ShowValue(lD#) show attributes of the object with ID# (focusing object Of) 

3. Modelling Dynamic Behavior 

A model is an abstraction (possibly a mathematical abstraction) of something for the purpose of understanding it 

before building it [Rumba91]. Because a model usually focuses on some essential issues of the simulation entity, it is 

easier to manipulate and simulate than the original entity. 

Object-oriented modelling abstracts an entity in the real system as an object. It is natural to represent entities in an 

application domain as objects which respond to a well defined set of messages. For example, in an accelerator system 

model, domain objects might be magnets, particles, and accelerators. New types of objects may be created by special

izing existing ones. Complex systems can be modelled with composite objects (also called submodels) and can be used 
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in other models. A model as a whole is itself a composite object which responds to a set of messages. Object's identity 

is modelled as member variables (also called attributes). The tolerant threshold towards certain attributes is called con

straints, which is defined as a function f c of some attributes for a particular object, Co = f c(Ao)' Behavior of the object 

is modelled as a set of methods Mb , which is a ftmction of attributes Ao and constraints Co based on algorithms devel

oped domain specifically. Dynamic behavior describes those aspects of the object concerned with time and sequencing 

of operations, such as events that mark changes, sequences of events, states that define the context of events, and the 

configuration of the system where object is placed. 

In this paper, we emphasize the difference among the following concepts [Zeig190]: 

• the real system, in existence or proposed, which is regarded as fundamentally a source of data, which in OZ is 

provided by DATA. 

• the model, which is a set of methods for generating dynamic data to that observable in the real system. The 

structure of the model is its set of methods. The behavior of the model is the set of all possible data that can be 

generated by faithfully executing the model methods. 

• the simulator which exercises the model's methods to actually generate its behavior. 

At the SSC, there are three objects to be modelled. The particle beam, the magnet in the accelerator, and the accel-

erator itself. 

The behavior of a particle (proton at the SSC) depends on its momentum, position and distribution of magnet field 

strength around it. Particle momentum and magnet strength distribution are decided by the accelerator a particle is 

passmg through. So the behavior of a bunch of particles (beron) will be more interesting. Particle distribution hierar

chy (PDH) is used to record such modelling. 

The root class Beam has only one particle and it is placed at the origin. Some standard statistical distribution with 

a certain number of particles are its subclass, such as normal and average distributions. Beam has 5 instance variables 

listed in Table 3: 
Table 3: instance variables in beam class 

instance variable name illustration 

num number of particle in the beam 

Position *pos(numJ position of those particle, displacement d 

Deflection *dp[num] angular deflection of the particle d' 

Deviation *delta[num] momentum deviation of the particle 1) 

distribution fonn statistic distribution of those particles. 

Vector D = Cd, d', Ellis called principle vector CPV). Beam object can be created by using beam class library with a 

graphic interface. Either by picking up an existing beam from the library or create one by rearranging the particle dis

tribution or changing the amount of the particles (Figure 5), a new beam configuration can be created. A new beam 

can also be created as a result of beam tracking simulation. 
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Figure 5 beam objects created from PDH 

After beam is created, it is sent to an acceleration pattern (which is the logical path from its launch position to its 

end observing position through accelerators) for simulation. The momentum will be dynamically bound to the particle 

when passing though the corresponding accelerator. 

The behavior of the magnet depends on its magnet type(t), magnet strength(s), length(l), tilt(o), linearity(m), its 

optics functions (such as fl function), its phase advantage (<I» and other attributes. Magnet attribute hierarchy is used 

to record such modelling. 

The principle magnet hierarchy(PMH) is shown in Figure 6. 

I ''-J £Iement Attributes: -
I Magnet 

:::--- ---..: Nac: Tvpe: 5tren: 
mqf mart<or 0.0000 

i I Drift I I Bending I I RFCavity I I F/D l 
magDCU to tnUlfcr beam mqocu (0 bend beam in RIdIO Fmtut.aCY unit m ...... lDfoaJl .... ~ ..,If drift 0.0000 
La the IttI:lt w.aJOD. 

