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ABSTRACT 

The global SU(2h x SU(2)R symmetries of QCD alone probably imply the 

existence of a liquid phase consisting of protons, neutrons and pions. Drops of this 

"chiral liquid" at zero external pressure emerge as saturating (the baryon number 

grows roughly as the volume) non topological solitons of the low energy non-linear 

chiral effective Lagrangian theory of pions and nucleons, where the pions are the 

pseudo-Goldstone bosons resulting from the spontaneous breaking of SU(2h-R 

by the QCD vacuum. The effective Lagrangian approach gives us control of both 

the tree and quantum loop levels of the theory. A crucial role is played by ex­

plicit SU(2)L_R breaking terms whose origin lies in quark masses; an isosinglet 

combination of even numbers of pions carries the primary long-range attractive 

force. If non-linear chiral symmetry cont.ains such saturating nontopological soli­

ton field configurations, they would give a chiral-symmetric explanation for the 

very existence of ordinary heavy nuclei, which are then to be regarded as just 

droplets of chiral liquid. This picture, reminiscent of the old liquid drop mode1of 

heavy nuclei, vastly simplies the extraction of bulk nuclear properties from chiral 

symmetry; nucleons, treated as Fermi fluids inside a heavy nucleus, move within a 

huge coherent self-consistent classical pion field < if >~ 200 - 400 MeV. Neutron 

stars are then just great chunks of neutral chiral liquid held together qy gravity. 

Quantum chiralliquids can have interesting macroscopic quantum properties such 

as parity doubling. these may distinguish experimentally the chiral liquid theory 

of heavy nuclei and neutron stars from more conventional models. 



1 INTRODUCTION 

The two best-known facts of low energy hadronic physics are the existence 

of ordinary nuclei and the validity, in scattering experiments, of chiral SU(2)L x 

SU(2)R symmetry. There is, of course, a long history of attempts to synthesize 

these two facts, and the idea that spontaneously broken chiral symmetry is the 

origin of nuclear forces is an old one~I121314} The full power of the current algebra 

of modern chiral symmetry is most clear in the language of relativistic quantum 

field theory. Relativistic field theory was first applied to nuclear structure by 

T. D. Lee and G. Wick~~} Their seminal paper on non- topological solitons focused 

on possible islands of nuclear stability for very large baryon number. Walecka and 

co-workers first applied the mathematics of relativistic non-topological solitons to 

the structure of ordinary nuclei resulting in their famous "O"-w" model
(6
) ; this also 

allows a consistent treatment of nuclear matter under extreme conditions such as 

in neutron stars. Until now, however, no relativistic mean field model of ordinary 

nuclei has successfully incorporated chiral symmetry~617)1r 

S. Weinberg (9) has crysta.lized the nature of spontaneousely broken chiral sym­

metry: "The lesson taught by current a.lgehra is that a symmetry like chirality 

does not manifest itself in linear ~15 in\'ariance relations, which would require the 

vanishing of the nucleon mass, but rather it determines relations between an ar­

bitrary (hadronic) process 0: - ;3 and the related process 0:' - f3 + mr .,. and 

... will not tell us that the mass of ... (the nucleon) vanishes". Nuclear structure 

is precisely such a chiral soft nucleon and pion process; inside a nucleus, protons 

and neutrons emit and absorb an infinite number of soft pions and these pions also 

interact with each other in a highly non-linear way. That pions are (almost) the 

Goldstone bosons of the spontaneous breaking of SU(2h-R allows us to specify 

these non-linearities uniquely for low-energy hadronic processes. Massless Gold-

* Although a consistent model of ordinary nuclei and chiral pseudo-Goldstone bosons based 
on the non-linear realization of chiral 5[1(3)L x 5U(3)R symmetry with a singlet (1' has 
appeared~·l t.hat. model suffers frolll lack of predict ive power precisely because the (1' was 
taken t.o be a chiral singlpt. 
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stone bosons[IO] have only derivative couplings and therefore cannot interact with 

a static constant baryon density such as in the interior of heavy saturating nuclei. 

In contrast, the observed volume nuclear binding energy is ~ - mN ~ -16MeV 

( E, B, m N are the nuclear energy and baryon number and free nucleon mass). 

Therefore, terms in the effective Lagrangian whose origin lies in quark masses and 

which break SU(2)L-R explicitly must be very important; these give pions mass 

and non-derivative couplings. The non-linear chiral interactions of point nucleons 

and pions result in a "classical" self-consistent mean pion field in which a large 

number of nucleons, treated as a Fermi fluid with Pauli exclusion in the Thomas­

Fermi approximation, are trapped to form heavy nuclei: a droplet of what we will 

call an "5U(2)£ x 5U(2)R chiral liquid". This is precisely the mathematics of 

I . I I' . I'" fi Id I . [5][11][12] d th 'b'l non-topo oglca so Itons Il1 re atlvlstlC e t leones an opens e POSSI 1-

ity that the theory may have a liquid phase and that the structure of heavy nuclei 

and neutron stars may then be tractible, at least at a crude level. 

The plan of this paper is as follows: In Section 2 we review chiral perturbation 

theory, construct the effective low-energy Lagrangian and Hamiltonian and write 

a variational equation for the ground state of a given baryon number and third 

component of isospin. In Section :3 we search for a liquid phase of the theory, and, 

at zero external pressure, droplets of chiral liquid (non-topological solitons). We 

also examine some interesting macroscopic quantum properties of chiral liquids. 

Section 4 identifies droplets of chiral liquid with heavy nuclei. Section 5 identifies 

very large chunks of chiralliquid (baryon number B f"V 1057 ), in which the effects 

of gravity must be included, as neutron stars. Section 6 gives some conclusions. 

2 CHIRAL PERTURBATION THEORY 

2.1 Nucleon-Pion Chiral Lagrangian from QeD 

This paper examines QeD with only two light quark flavors arranged in a flavor 

doublet q = en; a.\l effects due to heavier quarks are neglected. Left-handed chiral 

quarks. right-handed chiral quarks and eight gluon color gauge fields qL = H~? q, 

(jR = 1-;"'(oq and G// = G;,,\i (,\i arC' C'ight Gell-l\1ann matrices normalized such that 



Tr>.. i)..1 = !8ij ) are arranged into covariant derivatives VI' = ap + igG I' and field 

strengths Gpv = a1tGv - avGp + ig[G1" Gv] so that the Lagrangian of massless 

QeD 

(1) 

has, in addition to local SU(3)coloT symmetry, a global continuous SU(2)L symme­

try qL -+ LqL and a global continuous SU(2)R symmetry qR -+ RqR where Land 

R are unitary, independent and arbitrary (2 x 2 matrices in this flavor represen­

tation). The basic hypotheses of hadronic chiral symmetry are that the effective 

theory of hadrons will have the ."((me global SU(2)L x SU(2)R continuous sym­

metries as QeD (since, unlike the axial U( 1) symmetry of classical QeD, global 

chiral symmetries are not disturbed by anomalies at the quantum loop level) and 

that the QeD vacuum breaks spontaneously the global continuous subsymmetry 

SU(2h-R. 

The chiral algebra[9] is written in terms of the generator-charges of SU(2)L-R 

(L #- R) rotations Q5a and SU(2)L+R (L = R) isospin rotations Qa with a = 1,2,3: 

[Q5", Q5b] = ifabcQc 

[Qu, Q5b] = ifabcQ5c 

[Q",Qb] = ifabcQc 

In the non-linear realization of chiral symmetry, the pIOn trb (b 

nucleon \}i = (~) transformation rules are 

[Qa, \lI] = - t,,\lI 

[Q,sa, \lI] = F-Itabc t b7rc\ll 

(2) 

1,2,3) and 

(3) 

where F == 2f7r and la are Hermitian isospin matices normalized so that the commu­

tator [ia, ib] = if-abet,. The experimental pion decay amplitude sets the spontaneous 

.) 



symmetry breaking parameter f7r = 9:3 ]\[eV. The chiral covariant derivatives for 

pions and nucleons generate nontrivial hadron dynamics 

and their SU(2h x SU(2)R transformation properties are easily worked out 

[Qa, D1'1l'b] = - if.abc Dl'1l'c 

[Qsa, D1'1l'c] = iF-l(DabDcd - Dad Dbc)1l'c Dl'1l'd 

[Qa, D't'll] = - taD/I'll 

[QSa, D,,'II] = F-lf.abc t b1l'c D,tW 

(4) 

(5) 

These transformation laws are the most general under non-linear SU(2h_R while 

linear under SU(2)L+R; all others can be shown to be equivalent to these up to 

redefinitions of the pion fields!131
9) The generality of the above transformations 

frees us from any (experimentally unjust.ified) prejudices as which chiral multiplet 

the nucleons belong. 

The VaCuum is hypothesized to be a complicated non-perturbative condensate 

of quarks and gluons and, at the hadronic level, is chosen to contain no pion 

expectation value. Although the effective chiral Lagrangian of nucleons and pions 

which follows from massless QeD is invariant under QSa and Qa rotations the 

vacuum is not: (OI[Qsa , 1l'bl10) '" -i.f7rDub so that while QaIO) = 0, QSaIO) '# 0 and 

1l' a are manifestly the three masslpss Goldst.one bosons (10) of spontaneously broken 

SU(2h-R. 

Of course, pions are not really massless; In7\"+ ~ 140 MeV. Isospin-conserving 

quark masses (whose origin presumably lies in weak interactions) mq = mutmd =f:. 0 

are introduced into two-flavor QeD by a term 

(6) 

which conserves S·C(:!.)L+U isospill exactl,'" It breaks SU(2h-R explicitly and 

(i 



makes pions only pseudo-Goldstones. 

The effective Lagrangian controlling the interactions of nucleons and pions is to 

be invariant under non-linear SU(2h-R and linear SU(2h+R rotations for mq = 0 

and linear SU(2h+R rotations for 111q =1= 0 as well as parity, charge conjugation 

and time-reversal; it will in principle contain all terms consistent with these sym­

metries. Chiral perturbation theory is an expansion in inverse powers of a large 

chiral symmetry breaking scale ACSB order-by-order in pion momenta and nucleon 

off-shell momenta. According to "naive dimensional analysis" ~14) a given term has 

the power-counting structure ( the derivative a acts on the pion or nucleon fields, 

the 1li are integers and constants (such as ,II and ta matrices) are not shown) 

with coefficient of order one. It is here that chiral perturbation theory shows its 

power; it is able to control its own quantum loop structure by self-consistency. 

Quantum loops calculated with the effective chiral Lagrangian and an ultra-violet 

cut off at loop momentum ACSB will generate all operators consistent with the 

symmetries of the theory, thereby renormalizing the coefficients of the operators in 

the original chiral Lagrangian (as well as generating important non-analytic terms). 

