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ABSTRACT

Q-stars (the gravitational generalization of Q-balls, strongly bound bulk mat-
ter that can appear in field theories of strongly interacting hadrons) are the only
known compact objects consistent with the known bulk structure of nuclei and
chiral symmetry that evade the Rhoades-Ruffini upper bound of 3.2M;. Generic
bounds are quite weak: Mq_,a < 400Afg. If, however, we assume that the 1.558
ms pulsar is a Q-star, equilibrium and stability criteria of rotating fluids place a
much stronger upper bound of Mq_,,, < 5.3M on such models under certain
special assumptions. This has important implications for heavy compact objects

such as Cygnus X-1.

Submitted to Classical and Quantum Gravity.

The idea [1] that bulk matter can be bound by purely strong forces has im-
plications for cosmology {2, 3, 4, 5, 6, 7] and astrophysics {5, 8, 9, 10, 11]; various
species include strange quark matter [6, 7] and baryonic matter (8, 9, 10]. Bary-
onic matter is particularly interesting because it offers a consistent description of
the known properties of nuclei on the one hand, and exotic hadronic bulk matter
with very different properties on the other hand. The bulk properties of nuclei
(binding energies, charge densities, bulk compressibility, optical potential, spin
observables in polarized proton scattering, efc.) have been simply and success-
fully modeled with a field theory of a baryon field ¥, a phenomenological classical
scalar field o and a vector field V, [12}. Such models of ordinary nuclei can also be
made compatible with the hadronic successes of chiral SU(3),, X SU(3)r symme-
try {8} (baryon and pseudoscalar meson octet mass spectrum, low energy hadronic
scattering, Adler-Weisberger sum rule, Goldberger-Trieman relation etc.) Exotic
bulk matter can appear because, for certain forms of the o-self interaction po-
tential U(o), there exist large “Q-ball” solutions with hundreds of MeV binding
energy per baryon. This possibility stems directly from our ignorance of the ef-
fective potential U(o). /\'crucial fact is that the bulk properties of the Q-ball

solutions are virtually independent of the properties of ordinary nuclei.

This scenario has important implications for neutron stars. The generaliza-
tion of Q-balls to include gravity are called Q-stars 8, 9, 10, 13, 14]. Here,
Q stands for the conserved charge that stabilizes the solutions; in field theories
of strongly interacting hadrons it is the baryon number. They can have large
masses or high rotation rates, and should differ from conventional neutron stars
in many important ways; for a large range of parameters they give counterex-

amples to the 3.2Mg upper bound on neutron star masses proposed by Rhoades



and Ruffini [15]). In fact, prior to this work, the only upper bound on Q-star
masses, Mq_aa < 400Mg, was given by the observation that white dwarfs are
not Q-stars [14], thereby setting a lower limit on Q-ball densities. In this paper

we bound a certain Q-star model with astrophysical data.

There is a wealth of data on neutron stars that confront any model of bulk
nuclear matter, particularly if, as is widely accepted, pulsars are interpreted as
rotating neutron stars. These include observed masses, population statistics,
magnetic field strengths, cooling curves, rotation rates, pulsar glitches, and high
space velocities*' For example, the conventional interpretation of pulsar glitches
as resulling from plate motion in the neutro;l star crust is problematic for Q-stars,
for which crusts are not generic [16). In this work, we assume that the fastest
pulsar PSR 19374214 (which is not known to glitch) is a Q-star and restrict
Q-star parameters from its (presumed) rotation rate period 7 = 1.558 ms. We
consider here for simplicity only the case of Q-stars in which baryons are massless

in the interior.

Shapiro, Teukolsky, and Wasserman [19] have outlined general criteria, in
light of the pulsar 19374214 [20], period 1.588 ms, for limiting the mass and
radius of the nonspinning progenitor. 1f the mass M of a neutron star is too low,
instabilities set in for conventional neutron star models (secular and dynamical,
depending on the regime and the compressibility of the star). If M is too high,
there are two restrictions: the formation of destabilizing ergotoroids and gravita-
tional collapse to a black hole. Here we examine the possible equations of state

of Q-stars that are consistent with all the stability criteria.