GVttiD angie _ cenatJI to IICCClcrae tbe beam defOCUI the. tu.m qfc qllOdrupoio 0.0000 
dmctiOD .n_ 

.f ""xtmole 0.0306 

51.,,: 3.2000-02 
C ___ -6 __ :. 

Figure 6 Principle magnet hierarchy and its interface Wl'~.lo fiIe-) mrne:verion2.0 
I 

A prototype of the magnet attributes modelling system is shown in Figure 4, 6. Magnet instances are represented 

by a collection of icons (Figure 4). A magnet class is represented by a list of attributes (Figure 6). Different models of 

magnets are constructed from their own class category using this interface. After a sub-model is created in the hierar

chy, it is added back to the list as a part of the new hierarchy. 

Based on Steffens' theory[Steff85], the behavior of the magnet can be modelled as a 3 by 3 transformation matrix 

M(t"s,1, 0, m). M is defined as a function of t, s, t, 0, andm for a particular magnet. Dj and Dj+1 are the principle vectors 

of a particle at position i and i+l respectively. And we have Di+! = M·Di, i.e.: 

~di+ 11 '~C S Dll~il ldl,l. . . rdi' disPlaeemen1 
d'i+ll = C' S' D' . d ii' VectorD, d'i ts ... called ... pnnctple ... vector(PV) I d'i,deflection 

l\ + lJ 0 0 I J liiJ Iii L Iii' deviation 

Magnet class definition is partially given in Table 4: 

Table 4: Magnet class 

members function illustration 

Class category There are four categories: drift, bending magnet. RF cavities andfoeus/defocusing magnets. 

Attributes *myAttributes Attributes is a C++ class with all attributes: basic and composite 

virtual Matrix* CreateTMO Create transformation matrix for that magnet 

virtual PV* BehaviorMap() create a result principle vector (PV) from the previous one. 
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AIl principle magnet classes are predefined and created from DATA. Each Magnet instance has a pointer pointing 

to a Magnet class in the PMH. When new a Magnet class has to be created, a particular Magnet instance will be 

selected. By changing the proper attributes, a new class will be created with that :nagnet as its first instance. The new 

class will inherits all methods from its parent, such as CreateTM and BehaviorMap. 

Behavior modelling is supported by two approaches: 

1) A text window is provided for examining and overriding the previous behavior model (such as method Behav

iorMap) by using C++ code. Behavior binding is implemented by taking advantage of dynamic binding of C++ 

virtual function. New C++ code has to be recompiled and linked into the system and then the whole process 

needs to be restarted. 

2) Several models (such as linear and nonlinear method) can be predefined based on knowledge and domain spe

cific rules. Virtual function dynamically bind the rule number (set by the user through interface) with a pointer 

of a member function to construct behavior. Interactive modelling basically becomes rule-picking and function 

binding. Rules can also be added off-line by using C++ code. 

Modelling accelerator uses configuration binding techniques. An accelerator can be decomposed into beam line , 

which is a set of magnets placed in a specific order as a design component. Accelerator is on the top of this configura

tion hierarchy. It is decomposed into major beamlines. And these major beamlines are further decomposed into smaller 

beamlines, which are in turn decomposed all the way to the magnet level. Such a structure hierarchy is called a lattice 

configuration for an accelerator. 

The class Beamline is derived from the base class DList, which implements a doubly linked list (NIHCL and 

GNU all have that type of class). Beamline holds a pointer pointing to its component, which may be smaller beam

lines or magnets. Beamline class is also derived from Magnet class that makes it easy to insert in, replace by 

another beamline or magnet. Multiple inheritance (Figure 7) is used to make such a class possible. 

