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DIRECT SOLUTION APPROXIMATION TO THE THERMAL HYDRAULIC QUENCHBACK 
IN SUPERCONDUCTING CABLES 

Gustavo Lopez 

Superconducting Super Collider Laboratory*, 2550 Beckleymeade Avenue, Dallas, Texas 75237 

Using an approximation to the conduction fluid equations, a solution is given 
based on direct integration. The solution is used to establish a relationship 
between quench velocity and conductor length in a cable-in-conduit-type 
configuration. 

INTRODUCTION 

When a normal zone appears in a superconducting (SC) cable, it propagates axially with a so 
called "quench velocity", Vq , which depends mainly on the conductor characteristics and very little 
on the cooling effect of helium [IJ. However, if the ratio of the longitudinal to transversal dimen
sions of the condu<;tor is quite large, the expansion of the heated helium, in the normal zone, may 
drive fluid elements far from the initial normal zone, which could induce other normal zones in the 
conductor because of the compression of these fluid elements and their friction with cable strands. 
The quench velocity would have much higher value than the pure Fourier conduction mechanism, 
and this is called thermohydraulic quench back (THQB) mechanism. After the numerical discov
ery [2J of the THQB mechanism, an analytical approximation to this phenomenon appeared [3] 
using the similarity method for the differential equations. Although this solution suggests high 
quench velocities for the THQB mechanism, an experiment [41 seems to contradict its predictions. 
In addition, the solution predicts much faster fluid velocities for short SC cables than for long ones 
which makes this solution unlikely. In this paper, a direct ~ethod of integration is used in the 
differential equation (derived from approximations) in order to obtain applicability limits to the 
solution. 

APPROXIMATIONS 

For one-dimensional fluid (helium) moving in a long tube pipe of diameter D and length L, 
satisfying the relation D / L < < 1, and being heated up by the quenching superconductor (quench 
appears in the SC surounding the tube pipe at the origin, z = 0), the equations which govern the 
state of the fluid are: 

The continuity equation, 

the momentum conservation equation, 

dv 8p 
p dt = - 8z - pF , 

the mechanical energy conservation equation, 

d 1 2 o(pv) 
P -( e + -v ) = --- + q & 2 oz ' 

the state equation, 
1 Bp 

dp = 2dp - -T ds , 
C cp 
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(1) 

(2) 

(3) 

(4) 



and the second law equations 

de = Tds + dw , (5) 

In the preceding equations, c is the speed of sound, B is the voume coefficient of thermal expansion, 
cp is the specific heat, T is the temperature, e is the specific internal energy, s is the specific entropy, 
q is the power density entering the helium, p is the pressure, p is the density, v is the velocity of 
the fluid, and F is given in terms of the Fanning friction factor, f as 

(6) 

The operator d/ dt is defined as 
d 8 8 
-=-+v-. 
dt 8t 8z (7) 

In the model, the hot-zone (helium gas), which is located where the quench appe~rs, is separated 
from the cold-zone (helium fluid) by a hot-cold interface front which has a velocity Z at its location, 
z = Z. The initial condition for any fluid element is 

v(z,O) = 0, (8) 

and the boundary conditions (assuming an infinity cable for the moment) are 

v(oo,t) = ° (9a) 

and 
v(z = Z, t) = Z . (9b) 

Using Eqs. (2) and (3), and identifying p( 8v / 8z)/ p with the rate of change of the external work, 
dw/dt, Eq. (5) is written as 

q 
Tds = - +vF, 

p 
(10) 

where vF represents the entropy production due to the irreversible conversion by friction of kinetic 
energy to internal energy [3]. Using Eqs. (10) and (7) in Eq. (4), it follows 

Assuming now dv / dt = 0, 

dp = ~ (8p + v 8p ) _ Bp (~+ FV) 
dt c2 at 8z cp p 

8p 
-= -pF, 
8z 

(11) 

(12) 

in Eq. (2), and using this in Eq. (11) along with the assumption that p = constant and c2 = 
constant, the following expression is obtained after some rearrangements 

(13) 

where m is defined as 
1 cp ) m= -(1+-2 . 
2 Bc 

(14) 

Consider now that the Joule power heating density does not depend on z (8q/8z = 0), then using 
the expression 

82p 4pfv 8v 
at8z = ----r; at 

in the partial differentiation with respect to z of Eq. (13), it follows 

(15) 

(16) 



Finally, using Eqs. (12) and (16) and rearranging terms, the following equation results 

a2v av3 

az2 = (m{3 - a/3) az ' 
where a and {3 are given by 

and 

4f 
a = Dc2 

(3 = 4Bf . 
cpD 

The solutions of Eq. (17) are given by the following quadrature 

J dv 
aCt) + (m{3 _ fi/3)v3 == z + bet) , 

where the functions aCt) and bet) are determined by the boundary and initial conditions. 