The crucial point is that chiral quantum loop corrections will also obey naive 

d· . I . [l~) [14) [16]. • h th . IITIenSIOna power count1l1g generat1l1g operators WIt e power count1l1g 

of (7)with an additional factor of (~;7: )2£ where L is the number of quantum loops 

in the diagram. If we now choose* the cut-off ACSB < 47rJ'/r = 1.17 GeV, quantum 

loops will renormalize the coefficients of the chiral operators (7)to again be of order 

one. Thus, in chiral symmetric theories of soft hadronic processes, quantum loops 

are just self-consistent power counting in -hr. Typically ACSB is chosen ~ 600 MeV 

to 1 GeV. This allows the self-consistent low-energy truncation of the effective 

* The chiral sYlllllwtry breaking scale :\CSB arisps. like /". from the spontaneous breaking 
of SU(2)L_R 80 that it is not rpally an indeppndent parameter. We can "choose" it by 
self-consistently changing the codficit>nts in (7)lly numbers of order one. 



Lagrangian for hadronic processes with:::::: 100 - 300 MeV momentum transfer. 

After the renormalized coefficients, which now include quantum corrections, are 

fixed by experiments, the effective chiral Lagrangian can be examined at tree 

I 1(17)[9)[13) r I h d . d" (16) I l' f 11 d eve lor ow energy a romc pre lctlOns. nc USlon 0 a -or ers strong 

quantum-loop corrections via the effective Lagrangian is crucial to the construction 

of chiralliquids. For the structure of heavy nuclei and neutron stars, it is a crucial 

difference between our approach and that of previous relativistic mean field models. 

The analytic operators which follow from (l)and (7)to order ACSB and (ACSB)O 

after spontaneous symmetry breaking are 

ACSBWW, DII7raD'I7ra' Wi"IDIIW, ;71' W,Il,5 taW DIl1ra 

(WrIW)( Wrjw) (Writa w)(q,rita w) 
(8) 

f 2 
.71" J'; 

where ri = 1, ,5, ,II, i,Il,5, a iIV . Typical of Goldstone bosons, pions couple only 

via their momenta in the "chirallimit." of massless quarks; this is the basis for soft 

pion theorems. 

Quark masses break symmetry explicity rather than spontaneously. It is ex­

tremely important that (6)transforms as the fourth component of a vector, a (~,~) 

representation under SU(2)L x SU(2)R. Ward identities show that the correspond­

ing term in the effective Lagrangian of nucleons and pions will, at the hadronic 

level, also transform as a (!,!) representation of the algebra in (3)and (5)and 

conserve SU(2h+R' The analytic operators of order mq which follow from (6)and 

(7)to order ACSB and (ACS8)0 art' 

(9) 

Isospin breaking terms will also arise in QeD because mu =f:. md; among other 

th ings. a term (11/ d - 17I /I )( il L tV/R + (/R' :In) will gt'nerate an effective hadronic term 



11"3 ~11" ata \l!( 1 + ~ )-1. This paper will, except in the discussion of "parity doubling" 

in Section 3.5, neglect all such isospin breaking effects and regard electromagnetism 

as the only important source of isospin breaking. 

We have neglected for simplicity non-analytic terms generated by quantum 

loops in the chiral perturbation expansion. The reader is warned: these can be 

important in SU(3)r x SU(3)R[16) and may even affect our results in SU(2)L x 

SU(2)R chiralliquids, nuclear structure and neutron stars. 

The effective chiral Lagrangian describing the dynamics of pions is properly 

'" constructed as a perturbation expansion in powers of pion momenta ~ ~ 1, ACSB 
and light quark masses .....!!!:.zr-. ~ l. Nucleons, however, have chiral-invariant masses 

ACSB 

7nN = 939 MeV so that -1!!J:L ::::::: 1 and the appropriate expansion parameter is the 
l\CSB 

off-shell momenta of (almost static) nucleons; pjy = mNvl£+k'iv with vl£ the nucleon 
k'" 

velocity and AC~B ~ 1. The chiral perturbation expansion above uses instead 

nucleon four-momenta in the power counting so that terms with higher powers 

of nucleon time-derivatives are not suppressed and must be summed~ Assuming 

that the power-counting in (7)still works in the presence of such a large nucleon 

mass, the summation can be carried out in terms of a new nucleon field ~(x, t) = 

exp( +im·N,Ot)\l!( X, t) [2) where A~lB tiJ ~ tiJ. All but three of the operators which 

result just change the coefficients in (8)and (9)by numbers of order one and are 

therefore ignored. In addition, the summation gives three manifestly non-Lorentz 

invariant operators: 

(~,Ota W)(~,ota '11) 
!,; 

Fermion exchange terms mix the last two sets of operators in (8)and (10). 

(10) 

* l\lore properly, non-relativistic perturbation expansions in effective field theories for the 
I t " f I" I I k "(181 h" I b (ll(191 d " d exp ora Ion 0 c lira leavy quar" symllwtrws ,c Ira aryons an muomum an 

positroniulll (201 avoid heavy fermion masses altogether and, for chiral-symmetric theories, 

have well-defined power counting similar to (7)in terms of~" This results in mani-
CSB 

festly non-lorentz-invariant operators involving two component heavy fermions which are 
integrated over Il('i\vy fermion velocities r" 

!) 



2.2 Hamiltonian and Variational Equation for the Ground State 

With an effective Lagrangian C built from operators in (7), the local current 

corresponding to S'U(2h_R rotations 

(11 ) 

is spontaneously broken by the vacuum and explicitly broken by quark mass termsj 

this is the basis for the PCAC hypothesis!16] For our purposes, this means that, 

even neglecting electromagnetic breaking, the quantum states of C will not have 

good SU(2h_R quantum numbers. In contrast, the isospin current generated by 

S'U(2)L+R rotations 

is exactly conserved by strong interactions for degenerate quark masses. 

means that the isospin Ta = f d3 ;z:Ya0 is a constant of the motion: BoTa = O. 

(12) 

This 

The effective Hamiltonian density TOO and the effective Hamiltonian H -

f d3xToO are constructed in the usual way from the effective Lagrangian Cj this 

H '1 • • 1 . d I 1[17][13][9] f d" £ ami tOlllan IS to )e examme at tree eve or pre lctlOns or processes 

involving physical hadrons. The ground state 1<1> > of the effective Hamiltonian for 

fixed baryon number B = f cf3.rw tw and third component of isospin T3 satisfies 

o (13) 

The Lagrange multipliers JlB and Il3 will later play the roles of chemical potentials 

for baryon number and third component of isospin. In order to fix the total angular 

momentum J > 0 we would need to include an appropriate chemical potentialllJ; 

the minimization (1:3 )will therefore automatically find only J = 0 states. The 

isospin-squared f2 is also a qood quantum number because isospin is still an exact 

symmetry. Assuming that the eIlPrgy of ground states of given f2 grows with f2, 

10 



the minimization (13 )will therefore automatically force f2 to its minimum value 

f2 = Tl + IT31 since we have included no chemical potential for it. Then, from 

(13 )we have that the ground state energy E satisfies 

(14) 

It is important to realize that, subject to the applicability of the hadronic effective 

chiral Lagrangian, (13)and (14)include strong interaction quantum loop effects to 

all orders and are exact for the physical hadronic ground state leI> > with fixed B 

and TJ. 

Why should we believe the physics predicted by the non-linear effective low 

energy chiral Lagrangian constructed from (7)7 The main assumption is that all 

dynamics of scale ~ :300 MeV (e.g. explicit quark degrees of freedom or nucleon 

and pion form factors) can be integrated out leaving a theory of elementary point­

like nucleons and pions. Imagine that we start with QeD with massless u and 

d quarks and SU(2)r x SU(2)R global symmetry. We integrate out the quark 

and gluon fields and assume that this gives a vacuum which breaks the symmetry 

spontaneously to 5U(2)L+R and also results in confinement of low energy quarks 

and gluons into hadrons. The resulting low energy effective theory of hadrons has 

a spectrum which contains nucleons and pions as well as a set of heavy particles 

with masses ~ ACSB which include well-defined bosons such as w, p, fo, broad 

boson resonances, and baryons such as the~. At this point, the theory may 

or may not contain the much-disputed a particle[21) and chiral SU(2)r x SU(2)R 

symmetry may be implemented in the linear or non-linear realization according 

to taste. Next, we integrate out all of t.he heavy particles, including the a if 

it appeared, leaving us with an effective theory of nucleons and pions with highly 

non-local interactions. \Ve now focus on low momentum transfer (soft) interactions 

100 - :300 MeV ~ ACS'B. treat the nucleons and pions as elementary point-like 

particles, and expand the non-local interactions out in powers of small momentum 

transfer and 8(/(2)[ x 5'('('2)R il1\'ariant loral interaction operators of nucleons 

11 



and pions. Pions and nucleons now transform linearly under SU(2h+R and non­

linearly under SU(2)L_R and the vacuum, now written in terms of hadrons, breaks 

SU(2h-R spontaneously as, for example, in (3). We are then assured(17)[9)[13) that 

all representations of this theory give identical S-matrix elements and are related 

to each other by redefinitions of the pion field. Thus, the operators generated 

by (7)give a completely general representation of the predictions of the SU(2h x 

SU(2)R symmetry of QeD for soft hadronic physics. They predict only those 

things and all of those things required from the algebra of chiral SU(2h x SU(2)R 

currents at low energy; for soft hadronic processes, they do not forbid any of those 

things allowed by the chiral algebra nor do they allow anything forbidden by the 

chiral algebra. A simple example is the a particle; while not required by chiral 

symmetry, neither is it forbidden. One simple consequence of all of this is that 

whether the a exists or not doesn't matter; for the purposes of soft pion and 

nucleon interactions with momentum transfer ~ m u , the linear and non-linear 

sigma models give identical results when the a is integrated out. 

The next step is to calculate quantum loops with internal nucleons and pions 

and naive dimensional power counting. This generates important non-analytic 

terms as well as analytic non-local interactions among nucleons and pions. An 

example is the non-local two-pion-exchange interaction between two nucleons; this 

generates, among other things, an isoscalar spin-independent interaction mediated 

by a very broad resonance with peak ~ 6.50 MeV. (1)[7) Such non-local interactions 

are again expanded out in powers of momentum transfer ~ ACSB and SU(2h x 

SU(2)R invariant local interactions of the form (7). The usual arguments that the 

full set of diagrams with a given number of quantum loops respects the symmetries 

(global or local) of a quantum field theory still appl/ Therefore, tree graphs 

generated by the effective chiral Lagrangian (7)with the chiral coefficients set by 

experiments contain all low energy chiral-algebraic information and a complete set 

* By rescaling nucleon and pion quantum fields by an arbitrary scale 0, it is easy to show{13{ 
that the low energy chiral algebra (including explicit SU(2)L_R breaking as in (9)), which 
relates operators involving different powers of quantum fields, is satisfied to each order in 
n; each order in (I corresponds to a specific number of quantum loops. 