Figure 7 Beamline: mUltiple inheritance from Magnet and DList 

Beamline inherits all members and methods from Magnet. But Beamline has its own methods to specify its 

structure. Members and methods of Beamline are listed in Table 5. 

Table 5: Beamllne class 

members function illustration 

Beamline* bmLnElmnt; bmLnElmnt point to the current component (smaller beam line or magnet) 

12 



Table 5: Beamline class 

members function illustration 

Insert(WhichSide); All these methods are inherited from DList class. 

Replace(Position, Beamline*); InsertO inserts a beamline before/after (depends on the value of WhichSide) the current beam-
line. Replace() and Delete() replaces and deletes the current beamline. GetO moves the bmL-

Delete(Position); nElmnt to another beam line. 

Get(Position); 

virtual Tracking(Particle*) Beamline's own method, which accepts a particle (or beam that is derived from particle) object 
as its argument, does straightforward, magnet-by-magnet tracking at the bottom of the configura-
tion hierarchy through the beamline. The keyword '"virtual" means that each beamline or magnet 
object must implement such a method. One of the extraordinarily useful features of the virtual 
method is that it allows us to perform polymorphism on all kinds of beam line and magnet which 
is a component. 

A new lattIce connguratlon can De createa oy re Hacm p g a oeamIme 0' a new aesl n. m l'lgure IS, a new aesl n Jor y g g 

the beamline triwm' creates a new configuration for the LEB. Configuration binding is deferred at the simulation stage 

and t,he binding actually occurs at the bottom level of this hierarchy, i. e. magnet level. Configuration binding will also 

be discussed in version control later. 

~ 
I arcwm I lr-s-se-w~m-in-j"l 

Figure 8. Lattice configuration hierarchy 

4. Dynamic Simulation 

SIMULATOR is a class which exercises the model's methods to actually generate its dynamic behavior. In OZ, 

simulation might deals with several kinds of models, such as beam model, magnet model and lattices configuration 

model. The behavior of each object in the interactive simulation process is important to adjust the model for better 

performance. When DATA and MODELLER are created, simulator (an instance of SIMULATOR) will be triggered 

to launch the simulation. Simulator is the manager of the entire simulation. Objects are controlled under simulator to 

interact with each other to create dynamic behavior. Figure 9. gives an example for "BumpView" simulation, which 

meets the fourth goal of the OZ system. 

The bottom part of the window is a graphical representation of the lattice structure of the LEB. Above it is the 

graphical representation of the detectors and adjustors along the LEB. All objects in the representation are active (sen

sible and associated with actions). In the middle of the window is the dynamic aperture of the LEB which basically 

depends on the attributes of the magnet at each point. The middle part is expanded at the up right comer. The dashed 

bar is the BPM reading set by the user. A bumpview simulation will give the following: 

• Three white points (actually a three green bar) stands for the settings of three kickers around that BPM. The 

actually values are given as deltaX.', deitaX', deitaX+' in the "Adjuster settings" box at the bottom of the control 
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Figure 9. 3-bump simulation using BumpView simulator 

panel. 

• To make modelling simpler, we assume that the adjusting will only affect 3 BPM readings nearest to the BPM 

selected. All other BPM should have zero readings. The simulation proves the model is correct. From the picture, 

there are only 3 solid bars in the middle. 

The up part of the window is the tHron oscillation along the LEB. 

Dynamic simulation allows user to pinpoint objects (magnets) in the lattice, modify their attributes and rerun the 

simulator interactively. 

l~fiN'JN\':I\'MJf (\t'.:'li~iNJI:i\I,\ ··fil'~N(J',\\j\tN' 
~\~ ,I,ll: f,'t,~ ,~ 'J, ~Jt~t,'H I' I.t;.f, ',!f, ,~ ... I "it~),:f. 
1 i I', 'i'lrI'.11jl\1lP~1\'1'.1\ IN'lj ,11\1'1 '1',lH1\1'. 

a. dynamIc OptICS functIon 
creation of the MEB. Here 
is a function 

/~ r'~ 
c.-. v·r

• 

" 

,. , .-
b. dynamIc particle tracking 
in LEB for 100 turns and 
recording its d and d' after 
each turn. 