#1 See, fur vinmple, ref. [17]. A recent review of the properties of millisecond pulsars can
be fou .« ad. [18].

We consider the Lagrangian
. 1
L=V[i0,7* —m(s) - gvV]¥ + 5(8‘,0)2 ~-Ulo) + %m;,V,.V“, (1)

in which ¥ is a baryon field, and o and V are phenomenological scalar and vector
fields. Serr and Walecka [21] have shown neglect of the vector field dynamics to
be a good approximation for ordinary nuclei such as **Ca and *®Pb in their
mean-field model. This Lagrangian then gives a good mean field account of bulk
nuclear properties and we examine its consequences for neutron stars. For certain
choices of U(a) compatiblie with bulk nuclear properties, the stable neutron star
configuration will be a Q-star rather than the metastable conventional neutron

star configuration.

Spherical Q-stars in which m(¢) = 0 and U = U, in the interior have the
following equation of state (EOS) [10] (£ and P are respectively the total energy

density and pressure):
£ =3P —4Up+ay(€ - P —2U,)} =0, (2)

in which ay = V3(gv/my)?/x. 1t is convenient to define ( = ayUéV”s , with
which Q-star properties scale. For given parameters ay and Uy, there will be a
range of possible masses and radii. For low masses the density is constant, so
a description in terms of an EOS is possible. The density increases as gravity
becomes important, and the maximum mass occurs when %%’ vanishes (R is the
neutron star radius). Ref. [14] summarizes many properties of Q-stars in terms of
the scaling parameter (, and we will quote many of their results in what follows.

For any fixed ¢, there is a locus of such maximum masses (%’;‘4 = 0) obtained

when ay is varied. An example is shown in figure 1. Note that there is a smallest



maximum, which occurs when the scalar energy density Uy is so large that the
corresponding Q-ball is unbound. The unlabeled solid line of figure 2 shows the
locus of such minimum maxima for different values of {; the point of maximum

mass of any Q-star must lie to the right of that line.

We now seek to constrain the space of possible Q-star masses and radii from
considerations of rotational stability and equilibrium assuming that the 1.558 ms

pulsar is a Q-star. ¢

There is a long history of the analysis of the maximum rotation velocity of
a gravitationally bound fluid with a given EQS. The standard classical reference
is by Chandrasekhar [22]. The simplest EOS is the case of incompressibility (see
[17]). We will later argue that this is a good approximation for Q-stars with EOS
(2). In the Newtonian regime rotation produces the MacLaurin spheroids. The

angular velocity ) and eccentricity e are related by

2 M= e?
L = 1-e 2(3—262)arcsinc—-§;(l —é%). (3)

xGE e3

The maximum § occurs at e = .93; beyond that point, an increase in angular
momentum decreases §). Therefore, for an incompressible Newtonian fluid of

energy density £, the maximum angular velocity Qmax is given by

LI 1.19. (4)

VGE ~

This constraint is shown in figure 2 by the dotted curve without the Xs.
Stability against gravitational radiation imposes tighter constraints. Gravi-
tational radiation reaction causes non-axisymmetric modes of the form ™t o

go unstable for sufficiently high m [23]. m = 2 instability sets in at e = .81,

m = 3 earlier, etc. From (3) this means smaller critical {1 for increasing m. For

example, stability of the m = 2 mode requires

1)
T < 1.08. (5)

Each higher mode has a longer growth time, but sets in at lower angular momen-
tum. For sufficiently high m the instability is either damped by viscous forces or
grows slowly on stellar timescales, so generally m > 5 need not be considered. A

useful parameter for describing the onset of instability is

rotational kinetic energy

(6)

t=

gravitational binding energy

The insensitivity of critical ¢ of the fastest-growing mode to the EOS is a remark-
able and useful result; i.e., m = 2 sets in at ¢ = .14, not only for incompressible
stars but also for centrally condensed ones. For higher modes there is dependence

on the EOS [24, 25].