1L 



of 5U(2)L X 5U(2)R predictions for physical processes involving soft nucleons and 

pions. Similar reasoning holds for explicit 5U(2h_R breaking terms whose origin 

lies in degenerate u and d quark masses. 

The phenomenological predictive success of this chiral effective Lagrangian 

method for soft scattering experiments and hadronic decays has been documented 

in great detail and includes 7r - 7r and 7r-nucleon scattering, CVC, PCAC, Adler­

Weisberger and Goldhaber-Treiman relations and, for 5U(3h x 5U(3)R, Gell­

Mann-Okubo relation, baryon and meson octet masses, weak semi-Ieptonic decays, 

non-Ieptonic kaon and hyperon decays, etc~16) Therefore, following empirical evi­

dence, we will assume for the rest of this paper that the criteria for the applicability 

of the effective hadronic chira.l Lagrangian formalism are satisfied. 

If the structure of chiral liquids. heavy nuclei and neutron stars is just the 

result of soft pion and nucleon processes, the effective 5U(2h x 5U(2)R chiral 

Lagrangian constructed from (7)should be able to predict these as well. A detailed 

understanding of chiralliquids and the properties of heavy nuclei and neutron stars 

will, however, certainly require a much more sophisticated treatment than found 

in this paper! Still, the purpose of this paper is only to show that chiral symmetry 

could predict the existence and gross structure of chiral liquids, heavy nuclei and 

neutron stars; calculations will be done in the center-of-mass, where all nucleon 

three-momenta are small and we expect the terms in (8),(9)and(1O)to be adequate. 

t Power counting in non-relativistic nucleon momenta shows (see below) that higher dimen­
sion SU(2h x S[T(2)R terms are necessary to account for bulk nuclear properties and to 
ensure compatibility wit.h scatt.ering dat.a. For SU(3)L x SU(3)R chiral theories of hadrons 
composed of light. II, d and s quarks, the dynamical effects of the spin S = ! baryon decuplet 

must be included 1191 along with t.he spin S = * baryon octet and the pseudo-Goldstone 
boson octet; chiral SU(2)L x SU(2)R symmetry- probably gives the ~(l232), but not the 
lV( 1440), a small but. intellectually significant. role in the structure of chiral liquids, heavy 
nuclei and neutron sUus. Furt.her. because operat.ors in different SU(3)L x SU(3)R rep­
resent.ations may he renormalized differently, t.he properties of non-strange hadrons (such 
as protons, neutrons and pions) may be affect.ed by strange (quark or hadron) matrix ele­
ments l221 Still flll"tllf'l". nOll-analytic tPrlllS may playa role. 

J:l 



3 CHIRAL LIQUIDS 

It is legitimate to inquire whether the effective Lagrangian built from (7)con­

tains a liquid phase. An "SU(2)L x SU(2)R chiralliquid" is defined as a statis­

tically significant number of baryons interacting via chiral operators (7)(as well 

as the appropriate non-analytic terms) with an almost constant density. Like or­

dinary liquids, chiral liquids maintain some definite distance between constituent 

baryons; it costs energy both to compress the liquid and to pull its constituents 

apart. Although both liquids and "gases" are "fluids", liquids can survive as local­

ized "drops" at zero external pressure. In contrast, the ground state of a Fermi gas 

at zero external pressure has its constituents dispersed to infinity, thereby filling 

any container in which the gas has been placed. Ordinary Fermi liquids can also, of 

course, develop macroscopic quantum properties (23) and we might hope that chiral 

liquids do as well. 

In this Section, we will discuss chiral liquids as abstract approximate solutions 

1<1> > to (13). Simplifying assumptions as to the structure of chiralliquids will be 

guided by the observed empirical properties of ordinary heavy nuclei. We will take 

very seriously the physical insights of the old nuclear liquid drop model. 

:3.1 Classical Pions and Fermi Fluids 

Chiral SU(2)r x SU(2) R symmetry dictates which operators appear III the 

effective Lagrangian L. For simplicity, we have truncated the chiral operator ex­

pansion in (ACSB)-n keeping only n = -1,0 (higher dimension n = 1 operators 

will be discussed later) and also drop all non-analytic terms. In the construction 

of the chiral liquid phase, we are led by the empirical facts of heavy nuclei III 

making our approximations. The spin of most ground-state nuclei are close to 

zero, hinting that spin-dependent interactions largely cancel. A good example is 

the chira! spin-dependent term ~YA ~/,11/5t(/ 'l1 D .. 7l"a (with II = 1.25 from weak YI' . r gv 

interactions). One-pion exchange arising frolll this term is known to lead to im-

portant tensor forces between nucleons[l) : the effective Lagrangian formulation 

carries the instruction to calculate only at tree level and therefore explains this 



phenomenological success. Still, we judge that such spin-dependent terms cannot 

be responsible for the existence of chiralliquids, heavy nuclei or neutron stars and 

will not focus on them. 

We choose an approximate leI> > where spin-dependent interactions cancel~ 

Further, we are only interested here in static spherically symmetric drops of chiral 

liquid. All of the operators in (S),(9),(10)then have zero expectation values except 

the following two sets which we have organized into an effective Lagrangian C: 

(15) 

(16) 

(17) 

Here, 1nN = 939 MeV. G7rN = 60 MeV, positive f3 ~ 1 from scattering data and the 

e's are coefficients of order one. Perhaps suprisingly, there are only four operators, 

all four-fermion contact terms, in (17)with unknown coefficients. 

The Dirac equat.ion which follows from (1:3 )and (15 )is 

(IS) 

The first term in each of C\J!7r and L7r and the third term in (IS)arise from non-

* This is not strictly possible since four-fermion contact terms in (8)and (lO)distinguish iden­
tical from non-identical fermions. For simplicity, we will neglect fermion exchange terms in 
this paper. Still, we assullw that., on average, fermion contact interactions will reproduce 
the compressibilit.y of chiral liquids. hf'3VY nllclPi and neutron stars. 

I:) 



zero quark masses in QCD operators like (6)and (9)which break axial SU(2h_R ex­

plicitly and transform as a (!,!) isosinglet representation under SU(2)L x SU(2)R; 

the specific combination of even numbers of pions ~(1 + ~ )-1, carries the quan­

tum numbers of the fourth component of an SU(2h_R vector!211 Particularly 

interesting is the first term in L,W7r and the third term in (18). Since (3 > 0 experi­

mentally~24J in the presence of pions, nucleons weigh less than when free; similarly, 

in the presence of nucleons, pions weigh less than when free. It then follows that 

explicit quark mass terms in QCD are then primarily responsible for the long­

range non-derivative pion-nucleon interactions contributing to saturation in chiral 

liquids, ordinary heavy nuclei and neut.ron stars. 

The success of the nuclear shell model must mean that, at least in heavy nu­

clei, nucleons move to good approximation in some sort of mean self-consistent 

spherically symmetric field; otherwise why should the angular momentum of each 

nucleon be an approximately good quantum number? Our solution to the vari­

ational equation (1:3 ) will therefore have a spherically symmetric "classical" pion 

field (1roperator)nl<l> >= 1rn Cr,t)l<l> > with if(i,t) a c-number function and the 

commutator < <l>l[ifoperntor, DJ,ifopuaiorll<l> >= O. 

Nuclear forces are known to "sat urate"; the nuclear volume grows roughly as 

the baryon number!25] (we assume that baryon number is carried approximately 

by nucleons with no nucleon-anti-nucleon pairs). This saturation and the success 

of the Thomas-Fermi and liquid-drop models of nuclei!261 suggest not only that a 

large part of nuclear forces are carried by non-derivative interactions, but that the 

wavelength of nucleons inside a heavy nucleus is smaller than the scale over which 

significant spatial changes in the self-consistent mean pion field occur. These very 

old ideas explain the empirical success of relativistic mean field models of nuclei~6) 

'We will therefore treat the nucleons as a Fermi fluid, make the Thomas-Fermi ap­

proximation and search for spherically symmetric, spin-independent ground states 

1<1> > (for fixed values of Tl a.nd B) in which a. self- consistent pion field traps the 

nucleons to form a drop of liquid or a heavy nucleus. This means that we are to 
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replace £lJ/7r with a fermion fluid with energy-momentum tensor 

(19) 

where the fermion energy density t'lJ/{1ra ) and fermion pressure PlJ/(1ra ) depend 

on the classical pion field 1r a but not its spatial derivatives V1r a (Thomas-Fermi 

approximation). UIL is the fermion fluid four-velocity. Actually, we construct two 

Fermi fluids, one electrically charged and one neutral; for W = (~) the time­

dependence of the proton Fermi surface is P(x,t) = P(x)exp[-i(JlB + !Jl3)t) while 

for neutrons N(x,t) = N(x)exp[-i(JlB - !Jl3)i). Charged classical pion fields 

1r± = lI"IJ;7r2 have time dependence 7l"+(.f',t) = 1r+(x)exp[-iJl3t) with 1r_ = (1r+)t 

while classical neutral pions are time independent. As advertized, JlB and Jl3 play 

the roles of chemical potentials. 

An energy-momentum tensor T:1V is derivable in the usual way from the pion 

Lagrangian £7r' The conservation of the total energy-momentum ovTILV = 0 with 

TI'v = T~v + T!:v then implies (in the fluid rest frame where UIL = (1,0,0,0))(27) 

(20) 

for static oot'lJ/ = OOPlJ/ = O. Equivalently, (20), the basic equation for chiralliquids 

and also the basic result of this section, follows directly from the minimization (13). 

Our treatment of the fermions as a fluid reproduces the naive Euler-Lagrange 

equations for the classical pion field from the effective Lagrangian £ with one 

crucial difference; the negative of the fermion fluid pressure -PlJ/ plays the role of 

If . . . I f I I . I' fi ld (11127) a se -mteractlon potentIa or t 1e C asslca pIOn e . 

There is a simple interpretation for (l:3)and (20)and (18)for the effective La­

grangian constructed from (8),(9)and (10); with the time-dependence anzatz 

iOO7l"± = ±ll31r±, iOO7l"3 = O. iwtooW = I'BWt W, (13)and (20)may be rewritten 

{) < <1>ISI<1> >= 6 < <1>1 J d3 .r£l<1> > Itime anzatz = 0 (21) 

The chiral liquid or nucif'ar ground st ate configuration with fixed Band T3 mini-
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mizes the quantum effective action S. 

