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Abstract 

To control the beam in the synchrotron there may be six 
different primary feedback loops interacting with the beam 
at a given time. Three loops are local to the rf cavity. They 
are: high bandwidth cavity phase and amplitude loops 
used to minimize the effects due to beam loading and a low 
bandwidth cavity tuning loop. The loops global to the ring 
accelerating system are: a radial loop to keep the beam on 
orbit, a beam phase loop to damp the dipole synchrotron 
oscillations, and a synchronization loop to essentially lock 
with the succeeding machine. There are various ways in 
which these loops may be designed. Designs currently in 
use in operating machines are based on classical frequency 
domain techniques. To apply modern feedback controllers 
and study the interaction of all the feedback loops, a good 
mathematical model of the beam is extremely useful. In 
this paper we show the derivation of a non-linear tracking 
model in terms of differential equations obtained from a 
set of time varying finite difference equations. The model 
compares well with the results of thin element tracking 
codes. 

1 INTRODUCTION 

Several feedback loops, associated with a basic low-level 
rf system, have to be able to bunch the beam, acceler
ate without inducing unwanted coherent oscillations and 
thereafter time the bunch positions relative to the next 
higher energy machine for synchronization. For this pur
pose, a precise control of the frequency phase and ampli
tude of the accelerating rf signal is required. With a good 
control model we would benefit a great deal while plan
ning and configuring the feedback loops. There are several 
ways the beam control loops are designed. One conceiv
able way is by actually measuring the transfer functions of 
each parameter from the control end and then designing 
the appropriate stabilizing dynamics such as the propor
tional, differential or integral terms. Such an approach 
has at lease two drawbacks, (i) Existence of some kind 
of operating machine to conduct experiments and hence 
to improve the loop performance, (ii) Inaccurate measure
ments due to difficulties in considering coupling effects be
tween loops. Alternatively, by extracting the model from 
the longitudinal beam dynamics, we can design the loops 
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more appropriately. Since almost all the practical imple
mentations of the loops are sensitive to errors, a control 
model with appropriate error terms is even more useful. In 
this paper we have shown the derivation of a control model 
by ignoring the local cavity feedback loops, and hence will 
be applicable to only low intensity machines. 

2 PARTICLE TRACKING MODEL 

From the control point of view, it will be useful to have 
the model in differential equation form, although the ac
celeration takes place only at the cavities. However, a 
discrete representation will be a starting point since it is 
closer to reality. Hence a tracking code for one particle 
was obtained to model the longitudinal phase oscillations 
by giving an energy kick every time the particle passes 
through the equivalent cavity gap. This model is shown in 
Reference [1]. The betatron oscillations are decoupled in 
the formulation of such models. The error introduced with 
this type of approximation is very little when there is sub
stantial difference between the betatron and synchrotron 
frequencies. Since for beam control purpose we are in
terested in the phase of the particle with respect to the 
rf signal, it is calculated by knowing the total arrival time 
of the particle. Using the discrete model we tracked one 
particle for the Low Energy Booster at t = 0 to 0.05 sec 
with a Gaussian noise in the magnetic field errors. The 
results compare quite well with the Thin Element Particle 
Tracking Code by going through each magnetic lens at 5 ns 
time steps. Comparisons are shown in Reference [1]. 

3 NON-LINEAR BEAM CONTROL 
MODEL 

The beam control model is derived below using the discrete 
model at first for a single particle, and later we show the 
model for a multi particle case. 

3.1 Synchronization Model 

The synchronization loop with "trip-plan" approach [2] 
provides the means to phase-lock the reference bunch in 
the lower energy machine with a reference bucket in the 
higher energy machine. For simplicity let us consider the 
bunch comprising just one particle. If t~ is the time when 
the reference particle in the lower energy machine reaches 
the reference point in the kth turn, then the "trip-plan" is 



given by 
(1) 

The superscript "8" is used to indicate the parameters for 
synchronous particle. If "trip" is the measured phase for 
a non-ideal particle, then for kth turn it is given by 

where tk is the actual traversal time of the particle in the 
lower energy machine. This can be written in the following 
form for a machine operating below transition: 

k 

tk =tt - L: orn . (3) 
n=! 

The error in synchronizing phase is obtained by subtract
ing Eq. 1 from Eq. 2. By ignoring the second order terms 
and converting the discrete error equation to continuous 
form, the phase error is written as 

oS:::: -v' f or dt + oSo. (4)
r' 

The deviation in time, or, in one traversal can be expressed 
in terms of radial orbit shift and the field error. 

or ,2 oR 1 oB 
(5)r' = 'T} IT R' 12 B' 

Using Eq. 5 in Eq. 4, the phase error can be expressed in 
the measurable quantities 

(6) 

where the new variables are shown in Table 1. 

