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ABSTRACT 

In the Thomas-Fermi approxill1atio~ to theories of coupled fermions and 

scalars, the equations for spherically-symmetric non-topological solitons have 

the form of potential motion. This gives a straightforward method for proving 

the existence of non-topological solitons in a given theory and for finding the 

constant-density, saturating solutions. 
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Solitons in field theory, in the sense usually used in the literature, are finite­

energy, non-singular, localized classical solutions to field equations. These so­

lutions can be stable either because of topological reasons, with boundary con­

ditions at infinity preventing decay into lower energy states, or because the 

solutions themselves are the lowest energy states. We will consider the second 

kind here, which have been called 'non-topological solitons,.ll,'1 

In purely scalar field theories, time-dependent non-topological soliton solu­

tions have been explicitly constructed.I ..... 1 Such solutions correspond in a seJDi­

classical approximation to coherent states of the full quantuIll theory. In fermion 

theories, the situation is more complicated: occupation numbers never get larger 

than one, sO classical solutions are never a good approximation. The Dirac equa­

tion must be solved to find the true quantuIll states which are then filled to form 

a Fermi sea.· This has been done for systems with small numbers of fermions, 

with a boson interaction added as a background field in the Dirac equation, a.nd 

applied as a model of hadrons.I•1 For systems with many fernlions, however, it is 

impossible to solve for all the quantum states. Instead, there is an approxinla­

tion, due to Thomas and Fermi,171 that can be used when solutions have fields 

which are sufficiently slowly-varying functions of position: the fermions may be 

treated as free particles stacked in a Fermi sea with a position-dependent Fermi 

momentum. We are interested in theories with fermions coupled to scalars, 

which provide an attractive force to overcome Fermi repulsion and allow bound 

states. The Thomas-Fermi approximation in this case incorporates the effects 

of fermions into the scalar field equation of motion through the assumption of 

a filled Fermi sea with a Fermi momentuUl that depends on the value of that 

field. It was first introduced in the context of non-topological solitons in Ref. 1, 

followed by many papers applying this idea to speciik models, pMtkmMly to 

nuclei (see Ref. 5 for a review). 

Here we show that in the Thomas-Fermi approximation, the three diIllen­

sional spherically-symmetric scalar field equation has the form of potential mo­

tion. This follows simply from energy-momentum conservation, with the poten­

tial being the total pressure in the problem, and therefore generalizes easily. As 
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for scalar field theories, where the mechanical analogy is often used, the potential 

motion form for fermion field theories is useful for determining the existence of 

solitons in a given theory and showing whether there are special solutions which 

can be any size and have constant energy and number densities. Because of the 

resemblance to what is called the saturation of the interiors of heavy nuclei, we 

call the special solutions saturating. 

Consider for the moment just one scalar field ~ and one fermion field 1/1. 
Write the Lagrangian as 

L = L", + L1/I (1) 

where L." contains those terms that involve only ~, 

L." = t (8j.<{1)'2 - U(<{1) , (2) 

and L.." contains the rest, including interactions between <{1 and 1/1: 

(3) 

The Thomas-Fermi approximation consists of neglecting terlllS involving spatial 

derivatives of ¢ in the square of the Dirac equation that follows from (3), based 

on the assumption that ¢ is slowly varying. Then the fermion states are those 

offree particles with a dispersion relation which depends on on ¢(i). Derivative 

interactions in eqn. (3) contribute at the salUe order as terms that are being 

neglected, and therefore have no effect within the approximation. 

We can write the conservation of energy-momentum in this theory as 

(4) 

with 

(5) 
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and the energy-momentum tensor for the fermions given by the perfect fluid of 

the Thomas-Fermi approximation, 

(6) 

In the rest frame of the fluid the velocity four-vedor U~ = o~. Since we are 

neglecting the dependence of P.." on derivatives of ¢, eqn. (4) becomes 

(7) 

For static fermion densities, this gives 

(8) 

The right hand side describes the effect of the fermion fluid on the scalar field 

equhtion of motion. 