3.2 Isospin T = 0 Fermion Fluids 

For zero isospin states we can ignore C~ and C~ and set Jl3 = 0 so that 

the electric charge Q = T3 + ~ B is half the baryon number and the background 

pion field is time-independent. Following the Thomas-Fermi approximation, we 

construct two fermion fluids treating the fermions as free with four-momenta kt for 

protons and k: for neutrons. More specifically, the Thomas-Fermi approximation 

assumes that fermion Compton wavelengths are much smaller than the scale of 

spatial variations of the classical pion field so that (i = P, N) 

(22) 

For isospin T = 0 we may choose the classical pion field to point along the 11'3 

direction if = (0,0,11'3) without loss of generality. We then form a Fermi fluid of 

protons and a separate Fermi fluid of neutrons; the number density of the fth mode 

is PiPk = NiNk = (211' )-3. The free proton states are each filled up to a position­

dependent Fermi surface k~(i); for T = 0 in a background time independent 11'3 

field, the neutrons are filled up to the same level PI (x) = f:(x). The total baryon 

number density is then (2 nucleon spins, 2 nucleon isospins) 

kF 

J d3J.. 2(kF)3 
\II t \II = 2 . 2 . --. =--'---:f-

(27r ).3 311'2 
(23) 

for spherically symmetric k~(1') = J.~~ (1') = kF(1') depending only on the radial 

space coordinate l' in the nuclear center-of-mass. The total baryon number is then 

B = 47r f 1'2d1'\Il t \Il. 

The dispersion relation satisfied by a nucleon at the top of its Fermi sea which 

then follows from (18 )is 

(24) 

where we have lIsf'd (22). It is cOI1\'(,lli('nt to define the reduced energy and mass 

It' 



of a nucleon at the Fermi surface 

C(I t 
fl* = ItB - Ii 'II 'II 

C'2 ~ 
'5 -. F"J 

In* = lnN - -r') 'II'll - 2/3U7r N 2 .; 1+.p. 

(25) 

so that fl;' = k} + m;. Then it is straightforward to construct the other quantities 

describing the Fermi fluids: The total fermion scalar density 

(26) 

and fermion pressure 

are related by the trace of the (metric weighted) fermion energy-momentum tensor 

to the fermion number density and energy density 

(23 )through (26)must be solved self-consistently for kF; then ['It and P'It depend 

upon the 3 chiral Lagrangian coefficients /3, C(I' C~ (to be fit to experiment), the 

baryon number chemical potential I' B (which sets the baryon number of the solu­

t.ions). and the classical background pion field Jr3(r). 
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3.3 T = 0 Nontopological Solitons: Drops of Symmetric Chiral Liquid 

Isospin is exactly conserved by all of the strong interaction operators in the 

chiral perturbation theory (7) for degenerate u and d quarks (we are not yet con­

sidering electromagnetic isospin brea.king). Since there is only one isospin T = 0 

state, the choice of pion field if = (0,0,71"3) in the construction of the nucleon Fermi 

fluids is simply a matter of convenience; any other choice can be isospin-rotated 

into this one. The three equations (20)then become one: 

(29) 

We are interested in time-independent spherically symmetric 71"3 ( r) and therefore 

introduce the transformation 

1 1!'3 (J = tan- (-) 
F 

with 7 ~ 0 ~ 0 in order to write (20 )and (29 )for isospin zero states 

12 ')1 IU (_(_ + :::'~)fJ = _ _ c_ 
d1'2 r dr dO 

U =F-4 (Pq, - ~m;F2sin2(J) 
r =Fr 

The radial scale r is almost in Fermis since 1 fm- 1 = 197 MeV = 1.06F 

(30) 

(31) 

We will be interested here in solutions to (:31 )at zero external pressure; this 

implies U -+ 0 as r -+ O. The ordina.ry differential equation (31 )is easily inte­

gra.ted numerica.lly but this would give us little insight into which part, if any, of 

the huge phase space of chiral coefficients /3, Cf;, C~ and baryon number chemical 

potential J.lB allows the existence of saturating drops of chiral liquid and heavy 

nuclei. Instead, we note that rewriting Pq, as a function of 0 rather than 71"3 allows 

us to write (31 )in the form of Newtonian potentia.! motion; if the radial center of 
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mass space coordinate r is "time", the pion field angle 0 is "distance" and U is 

the "Newtonian potential". The sign of ~ddf) makes it a "time-dependent friction" 
r r 

which diminishes with large "time". The analogy of (31)with Newtonian potential 

motion then gives us an extremely powerful graphical technique to scan quickly for 

non topological solitons through the (very) large phase space of parameters (three 

chiral coefficients and J.lB) while using all of our natural intuition about hills and 

valleys and the Newtonian motion of a particle through them~271 

The chemical potential and the chiral coefficients determine the shape of U. 

Demanding the existence, at zero external pressure, of saturating nontopological 

solitons of both finite and infinite baryon number from (31)gives a powerful con­

straint on the shape of U and thus the chiral coefficients. We seek solutions with 

baryon density profile \lIt\ll(r) similar to the solid line and pion field profile OCr) 

similar to the dashed line in Figure 1. As r --+ 00 the solution is the vacuum 

with 7r3 = 0 = 0 and \lI t \l1 = O. The center of the drop of chiralliquid must have 

~(r = 0) = 0 because of the friction term. Heavy nuclei saturate. We will as­

sume that drops of chiralliquid do as well; in the analogy of potential motion, the 

moving particle remains at rest for a long time r at the initial position O(r = 0). 

This suggests that, for finite baryon number solitons, the potential U in which the 

particle moves is shaped as the solid line in Figure 2; the particle starts at the di­

amond point O(r = 0) near the top of the right-hand hill with zero initial velocity, 

waits there a long time while overcoming friction (this is the saturating interior (I) 

in Figure 1), quickly drops through the valley and climbs up the left-hand hill (this 

is the thin surface (S) in Figure 1), taking an infinite amount of time to finally 

come to rest at the top of the left-hand hill (the vacuum (V) in Figure 1). Because 

of dissipation of the "energy" 1-( :~tf + U clue to friction, the particle must start 

above zero on the right-hand hill. 

Since ordinary heavy nuclei saturate, it is plausible that, in the absence of elec­

tromagnetic or other isospin breaking, there should exist saturating drops of chiral 

liquid of arbitrarily high baryon number: for B --+ 00 and electric charge Q = 1B 
this will be called "infinite symnwtric chiralliquid". The concept is very similar to 



"infinite symmetric nuclear matter" in nuclear physics~6) Following empirical evi­

dence in ordinary heavy nuclei, we require infinite symmetric chiralliquid to have 

volume binding energy per nucleon avolume with the chemical potential of infinite 

symmetric chiralliquid I-looliquid = 111N - at.olume. Further, we require the number 

density of infinite symmetric chiral liquid to be \l1hl1oo1iquid ~ \l1t\l1nuclear matter = 
?k3 

~ Flnuc~e;2 matter ~ 2f~ with kF,nuclear matter = 280 MeV. In analogy with poten-

tial motion, infinite symmetric chiralliquid would correspond to a particle moving 

between hills of the same height, with U < 0 in between, as in the dashed line 

of Figure 2; it starts at the circled point O(r = 0) = Oooliquid and finishes at the 

vacuum 0 = O. It is easy to see graphically in Figure 2 that, in order that drops of 

infinite symmetric chiralliquid exist, two saturating conditions must be met: 

U( O'X,)/iquid, Ilooliquid) = 0 

dU 
dO (O=liqllid, I-looliquid) = 0 

(32) 

For a given choice of Oooliquid we thus have four conditions ( I-looliquid, \l1t\l1oo1iquid 

and (32)) in the four parameters p, cy, C~ and I-looliquid for infinite symmetric chiral 

liquid. In addition, the validity of the effective hadronic chiral Lagrangian approach 

also requires that the three chiral coefficients be of order one and that chiral fields 

not become too large; we estimate 17r;31 < 400 MeV so that 0 ~ 101 < tan- 12. 

The chemical potential JIB is a parameter of the solutions. In order that 

saturating nontopological solitons of finite baryon number be energetically bound 

l11,N > PB > Ilooliquid so that, for large baryon number, the nontopological soliton 

energy E < mN B. For PB > Ilooliquid' U must then have a smooth shape similar 

to the solid line of Figure 2. For saturating non topological solitons, B --+ 00 and 

E -t JlooliquidB as ItB -t Jl=liqllid and the interior baryon density must become 

very flat. Therefore, as JlB decreases toward flooliquid the initial right-hand hill 

must become lower while U interpolates between the solid and the dashed lines of 

Figure 2. Finally, infinite symmet ric chiralliquid emerges for flB = flooliquid, as in 

t he clashed line of Figure 2. Tlws(' requirements on the shape of U as a function 
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of /lB, along with the requirement that the surface energy of the nontopological 

soliton not unbind it, give further powerful constraints on the chiral coefficients. 

The parameter space is overconstrained by the above considerations and we find 

that nontopological solitons do not exist in a large fraction of the space of chiral co­

efficients and baryon chemical potential. Figure 3 divides the P.ooliquid - \IIt\llooliquid 

plane into two regions. Using the analogy with Newtonian potential motion (31)to­

get her with the shape of U we have shown numerically that the shaded region con­

tains non topological solitons. We have also shown that the unshaded region does 

not; U is discontinuous or multivalued (as a function of kF ) there or the right-hand 

hill (see Figure 2) was too low so that a particle could not reach, with friction, 

the left hand hill at U = 0 under potential motion. We find that if gf ;:::: 1.1 no 
v 

solitons exist. C~ can be small or negative but this requires very large f3 . The 

reader is warned that this was a numerical study - we have no algebraic proof for 

most of Figure 3 - meant only to indicate the most probable region of the space 

of chiral coefficients in which to search for nontopological solitons. The boundary 

between the shaded and unshaded regions is less sharp than indicated. We have 

proved algebraically that there exist no non topological solitons for /looliquid > m N. 

The analogy with Newtonian potential motion was a crucial tool in our search. 

We now display results for a typical set of nontopological solitons: avolume = 

In \lit \II ooliquid = .673 X 2f~ and ()'XJliquid = 1.07 coresponding to the diamond 

point in Figure 3. From these values it follows that C~ = 5.14, C~ = 5.16 and 

/3 = 6.66. There is no fine tuning here; the chiral coefficients are chosen for 

numerical convenience. The potential U for infinite symmetric chiral liquid with 

ItB = JLooliquid is displayed in the dashed line of Figure 2 with (}ooliquid = 1.07 the 

circled point there. The potential U appropriate for the baryon number B = 83 

non topological soliton solution with liB = .999mN is displayed in the solid line of 

Figure 2; the interior ()B=8:3(1' = 0) = .Slo is the diamond point there. 