I 

.'If; 
1 

c. dynamIc tracking partIcle 
for one ture and recording 
its d and d' after each magnet. 

Figure 10. Dynamic simulation 

, 

~nI""'"'" ~~ 
00 . . 
. . 

I~ /1/ 
d. dynamIc launch a beam for 
10 tums to see how many 
particles are still in the 
survival aperture. Beam is in 
solid dot. Survival particle is 
is small circle. 

Figure 10 and 11 gives more examples of dynamic simulations. In Figure 10. a is the optics function ofLEB created 

by Twiss derived from SIMULATOR. band c are dynamic particle tracking by turns or by every magnet using 

Track. d is dynamic tracking of a beam created from beam class hierarchy by using Emit, which is also a simulator 

from SIMULATOR class hierarchy. Emi t can also be used to aid the research of relations between particle distribution 

in the beam and beam survivability. 

A particle could be lost during the acceleration. It is important to know where it is lost in order to make the correc

tion py using BumpView simulator. Figure 11 gives such an example. 
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a. Tracking a particle for certain turns 
to check its survivability under the 
current lattice configuration. 

Figure II. Beam survivability research 

5. Version Management and Release Control 

b. launch a beam with certain distribution. Check 
its distribution after several turns to research the 
relation with lattice configuration and magnet 
attributes. 

As the design complexity increases, OZ needs to support cooperative work by a number of physicists on the same 

design. As a result, a requirement has emerged for version management mechanisms that record every stage of a 

design, merge individual designs to a complete design and make alternative designs available. Version management 

and release control needs to deal with the following issues: 

• how to document an alternative design? 

• how to document the design evolution? 

• how to merge individual design into a complete design? 

In previous sections, magnet attribute hierarchy and lattice configuration hierarchy have been mentioned for 

dynalruc behavior modelling. lbis section will discuss how to manage these hierarchies. 

OZ version management system is a version hierarchy (Figure 12). VersionManager sits at the top of this hierarchy 

to manage the version control. 

..... rmYl 
"~ 

~ N:. designer work on 
templete J\ templete of triwm 

and register to 
designl " component 

Figure 12. Version management hierarchy 

Design level 

A design in this paper is a generic configuration shared by designers. it is implemented as a top level Version Man-
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agement Unit (VMU) for the purposes of versioning. For example, the LEB of the SSC has three different designs: 

SSC 1 OF, SSCOCT and SSC91. Each designer has to register to a design. Registration makes the current work tied with 

a specific design. Component is also a VMU which sits below the design and it is used to built up to a design. Config

uration is the internal structure or attributes (if at the bottom level of the version hierarchy) of a component. Template 

is a working space for private development on a particular component to yield a alternative configuration. 

Each designer can create a template at each component node. The component in the node is frozen as "official" 

configuration(OC). When a template is created, a copy of the OC is checked out into the template. Template can be 

made public to form an alternative configuration library. A configuration also can be checked into the node and frozen 

to be official. Currently check-in is controlled by the VersionManager through the design the designer registered. 

By using version management hierarchy, alternative designs (configurations) by different designers are kept in their 

own templates. A design is originally created in the MODELLER and then put into the version management hierarchy. 

VersionManager records its creator, and check-in date. The individual designer will be assigned to each of its compo

nent to exercise the configuration using modelling and simulation in its own template. Release control is through 

dyna,mic configuration binding. The component will be bound to its OC by default if there is no template created by 

the designer at that node, otherwise it will be bound to the current configuration the designer is working on. As a matter 

of fact, that configuration is deri ved from oc. When a new configuration is created in the template, the pointer (which 

is inside its parent configuration) pointing to the OC or previous configuration will "float" to the new one. Then all 

messages sent to the configuration pointed by that pointer will be dynamically bound to the new configuration. The 

new configuration can be checked into the node as OC, made public as an alternative of OC along with a performance 

testing report for reference, or just left in the template for further development. 