3.2 Radial Orbit Model 

If Ek is the energy in kth pass through the cavity gap, then 
the energy for actual particle, and a synchronous particle 
is given by the following difference equations [3]: 

(7) 

and 
Ek - Ek 1 eV; sin(¢Oo (8) 

where OV/C is given by 

(9) 

with oV/cc as the control supplied to the cavity gap volt
age and ov/ce the error in the cavity voltage for kth turn 
and (</>/c)o is the particle phase for the ideal synchronous 
case. The quantity 6v/ce can be set to zero when we do 
not use global amplitude feedback. The energy equation 
is in the finite difference form. It can be transformed to a 
differential equation in the usual way as follows: 

E E' [(1 . .eV' OV) ("') ( .)]- - = -- + - sm If' - sm ¢o (10) 
v v' 27TR' V' 

where E and E' are assumed to be equal to the energy 
gain per turn of the actual particle and the synchronous 
particle respectively shown by Eqs. 7 and 8. If ov is the 
change in velocity from the synchronous particle, then by 
using Taylor Series approximation, Eq. 10 can be written 
as below: 

where the new variables are shown in Table 1. 
The particle phase, </> can be written in terms of the nom

inal synchronous phase, </>~, the deviation from the syn
chronous phase representing the synchrotron oscillations, 
o</>' , the systematic phase error, </>e, and also, a small phase 
shift, o</>c as supplied by the controller. That is, 

(12) 

The phase shift o</>c is included as one of the control inputs, 
since the radial loop can be connected to the global phase 
shifter after the frequency source, as in the case of Fermilab 
booster low level rf system. We can write the following 
functional relationship between energy and momentum 

oE = (P,)'J 0;. E'. (13) 

Substituting the well known equation for the momentum 
change from Reference [1], and by taking the first deriva
tive of the resulting energy equation with respect to time 
we obtain: 

(14) 

The incremental velocity change in a given turn has a func
tional relationship: 

ov 1 

v' 

It is substituted in Eq. 14 and then the resulting equation 
is compared with Eq. 11. After simplification we get the 
desired equation for the radial orbital deviations as follows: 

a22x2 + (a23 <h3w) sin(x3 + X4) 

+(a24 a24w) COS(X3 + X4) 

+a24 + d21 0B + (1210.8 (15) 

where the new variables are shown in Table 1. 

3.3 Particle Phase Model 

The discrete phase equation is well known and is written 
below with error and control terms 

By substituting the equation for orlc in terms of the radial 
orbit shift and the magnetic field errors and converting the 
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Table 1: Parameters of the state space model. 

Coefficients: 


v' 
all = iii' 

,,',,'"/2
a12=-~ 
an = Af;AI 


_ & (I DV") .1.$
a23 - 1 +"1i"IAl cos '1'0 

a23 1;- cos ¢J~ 

a24 = 1;- (1 + fF,) sin¢J~ 
024 = -1;- sin ¢J~ 

2'1fr,,'"/~
a32 R' 

b3l =211" 

Variables: 
Xl = oS 
u=or 
Errors: 
oB or 

equation to continuous form the following state equation 
is obtained: 

X3 a32X2 + b31 U +V - ~~ + (d3l0B + b3lor + d32¢Je 
) 

x4 = -v (17) 

where the new notations are shown in Table 1 above. v 
shown above is not the same as velocity used in Eq. 10. 

LINEAR STATE SPACE MODEL 

The model shown in the previous section can be linearized 
to a time-varying state space model for small angle phase 
oscillations. It is given by 

al2 0 
a22 a23 
a32 0[~i 1 [T a~, ][ ~1l 
0 0 

0 0 
-a24 0 

. (18)+ 0 b31[~ 1, ][ ~ 10 0 

Clearly, the above equation can be written in a more gen
eral state space form as follows: 

(19) 

where .!!l. represents the state vector, L1 represents the sys
tem matrix, represents the input matrix and!! repre
sents the control vector. Eq. 19 is known as state differen
tial equation. With Eq. 18 several linear control combina
tions can be analyzed and a suitable feedback compensa
tion can be included. The non-linear dynamical equations 
represented by Eq. 6, 15 and 17 can be used to design loops 
for large phase angle variation. However, in such cases, the 
single particle non-linear model will not be very accurate. 
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Hence we show a slight modification for the multiparticle 
case below. 

5 MULTIPARTICLE STATE SPACE 
MODEL 

Let us assume that a bunch-to-bucket transfer is used at 
injection into the accelerator with a bunch of N particles 
having energy and phase spread. If 01'1,01'2, ... ,0rN are 
the traversal times for each particle, then the traversal 
times can be written in terms of oR1 , oR2 , ••• ,0RN from 
Eq. 5. After substituting the orbit shifts for each particle, 
on the average Eq. 6 can be written as, 

(20) 

where 

1 N 1 N . 

Xl = N L:(Sa.ctual 
j 

· I) and X2 = - ~ 0RJ8TrIP-P a.n N L...i
;=1 i=1 

and error terms do not change. Similarly, Eq. 15 becomes 
equal to 

a22X2 + (a23 a23w) sin(x'3 + X4) 

+024 + (a24 - a24W) COS(X'3 + X4) (21) 

with 

I  [itl sin(0¢J8)i 1 
x 3 = (o¢J') =atan 	 =-:-;:-::----

E COS ( 0¢J8)i 
i=1 

2:3 is defined in Eq. 22 below by rewriting Eq. 17 for mul
tiparticle case: 

X3 a32x2 + b31 U+ v and X4 = -v (22) 

with 
1 N . 

X3 = - L:(O¢J6)1. 
N j=1 

For a linear model, clearly X'3 = X3 and matrices A and 
B do not change. 

6 CONCLUSIONS 

A general control model is derived in state space form for 
planning and studying the beam control feedback loops. 
The model is obtained at first for a single particle case and 
then it is extended to include multi-particle. Validation 
tests were carried out with a particle tracking code. 
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