For the Lagrangian (2), static, spherically-symmetric solutions III three 

space dimensions satisfy 

(9) 

where the prime denotes differentiation with respect to the radial coordinate 

r. This equation has the form of potential motion for a particle at position <{1 

and tinle r moving in the potential V = P", - U, with a friction term whose 

coefficient is inversely proportional to time. 

This form of potential motion can be generalized to more complicated the­

ories. For a theory with n scalars and any number of fermions, i rolls as a 

particle in an n-dimensional space moving in a potential P", - U( i), where P.." 

is the sum of all the Fermi pressures. In theories with vector fields, the trans­

verse component will satisfy the same rolling equation, but tile potential has 

the opposite sign, V = U - P..", so that the rolling does not apply to theories 
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containmg both scalars and vectors. For a theory with a charged. scalar field, 

scalar field solutions will have a time dependence which adds a quadratic term 

to the potential U (see Ref. 4). Gravitational effects, which become relevant 

when the solution becomes heavy enough, can also be included.
lul 

Theories in 

which the scalar Lagrangian has a more complicated kinetic term, such as chiral 

perturbation theory, can often be transformed into the form (2), so the equations 

for the transformed field will have the form of potential motion. For simplicity, 

we consider here only the one fermion, one scalar theory given byeqns. (1)-(3). 

With a given Fermi energy and appropriate boundary conditions on tP, 
tP(r -+ 00) = tPo (vacuum value) and tP'(O) = 0, eqn. (9) can be solved for 

the field configuration tP( r), which is then inserted into the dispersion relation 

derived from eqn. (3) to give the Fermi momentum kF(r). The number density, 

energy density, and pressure of the fermions are given by the usual expressions 

involving kF(r).lol The form of eqn. (9) allows the spherically-symmetric satu­

rating solutions to be found without solving any differential equations. 

Saturating solutions have constant values for the fields out to large dis­

tances, which means that tP sits still for a long time. In this case the friction 

term in eqn. (9) can be ignored, because r is large before tP starts moving. Satu­

rating solutions therefore occur when tP rolls between two degenerate hills.* One 

hill occurs at the vacuum value of tP, call it tPo, which is the value to which tP 
must roll at large times to insure the energy is finite. The other hill, from which 

tP begins to roll at r = 0, is found by solving the algebraic equations 

P", - U = 0 

8 
-(P", - U) = 0 
8tP 

(10) 

for fF, the Fermi energy, and tPin, the value of the scalar field in the interior of 

the saturating solution. The solution exists, that is, there is a surface connecting 

* For a detailed discussion of this in a charged boson theory see, for example, ref. 
4. In that theory P", is replaced by ! #'1~ll, coming from a time dependence 
in the phase of~. Otherwise, the story about rolling around and saturating 

solutions is just the same. 
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the interior and exterior, provided P", - U < 0 for tPin < tP < tPo. In practice, 

these solutions can be found by graphing U(tP) and P",(€F, tP) then adjusting fF 

until the two curves are tangent at a point other than the vacuum. 

The properties of the saturating solutions follow as before from knowing fF 

and tP, where tP = tPin is now constant. In particular, the volume energy density 

is given by U(tPin) + E",(fF, tPin) and can be used to determine whether the 

solution is energetically bound. Because the surface energy is smaller than the 

volume energy by a factor'" 1/ R, the volume energy is a good approximation 

to the total energy when the radius R is large. We note that the Thomas-Fermi 

approximation is extremely good in the interior ofthese solutions, where the field 

derivatives are very small, but is less good in the surfaces. Further discussion of 

these solutions and their applications can be found in previous papers.I •. 
lol 

In this paper we have shown that in theories of coupled fermions and 

scalars, the spherically-symmetric scalar field equation will have the form of 

potential motion when the fermions are treated in the Thomas-Fermi approx-, 
imation. In this case it is straightforward to check whether the field theory 

has non-topological soliton solutions, either saturating or non-saturating. The 

most interesting application we know of for these results is in nuclear physics: 

it is possible that nuclei might be described as solitons in either an effective 

Lagrangian cooked up for such a purpose, such as the Walecka model,(··ll) or, 

even more interesting, in effective chiral Lagrangians used to describe hadronic 
• (12) 

scattermg. 
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