Equilibrium and stability criteria have also been established for polytropes
[24, 25, 26) (i.e., fluids obeying an equation of state of the form P = KE1+3,
where K is a constant and n is referred to as the polytropic order. n = 0 is the
incompressible case, and the larger the order, the softer the EOS.) For general
polytropes, the equilibrium limit comes not from a peak in the angular velocity,
as in n = 0 polytropes, but from mass shedding at the equator. Whether or not
secular instability sets in before mass shedding depends on the model and the
relevant modes of oscillation. For an approximately incompressible (lower order
polytrope) EOS, a star rotating at t > .08 is likely to be unstable to m < 4 modes

123, 24, 25]. In the opposite limit of extreme central condensation (the Roche

i



model), the limiting angular velocity due to mass shedding has been shown to be
[19]:

£ o @)

N3

Interestingly, the relativistic result is the same as the Newtonian one for the

Roche model. Some of these stability criteria are displayed in figure 2.

Full general relativistic calculations offer less obvious information. The in-
compressible and polytropic equilibria are known (19, 27, 28], but the precise
onset of secular instabilities is not. One rigorously known stability limit comes
from mass shedding at the equator. Although nuclear forces bind individual
baryons to Q-stars even at zero gravity, mass shedding can still occur in the form
of macroscopic chunks for which the gain in surface energy is unimportant. Al-
though the onset of secular stability has not been computed for many EOSs in
the presence of strong gravitational fields, we can estimate it by assuming that
the critic«,  .inws for such onsets are similar to the Newtonian result, combined

with general relativistic numerical calculations of t-values for the relevant EOSs.

There is also a new purely general relativistic instability: the formation of
ergotoroidal regions in which the relativistic dragging of inertial frames is so
strong that all observers must rotate relative to the distant stars, and in which
negative-energy perturbations grow exponentially (27, 29]. This instability does
not set in for the Q-stars we consider in this paper.

We have seen that the maximum mass of a Q-star is constrained to lie in a
slice of M vs. R space, bounded by the solid Q-star maximum mass line and one
of the stability curves in figure 2. We must now address the question of com-

pressibility to determine which curves apply. Q-star density profiles for various

values of ¢ [14] are shown in figure 3; in no case can the bulk of the mass be
considered centralized. The Q-stars of the highest mass also have the highest
values of {. From figure 3, we see that they therefore have the stiffest EOSes and
can be treated as approximately incompressible. Thus the incompressible mass
shed curve of figure 2 gives a bound, Mq_.. < 7.4Mg, which gets only slightly

stronger when compressibility is taken into account.

The secular stability criterion is not known in the general relativistic case,
but if as is widely believed instabilities set in for particular values of t, we can
use the data of Butterworth and Ipser [27, 28, 29] to estimate a stability curve at
t = .08. Those authors tabulated values of ty for different rotation rates, stellar
masses, and energy densities, where ty is the relativistic generalization of our t
parameter calculated by ty = JJQ/(Mo + 3JS — M), with M the mass, J the
angular momentum, and Mp the mass in the absence of rotation and gravity. In
table 1 we show, for three different values of AoE'/? (a measure of the strength of
GR), the eccentricities and angular velocities at which ty = .14 and ty = .08. It
is clear from the table and comparison with (5) that the effect of GR is to weaken
the bound on . In figure 2 we show these three values of MyE'/? at the t = .08
points A,B,C, and a curve drawn through then: (using the approximate constancy
of the central energy density & once Q is fixed). Using this as a stability limit,

we obtain the result Mq_qar < 4.9M,.