CONDITIONS AND SOLUTION 

For aCt) > 0 and m{3 - a/3 > 0, the solutions obtained from Eq. (19) are given by 

1 [ aCt) ]1/3 1 1+~ 
-- og + 
a(t)~ m{3 - a/3 VI _ ~ + ~2 

1 [ aCt) ]1/3 (V3~) arctan -- = z + bet) 
a(t)V3 m{3 - fi/3 2 - ~ 

where ~ is defined as 

_ [m{3 - a/3] 1/3 
~ - aCt) v . 

(17) 

(lSa) 

(lSb) 

(19) 

(20a) 

For m{3 - a/3 < 0 and aCt) > 0, or m{3 - a/3 > 0 and aCt) < 0, the solution can be written as 

1 1 aCt) 1
1

/
3 (~-1) 

2\a(t)\ m{3 _ % log ~ + 1 = z + bet) (20b) 

For m{3 - a/3 = 0 and aCt) i= 0, the solution is 

v 
a( t) = z + b( t) . (20c) 

And for mf3 - a/3 i= 0 and aCt) = 0, the solution is expressed as 

-1 
2(m{3 _ a/3)v2 = z + bet) . (20d) 

It is not difficult to see that in order to satisfy the condition of Eq. (9a), the function aCt) must 
be zero which leads one to select the solution of Eq. (20d), and applying the condition of Eq. (9b) 
to this, the following solution results 

2 
v(z,t) = , VI - g(z - Z)22 

(21a) 

where 9 is defined as 
Sf [ B 1 ] 9 = 2(mf3 - a/3) = D 2c

p 
+ 6c2 • (21b) 



Note that in. order for the solution to have physical meaning, the relations z ~ Z and 
1 - g(z - Z)Z2 > 0 must be satisfied. The simplest way to satisfy the condition of Eq. (8) is 
to ask for Z the dependence 

(22) 

where n > 1 and Xo are constants. This relation is in accordance with the experiments [4J. The 
expression Eq. (21a) gives the velocity of the fluid elements farther apart from the hot-cold interface 
front. This fact, together with the preceding observation, imposes the following restriction in the 
space-time coordinates for the validity of the expression Eq. (21a) 

1 
O<z-Z<-. ,t>O - - gZ2 - (23) 

i.e., the size of the region, ahead of the hot-cold interface front, where Eq. (21a) is applicable 
decreases inversely proportional to the square of the hot-spot interface front velocity. For 9 = 0 , 
Eq. (21a) is valid everywhere in the fluid, and each element has the same velocity, Z. 

On the other hand, defining VL = veL, t) and VI = vel, t), one sees from Eq. (21a) that the 
following relation is satisfied 

vl- vl = 9 vlvl(L -1) . 

So, the fluid velocity will be higher for longer SC cables (L > 1). 

TEMPERATURE AND PRESSURE IN THE FLUID 

Making use of the relation Eq. (12), the pressure rise in the fluid, at the point z and at the time 
t, is obtained by integrating the equation 

2pf J 2 p(z,t) = -n V dz. 