Because we have isospin T = 0 in this sf'ction, the electric charge of our solitons 

is always Q = 1B. The baryon nU1111wl' density (in units of the baryon number 



density of the infinite liquid) iIIr~l{f(r) and classical pion field ~B=83(T) are displayed 
ooltql£td oohqurd 

for the baryon number B = 83 solution by the solid and dashed lines respectively 

in Figure 4. Actually, due to surface energy, this soliton is slightly unbound m~B = 
1.02. Figure 5 shows similar curves for the B = 148 solution with IlB = .980mN 

and OB=148(1' = 0) = .964. This soliton too is slightly unbound m~B = 1.006. 

As the solitons baryon number grows, their energy per baryon decreases. Finally, 

Figure 6 gives the B = 277 solution IlB = .965mN and 0B=279(1' = 0) = 1.04. 

This soliton is slightly bound m~B = .990. The progression of solitons in Figures 

4 through 6 confirm that as the baryon number increases, the solitons pion angle 

0(1' = 0) and chemical potential JlB approach asymptotically the values for the 

infinite chiral liquid and the solitons become more deeply bound. It is clear from 

these figures that the non-linear chiral effective Lagrangian is able to sustain, at 

least at a crude level, drops of saturating chiralliquid. We will argue in Section 4 

that the baryon density profiles of droplets of chiralliquid can be quite similar to 

those of ordinary heavy saturating nuclei. 

It is appropriate here to check our solutions for self-consistency: The Thomas­

Fermi approximation is justified since ij~ ~ ~:F ~ 280 MeV in most of the non­

topological soliton surface. All of the chiral coefficients obey naive power count­

ing. All fields, energies and momenta ~ ACSB so that the use of the effective 

SU(2)L x SU(2)R Lagrangian is justified. 

We may now write an approximate formula for the energy E of isospin T = 0 

non topological soli tons: 

(33) 

where the constants a/'o/lIme- Clsllrj(J.(,E ,....., frr • In order to understand this formula, 

we again divide the soliton into three regions as in Figure 1: the soliton interior (I), 

soliton surface (S) and the vacuum (V). The first term follows from the saturation 

conditions (32)and 1''Xlillllld = III.\" - (/I'oIU/1lf which force the soliton energy and 



baryon number to grow roughly as the soliton volume V in the saturating interior 

(I); this ensures that E - PooliquidB as B - 00. 

The second term can be understood as follows: In the analogy of Newtonian 

potential motion, the non topological soliton surface region (S) starts after the 

particle has overcome friction; (S) corresponds to the particle moving down into 

the valley and up the second hill to the vacuum (V). Figure 2 shows that the shape 

of U changes very little (on the natural scale of ft ~ 1Tf = .283) as the chemical 

potential PB is lowered to Poo/iquid and the soliton volume V rv B - 00. Therefore, 

for large B, the radial profile of the soliton surface region (S) is very similar for all 

saturating nontopological solitons with a given set of chiral coefficients; compare 

the baryon density profiles (solid lines) and pion angle profiles (dashed lines) of 

Figures 4 through 6. The surface energy of saturating nontopological solitons is 

therefore essentially described by a constant surface tension;(28) since the surface 

area'" Bf for saturating solitons. the second term in (33)follows. The natural 

scale of asurface, like all quantities of order (ACSB)O in SU(2)L x SU(2)R chiral 

symmetry, is f7r' T.D. Lee and co-workers have argued for years that the energy of 

non topological solitons in certain bosonic field theories with conserved charges(29) 

as well as for anomalous nuclear matter[5
j 

is given by a formula like (33). 

3.4 T > 0 Nontopological Solitons: Drops of Non-Symmetric Chiral Liquid 

Nontopological SU(2)L x SU(2)R solitons with T > 0 and P3 i: 0 correspond to 

drops of chiralliquid at zero external pressure which have Q = T3 + 4B and T3 i: O. 

To clarify their properties, we will, for the moment, neglect electromagnetism. For 

the operators (8),(9)and (lO)the isospin density (12)is 

Til = .lil + 1 ~2 if X [D'I if + 2F-2if X 111 + 2igA JOIl] 
1 + fn Fgv 

1,1 = \II "1'" [\lI 

J15/1 _ .1', ~ /1 ~ 5 t ..... T, 
, -'¥/ / ,,¥ 

As usual, we will neglect spin-dependent. F)/I here. 

(34) 



We next construct, at zero external pressure, spherically symmetric saturating 

non topological solitons with T ~ 0 from the effective Lagrangian (15)and the 

minimization (13). Nucleon Fermi fluids are constructed as in Section 3.2 but now 

the chiral isospin coefficients C~, C~ as well as the pion field dependent terms 

in Do \II in (18)play an important role. We then need to consider two classical 

pion fields (1I"a(r) and 1I"+(r) with 11"_ = (1I"+)t) as solutions to (20). The result 

of (20 )is that certain sets of isospin chiral coefficients allow saturation conditions 

analogous with (32)when a certain function of the two chemical potentials JlB and 

Jla is zero; this gives infinite drops of non-symmetric chiral liquid with the ratio 

of isospin density to baryon number density trw fixed. The classical pion field 

i( r) is then a constant i saturate; for example, the T = 0 non topological solitons 

constructed in section 3.3 with Jla = 0 give isaturate = ( 0,0, Ftan(Oooliquid) ) up to 

isospin rotations which do not change the state. Raising a certain combination of 

the chemical potentials slightly then gives finite saturating nontopological solitons 

with T ~ O. For smaller baryon number, the classical pion field i(r) resembles the 

dashed line of Figure 4. For larger baryon number, the classical pion field saturates 

and resembles the dashed line in Figure 6. As B -7 00 it resembles the dashed line 

of Figure 1 with i -+ isat.u.rate in the soliton interior. 

Now imagine that we had included a chemical potential Jlt2 for the isospin­

squared f2 in (13)a.long with It3 and ItB. T > 0 nontopological soliton solutions 

would then be described by three independent quantum numbers: baryon number 

B, third component of isospin T3 and isospin-squared f2. Of course, we could 

just as well have quantized along the Tl or T2 direction so the soliton energy 

will not depend on T3 but only on Band f2. An approximate formula for the 

non topological soliton energy cont.ribution due to isospin then follows: Eisospin ~ 

af2 t;; with at2 > O. In order to understand this effect, we focus on the term 

~(Dlti)2 in the effective Lagrangian (1.5 )which is the source of the term itx~~i 
- l+FT 
in the isospin current (:34). As the baryon number B f'V the soliton volume V -7 

00, the effective Hamiltonian /l = I d3 .rTllo constructed from (15)gives a soliton 

:if) 



energy contribution 

E· . '" d x- ---+ - 1rsaturate V J 3 1 (f)0 7f)2 + (fji7f)2 1 (00 -. )2 

lSospan 2 (1 + ~)2 2 (1 + ~9}:¥fg!e)2 (35) 

while the isospin contributed by this term is 

(36) 

Assuming that 8o( 7f;aturate) = 0, we then estimate the isospin contribution to the 

soliton energy for large B: 

(37) 

Since lisaturatel ~ F from Section :3.:3 and the baryon number density 'lit'll ~ 2/:, 
the expression in brackets is ~ 1. Of course, the value of af'J for chiral nontopo­

logical solitons constructed from (1.5 ) will depend on the chiral isospin coefficients 

C~ and C~ but (37)establishes that (lf2 '" 17r if the chiral isospin coefficients obey 

naive power counting and are order one. Since aY2 > 0, the ground state for fixed 

T3 will force 'f2 to its minimum value: 'f2 = Tf + IT31~30J Equivalently, we have set 

the chemical potential,lY2 = ° in (1:3). 

We now re-introduce electromagnetic isospin breaking. The electromagnetic 

charge Q = T3 + ~B commutes with H, 'f2 and T3 so we still have symmetry 

under isospin rotations around the :3rd axis. For saturating nontopological soliton 

solutions, the contribution of electromagnetism to the energy is estimated in the 

usual way[31} and we have the S'U(2)L x S'U(2)R mass formula for nontopological 

soliton ground states: 

1 Tl + IT31 
E ~(m.v - Cl,'olIIHlf·)B + (/slIr/ace B3 + a y2 B 

(T3 + ~B)(T3 + ~B - 1) + (lCol/lomb - 1 ~ 
B"3 

(38) 

where the chiral coeffi('ients in (1.5)lIaturally give avolume, aaUT/ace, a y2 '" 17r and 

(/Colliomb '" .7.5 l\JeV. The approximate dependence of /1B and /13 on Band T3 for 
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our nontopological solitons follows from (14). Equation (38), the basic result of 

this Section, follows from (13 )and gives the approximate mass of a drop of chiral 

liquid as a function of its baryon number and third component of isospin. 

3.5 Quantum Chiral Liquids 

In the limit of very large baryon number, matter whose interactions come 

entirely from strong interaction chiral effective Lagrangian operators, such as in 

the chiral perturbation theory (7)supplemented by non-analytic terms, develops 

its own unique and interesting properties. To begin, we will examine the case in 

which all isospin- breaking effects. especially electromagnetic, are neglected. 

Neglecting electromagnetic isospin breaking effects by setting aCoulomb = 0 

III (38), shows that as B ~ 00 there are an infinite number of nontopological 

soliton solutions with different fixed isospin T 2 0 which become degenerate in 

energy. Together with the non-zero classical pion field , this means that isospin is 

spontaneously broken in the B ~ 00 infinite chiral liquid. Simply put, isospin is 

exactly conserved by an effective La.grangian constructed from (7)but the classical 

pion field in our non topological soliton solutions must choose spontaneously some 

value of t2 as well as some direction in isospin space in which to point. Zero-mass 

Goldstone bosons[lOj must therefore appear in the infinite chiralliquid; as B ~ 00 

it costs no energy to increase or decrease the isospin 'f or change its orientation. 

The next step is to examine the quantum correlation functions to see if the 

chiralliquid develops super-fluidity or other super-properties. It mayor it may not. 