There is a question as to what degree the compressibility of the Q-star affects
these bounds, M < T.4My (mass shedding) and M < 4.9M; (m = 4 secular
stability). To answer that, we have examined n = 1 polytropes because the ratio
of central (£.) to average (£) energy density £/€ = 3.26 for n = 1 [30], which

resembles many Q-stars. In fact, Q-stars in the regime in which we are interested



should lie between n = 0 (incompressible) and n = 1. The equilibrium [31} and
stability [24, 25] of n = 1 polytropes have been studied. From Managan et. al.
and Butterworth we have determined mass shedding and m = 4 stability curves
under the assumption that the critical ¢ values persist under strong gravity. They
too are shown in fig. 2. The resulting bounds are M < 6.7M, (mass shedding)
and M < 5.9Mg (m = 4 secular stability). The Q-stars in this regime are more
like n = 0 (incompressible) than n = 1 polytropes, both in terms of £./€ and the
shape of the profile. (Polytropes have vanishing mass density at the periphery.)
The n =1 results merely give an indication of the way the bounds may differ
from those obtained under the approximation of incompressibility. M < 5.3Mg

is probably a fair estimate of the true m = 4 stability limit.

There is another, independent way to limit the mass. Note that in the limiting
case, 7.4 Mo, the model allows rotation at 1.558 ms only for high mass objects. If,
on astrophysical grounds, we assume that the mass of the pulsar is on the order
of 1.4Mp, then the maximum possible non-rotating Q-star mass is Mq_a <

4.64 M, relying only on the Newtonian stability criteria.

This new Mq_.ar < 5.3M; bound has important implications for heavy
compact objects. Cygnus X-1 has a mass probably greater than 6.3M; (32, 33).
Under the assumptions above, we would conclude that it is not a Q-star with
EOS (2). A perhaps even better black hole candidate is the recurrent nova V404
Cygni [34] with a firm lower limit of Af > 6.26 + 0.31M; and probable mass in
the range 8 — 15.5M. Thus for this object we draw the same conclusion, that it
is not a Q-star with EOS (2). Similar considerations apply to the heavy compact

objects LMC X-3 and A0620-00 [35).

The Rhoades-Ruffini theorem [15] states that, based on the assumptions 1)

that general relativity is the right theory of long-wavelength gravity, 2) micro-
scopic causality and 3) microscopic stability are applicable and 4) that the EOS
below a density & ~ nuclear density can be extrapolated from the properties of
the interior of 2 Ph, even for bulk matter with ~ 1057 baryons, there is an upper
limit Mpeutron star < 3.2Mg for compact non-rotating astrophysical objects to be
stable against gravitational collapse to black holes. Assumption 4) is, however,
suspect; it is only necessary for the model of hadron dynamics to be compatible
with the properties of ordinary nuclei and chiral SU(3), X SU(3)n (the two best-
known facts of low-energy hadronic physics). Q-stars, the only known compact
objects to evade the Rhoades-Ruffini limit while still compatible with bulk nu-
clear properties and chiral symmetry, make use of this weaker fourth assumption
and can have stable masses Mq_uar >> 3.2M;. Before this work, EOS (2) gave
a typical counter-example to the assertion that Cygnus X-1, V404 Cygni, LMC
X-3 and A-0620-00 must be black holes, and it was only possible to argue that
Mgq_sar < 400M;. In this paper we have found that, under special assumptions
on the nature of Pulsar 19374214 and the stability and equilibrium of general
relativistic rotating Q-star fluids, a much stronger new limit Mq_y., < 5.3Mg
emerges for EOS (2). Similar limits almost certainly apply to all Q-stars.
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TABLE 1
MyE? e(ty = .08) NE- 1y = .08) NE-' 2ty = .14)
A: 077 581 968 1.2
B: 16 461 1.02 1.3
C: 215 .295 1.05 1.35
Critical parameters for three different strengths of relativity. See text for

explanations.
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