A configuration is usually created from the bottom using magnets available. A configuration may instantiate sub

configurations as its components by picking up candidates from the component library consisting of OC (default) and 

all its public alternatives, or just from the scratch (magnet). A complete design is created in such a bottom-up fashion. 

A new configuration can also be created by inheritance. A special version of a component can be naturally derived 

from existing one by using a template. 

Our version management mechanism supports configuration hierarchy and multiple configurations in the template. 

Cross referencing between different designs are also available. It also allows deriving classes directly from version 

management hierarchy and sharing its capability through multiple inheritance. Therefore, version management can be 

handled automatically. 

Version management and release control are still in prototyping stage. Future research includes manage concurrent 

check-out configurations, and a graphic interface for version management. 
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6. Conclusion 

In this paper, we have described our experience with designing and implementing an object-oriented simulation 

environment OZ. The issues of building a generalized simulation system have been addressed by proposing a meta 

class structure which decomposes a system into four types of classes that handles data acquisition, user interface. mod

elling and simulation respectively. 

In our object-oriented data modelling. data. meta data. and procedures that handle data accessing and manipulation 

are combined together as an object. Data as an object is able to describe itself and provide information to the modelling 

and simulation. Data object has its view which can be directly manipulated through a graphic user interface. A dynamic 

system can be decomposed into objects with dynamic behaviors. Attributes and constraints are used to model dynamic 

behavior of the object with a class hierarchy. Attributes and constraints can be dynamically bound to an object in an 

inheritance hierarchy. Different configuration can also be dynamically bound to an object through configuration hier

archy. Simulation can be exercised using a particular configuration with data objects as parameters in our modelling 

system. Version management and release control, which are important aspects in dynamic modelling. are implemented 

using configuration hierarchies and persistent objects. 

OZ has been implemented and currentl y available on a local network of Unix and X based workstations at the SSC 

Laboratory. We used the same approach presented to prototype the BumpView, which is an extension to OZ for 

dynamic simulation. With the experience we had in developing OZ, it took us only one month to finish the prototyping 

of Bump View. The results achieved with our current effort have been encouraging and lead us to be~ieve that object

oriented approach will provides us more flexibility and extensibility. We plan to extend our effort to build a generalized 

framework for building more simulation tools for the SSC. 

Because of a user friendly interactive graphic interface, most of the physicists in the lab who used to addict to FOR

TRAN has start to use OZ to design and perform the simulation. An integrated object-oriented simulation environment 

such as OZ will help the design and simulation of the SSe. 

7. Acknowledgments 

We greatly appreciate the valuable contributions and advice provided by Dr. Richard Talman, Dr. Garry Trahern, 

Dr. George Bourianoff and Ellen Syphers at the Accelerator System Division of the SSC Laboratory. We also appre

ciate the help from Dr. Chris Saltmarsh, and Matt Fryer at Laurence-Berkeley Laboratory and Matthew Kan at Carn

egie Mellon University. 

17 



References 

[Beaum90] Beaumariage, T.; Mize, 1. H.: "Object-oriented modeling: concept~ and ongoing research", Proceedings of 
the SCS Multiconference on Object-Oriented Simulation, pp. 7-12, San Diego, CA, 1990. 

[ButIer91] Butler, G.P.; Corbin, M.l: "Introduction to Object-oriented Simulation", lEE Colloquium on "object
oriented Simulation and Control", Digest No. 057, pp. 1/1-3, London, UK, 1991 

[Gobbe91] Gobbetti, Enrico; Turner, Russell, "Object-oriented Design of Dynamic Graphics Application", Computer 
Graphics Laboratory, Swiss Federal Institute of Technology, Lausanne, New Trends in Animation and Visualization, 
John Wiley & Sons, 1991 

[Gorle91] Gorlen, Keith; Orlow, Sanford; Plexico, Perry: "Data Abstraction and Object-Oriented Programming in 
C++", March, 1991, John Wiley & Sons 

[Ege88) Ege, Raimund K.: "Constraint-based user interfaces for simulation", Proceedings of 1988 Winter Simulation 
Conference, pp263-271. 