The issue of whether long range quantum correlations appear is subtle. Mean-field 

theories such as ours are probably untrustworthy in their predictions for super­

properties. Further, the presence of the classical pion field does not indicate that 

there are massless pion modes in the chiralliquid. Consider the simple case of small 

pion oscillations 87r3 along the 7r3 isospin direction which move within a drop of the 

chiralliquid of Section :3.3. We han' if = (O.O,7r3)' () = tan-1(T) ~ (}soliton + fl() 



with b7r3(t, i) = FcoS- 2(}soliton . 8O(t, .r). Equation (29)is written 

It follows from (31 )that the mass-squared of the small b7r3 excitation in a droplet 

of chiral liquid is - F2 ~ 18.olilon' A pion propagating in the interior of a droplet of 

chiral liquid has a different mass and a different excitation spectrum than a pion 

propagating in the surface; this may affect pionic atoms. For the infinite chiral 

liquid where (}soliton = (}ooliquid, the (constant) pion excitation mass gap is 

(40) 

That this is positive and non-zero can be seen most easily by examination of the 

dashed line in Figure 2; in order that the B -+ 00 saturated nontopological soliton 

(the infinite chiral liquid) exist, the potential U must be a maximum at (}ooliquid 

(the circled point). For the T = 0 infinite chiral liquid of Section 3.3 whose finite 

baryon number solitons are displayed in Figures 4,5 and 6, we find 

m 7r I ooliq u.icl '" 6 
m 7r l!ru: -. 

(41) 

Thus, although the pion excitation mass within the infinite chiralliquid is reduced 

relative to its vacuum value, it is certainly not zero and there will be a mass 

gap in the spectrum for pion excitation. This is a crucial difference between a 

chiral liquid and the old idea, originally due to Migdal, of pion condensation~32) 
There, quantum corrections due to the presence of nucleons result, at sufficiently 

high baryon number density, in a zero mass gap for pion excitation. P-wave pion 

condensation relies on the fourth operator in (8 )and although it would persist in the 

limit of zero quark masses, the chiral liquid would not; for /3 = m7r = 0 the shape 

of U in (31 )would not support a saturating non-topological soliton. The second 

I "S" " I . (32) (. I SU( SU( ) term in (9)might rest! t 111 • -\\"a\"e pIon con( f:'nsatlon SImi ar 3)£ x 3 R 
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terms might result in S-wave kaon condensation [33] ) in neutron stars with a zero 

mass gap for the pion excitation spectrum. Since the mass gap for pion excitation 

in an infinite chiral liquid is not zero, it is not a pion condensate. 

In the chiralliquid, < 4>1[7roperaior, 0/t7roperator] 14> >= 0 so the classical pion field 

is not really composed of quantum pions but, rather, plays the role of an auxilliary 

field; it is to be regarded as the expectation value of two-fermion operators in 

the fluid. This suggests that the chiral liquid is essentially composed of free non­

interacting fermions with a sharp Fermi surface kF. For such a system with B -+ 

h I · f . [34] 
00, t e quantum corre atlOn unctIOn 

kF 

< 4>I\II(t,.T)~(t,y)I4> >"-' J d3h ik.(i-fl) '" sine ~3ecose (42) 

(where ~ = kF Ix - y!) does not fall off exponentially but neither is it long ranged. 

Rather, it is constant for small ~ and falls off as Ix - YI- 2 for large e. This behavior 

is typical of a free non-interacting Fermi gas with a sharp Fermi surface~ 

All of this implies that the infinite chiral liquid is on the borderline of having 

either normal properties or super-properties; chiral SU(2h X SU(2)R effective 

Lagrangian interactions neglected in the construction of the mean-field chiralliquid 

will therefore determine whether it develops super-properties or other macroscopic 

quantum properties. An interesting example is the spin and isospin-dependent 

chiral axial-vector coupling of pions to nucleons arising from the fourth operator in 

(8). Tensor forces from one-pion exchange between nucleons within the liquid and 

the interaction of nucleons with the classica.l pion field of the liquid via this operator 

might cause quantum correlations in which neutrons pair with protons of opposite 

spin. Opposite-neutron-spin pairs would then alternate in a structure similar to 

P . II· 1 [;>.2!351IJ h I I d d I a -wave pIOn crysta me cone ensate. If the infinite c ira iqui eve ops 

macrosopic quantum properties such as this or superfluidity or superconductivity, 

1< In the condensed matter physics litt'rature. such quantum correlations are called "Friedel 
oscillat.ions" . 
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these may have relevance for neutron stars. Further, it would be interesting to see 

whether some remnant of such a super-property persists in ordinary finite heavy 

nuclei and is exacerbated by isospin-breaking effects such as electromagnetism. 

Electromagnetism breaks isospin symmetry explicitly. When included in the 

infinite chiralliquid, the Goldstone bosons of spontaneous isospin breaking acquire 

an infinite mass gap and the third component of isospin takes the value T3 = -~B 
so that the liquid becomes electrically neutral. Although symmetry under rotations 

about the 1st and 2nd isospin directions has been lost, f2, T3 and B still commute 

with the effective Hamiltonian H and are good quantum numbers. 

We now prove the obvious from (:38); for large IT31 and unbroken lsospm, 
-') 2 
T~ = T3 . Our purpose is to introduce a language in which to discuss a new 

phenomena peculiar to chiralliquids: parity doubling. We represent possible chiral 

liquids by a vector in isospin space IT which points in some direction as in Figure 

7. IT is to be regarded as essentially the classical pion field i(i,t) but includes the 

effects of fermion bilinears in 1<1> > as well. In this representation and with the 

angles {) and ¢> defined in Figure 7, the generators of SU(2h+R isospin rotations 

are 

T3 = - i~ arp 
. ±il/l a . cos{) a 
T± = ± e (a{) ± l~{) a-J.) 

81.n <jJ (43) 

Electromagnetism fixes the value of T3 by the last term in (38); we are interested 

in what value of f2 is taken by the chiral liquid for fixed T3 • The contribution 

Eisospin = af2 t; to the mass of a drop of chiral liquid is sketched as a function of 

the angle {) in the lower line of Figure 8. From the fourth equation in (43), it is clear 

that for fixed T3, the ground state has no oscillations in {) and Eisospin '" Tfsin- 2{) 

so that the liquid takes the value t) = % and f2 = Tf. In the representation of 

Figures 7 and 8, there is a single ground state with il3 = O. 



The introduction of even a small explicit isospin-breaking contribution, such 

as the mass splitting between charged and neutral pions, now induces a dramatic 

effect in the chiral liquid. Consider the addition of a term (for small pion fields) 

which inclues electromagnetic spliting of the pions 

(44) 

to the effective chiral Hamiltonian H of Section 2.2. SU(2h+R is broken explicitly 

by the splitting of u and d quarks; m'd - 117,11 '" 8m = mlt'+ - mlt'3 ~ 4.6 MeV. This 

induces a contribution to the energy of a drop of chiralliquid !:1E ~ C'8m V /r(IT2-
nD ~ ClSmBsin2{) where C, C' are order one and become constants for large 

baryon number. For fixed T3 , the ground state again has no oscillations in {) (from 

(43)). However, the isospin-dependent energy contribution to the drop of chiral 

liquid 

is minimized by 

E Ti C$: B . 2.a 
isospin ~ Clf2 B . ').<1 + . um szn·v 

S111~v 
(45) 

(46) 

Eisospin in (45 )is sketched (much exaggerated in order to show the effect) as a 

function of {) in the upper line in Figure 8. It is clear from (46)and Figure 8 that 

there are now two values of iJ which minimize the energy of a drop of chiralliquid: 

11 and 1T' -11. 

Quantum mechanically, the two configurations (they are not eigenstates) IITi > 

and IIT1I"_i > corresponding to the two minima in Figure 8 are related by the parity 

operator P: PlfiJ >= 1fi1l"_J >. To see this, consider an S-wave classical pion field 

such as in a very large drop of chiral liquid. Since, for massless quarks, pions 

are the Goldstone bosons of spontaneous S'U(2h_R symmetry breaking, they are 



pseudoscalars 

Pi(;r,t),p-l = -i(-i,t) ( 47) 

In Figure 7, the replacement IT ---t -IT, is equivalent to iJ ---t 7r-iJ,¢ -+ ¢+7r and, 

for the minima in particular, 1.9 ---t 7r - {j in Figure 8. 

Since parity is exactly conserved by the strong and electromagnetic interac­

tions, two parity eigenstates 1+ >= ~(Itii > +Iti
lf

_ i » and 1- >= ~(Itii > 
-IITlr_i » emerge. These two states, respectively of positive and negative parity, 

are split in energy because they are able to tunnel into each other (through the 

bump in the upper line of Figure 8) via (44). For large drops of chiral liquid, the 

tunneling amplitude", e-"v f; (with K order 1) is exponentially damped with the 

liquid volume V. Therefore, as the baryon number of the drop B -+ 00, 1+ > and 

1- > become exactly degenerate and there are two degenerate ground states. We 

call this phenomena, peculiar to chiral liquids, "parity doubling". It is essentially 

due to the buildup of a classical field made of pseudoscalar pions which, from (47), 

have nontrivial internal parity. 

4 CHIRAL NUCLEI 

Could the structure of heavy nuclei really be tractable from first principles 

rather than be a complicated morass requiring a long and unenlightening numerical 

solution? A vast simplification comes from the empirical knowledge that nuclei 

are made of nucleons (nuclei are not bags of quarks) which behave as elementary 

particles for the purposes of the chart of nuclides; this is the basis for our choice 

of an effective Lagrangian involving nucleons and pions (rather than quarks, pions 

d I (14) • . • 1 I P6)) E .. 11 . . k h 'th' an g uons or Just pIOns Wit 1 topo ogy . m.plrICa y, It IS nown t at, WI In 

ordinary nuclei, nucleons and pions interact in a highly non-linear way and, further, 

the momenta transfered are all soft. 

Nuclear structure is therefore just another soft pion process and is governed by 

the effective chiral Lagrangian (7). This means that it is also one of the few low 

energy hadronic processes in which we can control the strong interaction quantum 



loops to all orders; this control of the quantum loop structure via the effective 

chiral Lagrangian is a crucial difference between the approach of this paper and 

previous mean field models of nuclear structure~6I31J The long ranged interactions 

of pseudo Goldstone boson pions with each other and with nucleons as well as the 

contact nucleon-nucleon interactions are to be regarded as "fundamental", in the 

sense that their low energy dynamics is simple and follows from considerations of 

the chiral-symmetric properties of QeD alone. Nuclear structure is then analogous 

with the structure of many-electron atoms, where the forces between particles are 

known from first principles but tractibility is still doubtful. 