Substituting Eq. (21a) in Eq. (24) and integrating, the next expression arises 

p(z, t) = ~: log [1- g(z - Z)Z2] + d(t) , 

(24) 

(25) 

where d(t) is an arbitrary function determined by the boundary conditions. Assume that at the 
distance z = L, the pressure drops to zero, then the pressure is given by 

( ) 2fPl [1- 9(Z-Z)Z2] p z,t = -- og . . 
Dg 1-g(L-Z)Z2 

(26) 

The temperature at this point of the differential fluid element "dz" has two contributions. One 
is due to the pressure itself, 

p(z,t) (~~)v ' (27) 

and the other arises from the wall shear stress (fw = D(pF)/4) at the point z, 

2f lt 3 -D V (z,r)dr. 
Cp 0 

(28) 

(The mass of the fluid element in consideration is m = 7rp D 2dz/4, and the volume generated in 
the differential dz-displacement is dV = 7r Dvdzdt). The total temperature rise is given by 

2f it (aT) 6.T(z, t) = - v3(z, r)dr + p(z, t)!:l . 
cpD 0 up v 

(29) 



THE TIME ONSET THQB AND FINISH TIME 

The time at which the differential fluid elements adjacent to the hot-cold interface front reach 
the temperature Tcs (current-sharing threshold temperature) is called "The Time Onset THQB," 
and it is given by 

6.T(z = Z, ton) = (6.T)on , (30) 

or using Eqs. (29), (26), and (9b), this time results from the solution of the equation 

2fn3 xgt~~-Z _ (aT) 2f p x 
cpD(3n - 2) op v Dg 

log [1- geL - Xot~n)nz X;t;:-Z] = (6.T)on . (31) 

The time at which the entire conductor becomes normal is called "The Finish Time," and it is 
given by 

(32) 

This time is explicitly expressed as the solution of the following equation 

2fn3 x31tf r 3n- 3dr 
.....:.....-____ ~o / = (6.T)on . 

cpD 0 [1 - geL _ Xorn)nZX;rZn-Z]3 2 
(33) 

As Figure 1 shows, for two SC cables of lengths L and I such that L ~ I, the finish time satisfies 
the relation 

(34) 

so the THQB induced quench velocity never is higher for shorter SC cables. 
In order for the THQB mechanism to be observed, the finish time must be smaller than the 

normal quench delay time, tq = L/Vq, and the time ofthe end-quench phenomenon, tend. This last 
time is the time taken for the device to falloff its stored energy. Then, in addition to the condition 
of Eq. (23), t f must be satisfy the relation 

L ~ tf < min{tq, tend} . 
C 

(35) 

In addition, this mechanism also depends on (6.T)on which is defined by the SC characteristics as 
well as its magnetic field. As a numerical example, using the following parameters [4], n = 4/3, f = 
0.02, D = 0.707mm, B = 0.1176 K-I, cp = 8400 J/KgK, C = 131 mis, Xo = 1, and L = 25 m, 
it follows 

and 

g = 3.782 X 10-3 

2f = 6.735 X 10-3 Ks2m-3 . 
cpD 

Then, from Figure 1, the time to see the entire cable-in-conduit normal is higher than 5 seconds!, 
so a THQB mechanism is not expected here. 

For n = 4/3, the relations of Eqs. (22) and (23) bring about the following restriction on the 
parameters and time 

(36) 

Therefore, given the parameters g, L, andXo , Eq. (36) may impose a restriction in the time if there 
is a positive real root on its polynomial associated. The possible real root is given by 

{3X, --2~-;-: + 102:;'X! -32:X:} '/3 + L 
teo = -~-"':""--------------"---}-=1-;;:/3 

{ 3XoJ -LJ /27 xg + 81/1024g2 X~ - 9/32gXg 
(37) 



If the parameters are chosen such that 

1024 2 3 
2187 9 (LXo) > 1 , (38) 

the root of Eq. (37) would be a complex number. Therefore, t f in Eq. (33) has non restrictions. 
On the other hand, if Eq. (38) is not satisfied, the restriction would be t f < teo. 

However, it is possible to start selecting the parameter tf by choosing the wanted induced 
THQB quench velocity (VTHQB = Lit f). In this case, Eq. (36) imposes a restriction on the 
parameters which can be written, using Eq. (21 b), as 

(39) 

The parameters 9 and Xo are criticals for the THQB to be observed as is shown on Figure 2, 
where all the parameters are the same as above but D and Xo. 

CONCLUSION 

Using the direct integration approach in the one dimensional differential equations, a restrictive 
fluid velocity expression was obtained which satisfies the initial and boundary conditions. This 
expression brings about a quench velocity vTHQB which increases with the length of the con
ductor in a quench event. However, more experimental work is required to establish and to fully 
understand this THQB phenomenon. 
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