[Kan91] Kan, Matthew: "GLISTK: Graphic Library for the Integrated Scientific Tool Kit", Laurence-Berkeley 
Laboratory, March, 1991 

[Klahr86) Klahr, P.: "Expressibility in Ross: an object-oriented simulation system", AI Applied to Simulation, 
Proceeding of the European Conference, SCS, San Diego, CA. pp. 136-139 

[Linto90] Linton, Mark: "InterViews Reference Manual", Version 2.6, Computer Systems Laboratory, Stanford 
University, Feb., 1990 

[Objec91] Object Design, Inc.: "ObjectStore User Guide", Release 1.1, March, 1991 

[Page89] Page, Thomas w.; Berson, Steven: "An Object-oriented Modeling Environment", Proceedings of 1989 
OOPSLA Conference. pp. 287-296 

[paxs091] Paxson, Vern: "Reference Manual for the Glish Sequencing Language", Laurence-Berkeley Laboratory, 
April. 16, 1991. 

[Rober88] Robert, S. D.; Heim, J.: "A perspective on object-oriented simulation", 1988 Winter Simulation Conference 
Proceedings, pp. 277-281, San Diego, CA, 1988. 

[Robin89) Robinson, 1. T.; Kisner, R. A.: "An intelligent dynamic simulation environment: an object-oriented 
approach", Proceedings IEEE International Symposium on Intelligent Control, 1988, Washington, D. c., pp 687-692 

[Rou89) Round, Alfred: Knowledge-based Simulation, "The Handbook of Artificial Intelligence", Volume IV, Chapter 
XXII, Addison-Wesley Publishing Company, 1989. 

[Rumba91] Rumbaugh, James; Blaha, M.; Premerlani, W; Eddy, F.; Lorensen, W General Electric Co.: "Object
Oriented Modeling and Design", Prentice Hall, 1991 

[StalI90] Stallman, Richard: "Using and Porting GNU CC", version 1.37.1, Feb. 21, 1990 

[Saltm91] Saltmarsh, Chris: "The SDS Document: A Conceptual Basic Towards Understanding the Self-Describing 
Data Standard", Laurence-Berkeley Laboratory, Dec. 1,1991. 

[Steff85] Steffen, K.: "Basic Course on Accelerator Optics", DESY HERA 85/1 0, Deutsches Ele, ktronen-Synchrotron 
DESY, Hamburg, March, 1985. 

[Steph9l] Stephanie, J. c., Burdorf, Christopher: "PSE: an object-oriented simulation environment support 
persistence", J ourna! of Object-Oriented Programming, Oct., 1991, pp 30-40. 

[Servr85] Servranckx, Roger; Brown, Karl; Schachinger, Lindsay; Douglas, David: "User Guide to the Program 
DIMAD", Stanford Linear Accelerator Center, Report 285 UC-28(A) May, 1985 

[Tang91) Tang, Ming Xi; Smithers, T: "Towards object-oriented simulation", IEE Colloquium on "object-oriented 
Simulation and Control", Digest No. 057, pp. 7/1-4, London, UK, 1991 

[Trahe91] Trahern, Garry; Zhou, Jiasheng: "SSC Lattice Database and Graphical Interface", 1991 International 
Conference on Accelerator and Large Experimental Physics Control Systems, KEK, Japan, Nov, 1991. 

[ZeigI90] Zeigler, Bernard P. : "Object-Oriented Simulation with Hierarchical, Modular Models", Academic Press, 
1990. 

18 