Following the very old and (perhaps suprisingly) successful liquid drop model 

of heavy nuclei, we hypothesize that, at least at a crude level, ordinary saturating 

heavy nuclei are droplets of 8U(2)L x 8U(2)R chiral liquid which exist at zero 

external pressure. Indeed, all of the simplifying assumptions used in the construc­

tion of drops of chiral liquid in previous sections came from intuition gained by 

examination of the empirical properties of heavy nuclei. At a practical level, this 

constitutes a vast simplification in the chiral theory of finite nuclei. Although the 

liquid drop approximation is, of course, completely inappropriate for light nuclei, as 

the baryon number B grows the baTyon number density becomes very flat because 

of nuclear saturation, spatial derivatives can be ignored except at the surface, and 

a heavy nucleus can sensibly be described as a drop of liquid which exists at zero 

external pressure~31J Therefore, the paradigm of proton and neutron Fermi fluids 

in a huge coherent self-consistent classical mean S-wave pion field (or, equivalently, 

fermion bilinears) < ~Iil~ >~ 200-400 MeV, with interactions gotten entirely 

from an effective chiral Lagrangian of hadrons, makes the gross structure of heavy 

nuclei tractible. This is exactly the definition of an SU(2)L x SU(2)R chiralliquid. 

Figure 9 shows the observed charge density distributions of doubly closed-shell 

nuclei with baryon number B ~ 40~3SJ The slight dip in the experimental lines 

of Figure 9 is due to proton electromagnet ic repulsion, an effect neglected in the 

calculations of Section :3.:3: the slight thickness of the lines gives the experimental 

uncertainties. Compare the baryon ck'llsity profiles (solid lines) of the nontopo-



logical solitons of Figures 4 through 6 with the electric charge densities in Figure 

9. Assuming that the baryon density of ordinary heavy nuclei closely tracks the 

charge density, it is clear that the shape of the baryon density profile of drops 

of chiral liquid closely resembles that of real nuclei, although one might complain 

that the baryon surface region is a little thin. Beyond the shape, it is difficult to 

compare the magnitude of the baryon density of our isospin T = 0 solitons with 

the magnitude of the observed charge density of ordinary nuclei. Electromagnetic 

effects neglected in Figures 4 through 6 but included in Figure 9, force larger nu­

clei to have isospin T > 0; from this point of view, it is therefore difficult even 

to compare the magnitudes of the baryon densities in 20Ca40 ,50 Zr90 and 82Pb208 

with each other. Assuming that all of the electric charge of heavy nuclei is carried 

by protons and that the neutron density distribution is ~ x the charge density dis­

tribution, we find that the neutron density within the deep interior of the B = 277 

non topological soliton in Figure 6 is .73:3 x the inferred neutron density in the deep 

interior of 82Pb208. The proton density of this soliton is .888 x that of 82Pb208 in 

the deep interior. We regard the similarity of our nontopological soliton density 

profiles to those of real nuclei as striking. Of course, this is because of the satu­

ration conditions (32)and because the natural density scale of chiral symmetry is 

f~, in close agreement with the observed neutron density of heavy nuclei. 

As a purely mathematical proposition, if spontaneously (and explicitly) broken 

chiral SU(2)r x SU(2)R symmetry contains saturating nontopological soliton field 

configurations such as we have identified with drops of chiral liquid, they are a 

more appropriate starting point for a perturbation expansion for nuclear structure 

than free-particle states because they better minimize the exact quantum energy 

(13)for fixed baryon number and electric charge. Perhaps more importantly, the 

mathematical fact of their existence would give, for the first time, a chiral sym­

metric explanation for the very existence of ordinary heavy nuclei in nature and, 

thus, for most of the periodic table of the elements. 

There are, of course, problems with this picture. The natural scale of SU(2)r x 

5U(2) R chiral symmetry of nucleons and pions is f7r' Nuclear baryon number den-



sities and isospin splittings are then naturally nand !71"' All other mass splittings 

are also naturally'" !71"' From the point of view of chiralliquids composed of nu­

cleons and pions, a central mystery of nuclear physics is why avolume and aStir face 

in (38)are observed to be approximately 16 and 20 MeV respectively~31) rather 

than !71"' These anomalously small values result, after the inclusion of electromag­

netism, in the observed nuclear binding energy per nucleon of ~ 8 MeV ~ !71" over 

much of the chart of nuclides. A separate theoretical disaster in (38)is avoided 

only if avolume < ~; otherwise there would would exist neutral chunks of nuclear 

f b· . . (5111112) I h . S t' 34th t matter 0 ar Itrary, even macroscopIC, SIze. t was s own In ec IOn. a 

f . . h h b d . f I I . (31) . af2 ~ 71" In agreement WIt teo serve propertIes 0 rea nuc el so, agaIn, 

avolume must be anomalously small. Unfortunately, we have here provided no chiral 

explanation for the mystery of why nuclear binding energies are so low ~ 

We have found numerically isospin T = 0 chiral nontopological solitons whose 

chemical potential for the infinite chiral liquid liooliquid = mN - 16 MeV. These 

occur in the upper right hand corner of Figure 3 (near the circled point there) 

and naturally have baryon densities very close to that observed in large nuclei 

like 82Pb208. However, we must resort to fine-tuning the cancellation of energy 

contributions from scalar attraction,...., .f7r and vector repulsion", f7l" with IC~oF~' ~ 
s 

.1 in order to set avolume = 16 MeV and j3 ~ 1 (see below). The reader will have 

complained that (\II t \ll)2 and (\fI\II)2 differ by terms of relative order (,~"N-)2 ~ .1 

for non-relativistic nucleons. The next order in chiral perturbation theory, with a 

factor .b- relative to terms we have kept, is numerically of the same size as this 
HCSB 

d '!r (3) Illerence. Therefore, for the case of anomalously small avolume, although we 

have calculated self-consistently in powers of ACSB in chiral perturbation theory, 

terms of order (ACSB)-l must still playa very important role in the nontopological 

soliton solutions. Indeed, it is self-inconsistent to neglect them. 

* An original motivation for this work was the realization that since true Goldstone bosons 
have only derivative couplings, pions cannot carry st.atic long range forces to nucleons in the 
interior of large saturating nuclei in t.he chiral limit where quarks and pions are massless. 
Rather, pions induce static long range forces there only via explicit SU(2)L_R breaking 
terms whose QeD origin lies in quark masses. We had hoped to find some SU(2)L x SU(2)R 
reason why avolurne ~ 11lquad" 



A related problem is the magnitude of f3 in (17). f3 comes from quark mass 

SU(2h_R breaking; since the first term in (9)gives the estimate 

(48) 

we should have f3 ,...., ...,!!!JL... essentially because mq ~ 9 MeV. The experimental 
I't.cSB 

value f3 ~ 1 (with huge systematic errors[24] ) seems already to be in contradiction 

with this. The value f3 = 6.66 for the drops of chiralliquid constructed in Section 

3.3 and displayed in Figures 4 through 6 is even larger. It is encouraging that, 

for the T = 0 nontopological solitons with fine-tuned avolume = 16 MeV which 

we have found numerically, j3 ~ 2, an experimentally more reasonable value. This 

set of non topological solitons with ItB ~ Itooliquid = .983mN corresponds to the 

circled point in Figure 3. We worry, though, that this is still too large for naive 

dimensional power counting~14] One might speculate that, for drops of chiral 

liquid with anomalously small values of avolume in (38), terms of order (ACSB)-l 

will provide enough extra attraction so that /3 will obey naive power counting. 

With the power counting (48), terms of order (ACSB)-l in the chiral per­

turbation theory (7)have n1 + n3 + 2n4 = 3; there are no new explicit SU(2h-R 

symmetry breaking 114 #- 0 terms. There are two new sets of purely chiral operators 

with derivatives 

1 - 7r n oJ 1 - 27r'n 
-A-\I1\11(-f )2(8t 'FA (\11\11) (-I ) 2(8) 

eSB .11' ; eSB 11' 

(49) 

Some of these appear in Reference :3. In addition, there is a set of six-fermion 

operators without derivatives 

(50) 

As in the notation of (7), the derivative 8 ads on nucleons or pions and all con­

stants, like Dirac and isospin matices. are not shown in (49)and (50). Although 



there are many operators with unknown coefficients in (49)and (50), very few are 

able to contribute to the structure of drops of spin-independent chiralliquid. For 

example, in the non-relativistic limit, there is a unique spin-independent isospin­

independent term with no derivatives in the effective Lagrangian .c (cj is an order 

one constant) 

(51) 

We speculate that, after inclusion of higher dimension operators, SU(2)L x 

SU(2)R chiral perturbation theory (7)will produce drops of chiralliquid which re­

produce the details (charge density profiles, bulk nuclear compressibility, surface 

shape and energy, nuclear optical potential, collective coordinate phenomena such 

as giant resonances and liquid breathing modes, etc. ) of bulk nuclear structure, 

but now with a much smaller coefficient f3 for the 1r-nucleon sigma term. avolume 

and aSUT face will then be fine-tuned to their observed values in (38)so as to re­

produce the old semi-empirical nuclear mass formula with its well known physical 

consequences for strong interaction nuclear ground states~31) These include the 

valley of f3 stability of the chart of the nuclides, nuclear baryon number density 

profiles, the instability of lighter nuclei to fusion, the instability of very heavy 

nuclei to fission, and that the ground state of nucleons and pions with non-zero 

baryon number is 26Fe56. 

One might argue that for such phenomena the chiral symmetry itself is unim­

portant; that it is simply a matter of balancing attractive and repulsive forces to 

give saturation with the right energy and density. The counter-argument rests on 

the non-linearities inherent to low energy SU(2)r x SU(2)R chiral symmetry. Nu­

cleon and pion sca.ttering a.nd decay amplitudes are sensitive to the linearized chiral 

Lagrangian. In contrast, nontopological solitons are notoriously non-linear objects 

which depend with excruciating sensitivity on the non-linearities of the effective 

chiral Lagrangian. Imagine now that we set all the relevant chiral coefficients in 

(7)by scattering and decay experiments. The bulk properties of ordinary heavy 

nuclei then follow entirely from and are extremely sensitive to the non-linearities 



of the low energy chiral operators (7); these non-linearities, in turn, are uniquely 

determined by non-linear chiral 5U(2)L_R and 5U(2h+R transformations obeying 

the algebra of (2),(3)and (5). If chiral symmetry of nucleons and pions were able 

to reproduce simultaneously the results of all soft nucleon and pion scattering and 

decay experiments as well as the details of the bulk structure of ordinary heavy 

nuclei, heavy nuclei will have been demonstrated, at least theoretically, to be of 

chiral origin. 

The next step would then be to search experimentally for some phenomenon 

directly traceable to the liquid phase of non-linear 5U(2)L x 5U(2)R chiral symme­

try. Ideally, certain predictions of the chiralliquid theory of bulk nuclear structure 

would differ qualitatively from those of more conventional formulations of nuclear 

structure. An example would be some remnant of parity doubling. For heavy nu­

clei of finite volume, the parity-doubling states 1+ > and 1- > of Section 3.5 will be 

split in energy by their tunneling amplitude; as an experimental signature, nuclear 

spectroscopy might be enriched. In contrast, nuclear mean field theories in which 

nucleons are trapped in an S-wave classical scalar isosinglet a field (6) do not have 

parity doubling because Pa(x, t)P- 1 = +a( -x, t); the a is its own parity-reversed 

partner so there is only one non-degenerate ground state in the B -+ limit. 

5 CHIRAL NEUTRON STARS 

If heavy nuclei are droplets of SU(2)£ x 5U(2)R chiralliquid, neutron stars 

are great chunks of chiral liquid held together by gravitational forces. Here the 

paradigm should work at its best. Densities are constant over distances'" kilome­

ters, huge on the scale of the pion Compton wavelength, and the baryon number 

B -+ 00 for the purposes of strong interaction physics. Further, aside from gravita­

tional binding energy, momenta-transfer are small; and nucleons and pions are the 

right degrees of freedom. Neutron stars are then driven by soft-pion processes and 

* In this paper, we will neglect higher energy degrees of freedom such as hyperons and quarks. 
These may playa significant role in the deep stellar interior l391 where momenta-transfer and 
densit.ies might. disobey the criteria for tllf' applicabilit.y of the 5U(2)L x 5U(2)R low energy 
effective Lagrangian (7). 



the low energy non-linear chiral symmetric Lagrangian (7)governs the dynamics. 

This means that we are able to control the strong interaction quantum loops to 

all orders[37](16) and extract with confidence chiral symmetric predictions as to the 

properties of neutron stars. 

Conventional neutron star models usually make a highly nontrivial extrapola­

tion from the experimentally observed properties of heavy nuclei with B '" 102 to 

huge B '" 1057 . But how can it be known empirically whether there is an important 

and qualitatively new 2000-nucleon interaction? Nothing is known from the labo­

ratory about the properties of B ~ 267 systems at approximately nuclear densities 

and, thus, there is no empirical basis on which to extrapolate empirical knowledge 

from heavy nuclei to neutron stars. Here chiral SU(2)r X SU(2)R symmetry shows 

its power; the criteria for the use of the effective Lagrangian (7)include no state­

ment about the total baryon number in a soft pion process. We may therefore use 

the effective Lagrangian with as much confidence in examining the properties of 

B '" 1057 at nuclear densities as in examining B = 208 as long as the criteria for 

the use of the effective Lagrangian is obeyed. In this way, chiral symmetry is a 

theory, rather than a model, of low energy hadron dynamics. We may have some 

confidence in the extrapolation from the properties of small drops of chiral liquid 

to the properties of huge baryon number B ,....., 1057 chunks of chiralliquid. 

An immediate and crucial question is whether neutron stars have a macroscopic 

m1I11mUm mass. In the language of Section 3.4, the issue is whether avolume < 
.2.5at2' If not, a new phase of baryonic matter (not ordinary nuclei) appears 

resulting in neutral chunks of baryonic matter varying in size from'" 1O-12cm to 

several kilometers which are held together entirely by strong forces~5111) The density 

of such "baryonic Q-Balls" [II) is constant and, like heavy nuclei, they saturate. As 

the mass increases, they become larger and the mass M '" B '" the volume V for 

small B. Eventually, first Newtonian gravity and then generally relativistic gravity 

become strong enough to overcome this inherent stiffness, resulting in "Q-Stars" 

and a generic curlique spectrum such as in the solid lines marked (a) and (b) of 

F' 10(1218) Igure . Q-Stars are the onl,\' known compact objects able to circumvent 
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the widely accepted upper bound on the mass of a neutron star Mneutron star < 
3.2MG:I [40] An example appears in the curlique labelled "b" in Figure 10. Finally, 

though, they become so massive as to be unstable to decay into black holes, as 

indicated by the crosses. 

Based on the observed instability of transuranic nuclei to fission and that the 

heaviest observed nucleus has B = 266~41J we assume here that SU(2)L x SU(2)R 

chiral symmetry has no such new phase of baryonic matter. In the language of 

Section 3.4, a,/,2 ~ avolume; the isospin energy overcomes the volume binding 

energy III a large drop of chiral liquid so that, at some large baryon number, 

electromagnetic repulsion blows the soliton apart. This, of course, is just the 

usual explanation for the fission of transuranic nuclei~3!] In that case, the ground 

state of a large number of neutrons is to be dispersed to infinity. Only when the 

baryon number B > 1056 and the mass Afneutron star> .lM0 are large enough 

so that gravitational attraction overcomes the neutron Fermi repulsion energy will 

a neutron star exist. A chiral neutron star is held together entirely by gravity * 

so that, as the mass increases, the strength of gravity increases and it becomes 

smaller, such as in the dashed lines of Figure 10. Chiral SU(2)L x SU(2)R neutron 

stars, whose properties are extrapolated from those of drops of chiralliquid which 

reproduce the bulk properties of ordinary heavy nuclei, are probably unable to 

evade the upper mass limit"" :3.2Af0. Eventually the mass becomes large enough 

so as to become unstable to decay into a black hole. If there is no new baryonic 

matter phase, the neutron stars of chiral SU(2}£ x SU(2)R symmetry will certainly 

resemble the dashed lines, rather than the solid lines, in Figure 10; they will not 

be Q-Stars. 

The building of neutron stars is a straighforward excersize in relativistic fluid 

dynamics. The essential ingredients are a hadronic equation of state and general 

relativity; for spherically symmetric static neutron stars, the problem is reduced 

* Because they would disperse to infinity in the absence of gravity, chiral neutron stars are, 
in a sense, more properly called a gas rather than a liquid. Still, their density is constant 
at. a macrosopic scale so we will rpfer to them loosely as a liquid. 
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to the classic equations of Oppenheimer and Volkoff~421391 An estimate for the 

mass and radius of a neutron star follows immediately from I7r, the scale typical of 

chiral SU(2h X SU(2)R symmetry. Since chiral neutron stars have kinetic energy 

density f'V I:, the generally relativistic equations may be rescaled dimensionless 

and without large coefficients by the rescaling of the chiral neutron star mass and 

radius 
3 

I n/, Plnnck f'V M 
A neutronstnT '" 1 - 2 0 

(8;rr)2 Ii 
mplanck 

RneutTonstar '" 1 :::: 20 km 
(8;rr}2{; 

(52) 

In order to do better, we have to construct the equation of state, writing the 

energy density £ = TOO in terms of the total pressure P, but this is beyond the scope 

of this paper. Instead, we will outline how to do so for the effective Lagrangian 

(7)and the variational equation (1:3). We start with six particles: nucleons P 

and N, pions ;rr+, ;rr3, electrons e and neutrinos 1/. Chemical potentials and Fermi 

momenta are introduced for the fermions Pi, kF,i with i = P, N, e, 1/ and Fermi fluids 

constructed in a way similar to Section 3.2. Chemical potentials for baryon number 

and third component of isospin /lB, /l3 are introduced and two classical pion fields 

;rr +, ;rr3. The energy densi ty and pressure are then constructed as functions of these 

12 variables. 9 conditions are to be enforced: 1) conservation of baryon number, 

2) conservation of third component of isospin (or, equivalently, electric charge), 

3), 4), 5), 6) four Dirac equations, 7) weak decay equilibrium, 8) total electric 

charge equal zero, 9) neutrinos escape the star (f.L v = 0) . In addition, since the 

classical pion field configurations vary slowly over huge distances in chiral neutron 

stars, (20)gives two saturation equations with V;rr+ = V;rr3 = 0 for a total of 11 

conditions in 12 variables. The last one is eliminated by solving for £(P) and we 

have the equation of state. The two dashed lines in Figure 10 span the range of 

conventional neutron star mass versus radius relations for various models of the 

nucleon-nucleon force on the market. They are ,respectively, the pion-condensed 

model ;rr and the mean field model l\IF. [2.9] After integrating the Oppenheimer-



Volkoff equations, the SU(2)r x SlT(2)R chiral neutron stars mass versus radius 

relation will resemble these and lie in their vicinity, such as we have sketched in 

the dotted line of Figure 10. 

One could hope to find experimen tally observable consequences of the peculiar 

quantum properties of chiralliquids in chiral neutron stars. Parity doubling could 

be particularly interesting there because two ground states would be available for 

a neutron star. After inclusion of small isospin breaking terms, the two quantum 

states 1+ > and 1- > in Section 3 .. 5 are unable to tunnel into each other in the 

infinite volume limit and so are exactly degenerate. Are there then two different 

sorts of neutron stars'? Does this lead, perhaps at the time of formation in a 

supernova explosion, to domain structure within a neutron star? Chiral symmetric 

questions such as these may allow us to add neutron stars to the list of systems 

to be understood entirely on the basis of chiral operators constructed according to 

the global symmetries of QeD as well as chiral coefficients fit from laboratory low 

energy scattering and decay experiments and the bulk properties of heavy nuclei. 

6 CONCLUSIONS 

The most powerful and successful idea in low energy hadronic physics is the 

validity, in scattering and decay experiments, of chiral SU(2)L x SU(2)R symmetry 

of nucleons and pions. The effective Lagrangian used there includes both tree and 

quantum loop levels and is unique for soft processes; it can be traced directly to the 

current algebra of the global symmetries of QCD. [9](16)(13} We hypothesize that this 

proven theory of soft nucleons and pions contains a liquid phase and that drops of 

liquid could exist at zero external pressure. In addition, the liquid phase may have 

interesting quantum properties, such as parity doubling. 

On the other hand, the best known fact of low energy strong interaction physics 

is the existence of ordinary nuclei. We regard the structure of ordinary heavy nuclei 

as simply another soft process which can be understood within the framework of 

strong SU(2)L x SU(2)R chiral symmetry. Heavy nuclei are then just droplets 

of chiral liquid. Inde(>cL the ma t hema t ica I existence of saturating non topological 



soliton field configurations in broken hadronic SU(2)r x SU(2)R symmetry, may 

give a chiral explanation for the very existence of ordinary heavy nuclei. At a 

practical level, our treatment of heavy nuclei as non topological soliton droplets of 

chiral liquid vastly simplifies the extraction of bulk nuclear properties from chiral 

symmetry. We have argued that chiral symmetry is able to reproduce, at least 

at a crude level, the existence of ordinary heavy nuclei, saturating nuclear baryon 

number density distributions and a semi-empirical mass formula. If heavy nuclei 

were indeed demonstrated to be of chiral origin, SU(2)r x SU(2)R symmetry of 

nucleons and pions would then give us access to the vast storehouse of experimental 

nuclear information. Trustworthy chira.l predictions for neutron stars would follow. 

Because of the peculiar quantum properties of chiral liquids, it may be possible 

to distinguish experimentally the chiral liquid theory of heavy nuclei and neutron 

stars from more conventional models. 
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