
SSCL-Preprint-19
0\

Z Superconducting Super Collider Laboratory
~
'"" 0..
C1J

'"" ~
I

...J
U
en
en

Parallel Processing at the sse:
The Fact and the Fiction

G. Bourianoff and B. Cole
October 1991

To be published by American Institute of Physics SSCL-Preprint-19

Parallel Processing at the SSC: The Fact and the Fiction*

G. Bourianoff and B. Cole

Accelerator Design and Operations Division
Superconducting Super Collider Laboratoryt

2550 Beckleymeade Ave.
Dallas, TX 75237

October 1991

* Presented at the Advanced Beam Dynamics Workshop on Effects of Errors in Accelerators, Their
Diagnosis and Corrections, Corpus Christi, TX, October 3-8, 1991.

t Operated by the Universities Research Association, Inc., for the U.S. Deparunent of Energy under
Contract No. DE-AC35-89ER40486.

Parallel Processing at the sse: The Fact and the Fiction

G. Bourianoff and B. Cole
Superconducting Super Collider Laboratory,* Dallas, TX 75237

1. 0 Introduction
Accurately modelling the behavior of particles circulating in accelerators is a computationally

demanding task. The particle tracking code currently in use at the SSC is based upon a "thin element"
analysis (TEAPOT). In this model each magnet in the lattice is described by a thin element at which
the particle experiences an impulsive kick. Each kick requires approximately 200 floating point
operations ("FLOP''). For the SSC collider lattice consisting of 104 elements, performing a tracking

_ of study for a set of 100 particles for 107 turns would require 2 x 1015 FLOPS. Even on a machine
capable of 100 MFLOP/sec (MFLOPS), this would require 2 x 107 seconds, and many such runs are
necessary. It should be noted that the accuracy with which the kicks are to be calculated is important:
the large number of iterations involved will magnify the effects of small errors.

The inability of current computational resources to effectively perform the full calculation
motivates the migration of this calculation to the most powerful computers available. A survey of
the current research into new technologies for supercomputing reveals that the supercomputers of the
future will be parallel in nature. Further, numerous such machines exist today (Figure 1), and are
being used to solve other difficult problems. Thus it seems clear that it is not too early to begin
developing the capability to develop tracking codes for parallel architectures.

Supercomputers

Connection
Machine

Figure 1. Diagram of Various Parallel Architectures

Having reached this conclusion the next question is, "Which of the several different types of
parallel architectures is best suited to particle tracking calculations?" The first consideration is the
problem to be solved. Figure 2 is a diagram of the computational features of the tracking calculation.

*Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under
Contract No. DE-AC35-89ER40486.

1

In general, it is noted that fast access to a large amount of static data is required, and that the number
of calculations per "step" (passage of a single particle through a single element) is fairly large.
Considering these issues, one can now re-examine Figure 1 with a bit more focus. SIMD machines
are limited in the rate at which the various processors can access "global" data; thus they are not well
suited for this type of calculation.

MIMD machines are in turn subdivided into two classes according to the number/power of the
processors: Fine grained machines have less computing power per processor, while coarse grained
machines have fewer processors with more power. The tracking calculation is mapped onto these two
types of machines very differently: For fme-grained machines, each magnetic element in the lattice is
mapped to a separate processor, and then the particle infonnation is then passed via messages from
processor to processor. For coarse grained machines, each particle is mapped to a processor, each of
which also has access to the entire laLtice. Given the current state of technology in communications
bandwidth and processor power, this is the most efficient method. In fact, the increased processing
power available in the current generation of RISC processors and the improvements projected for the
future provide the real impetus for the move LO parallel architectures.

Of the coarse grained machines the Intel iPSC/860 has sufficient local memory to hold lattices for
the SSC collider, and has the most powerful individual processors.

Data Dependency

Static Lattice Data

Magnetic elements, Positions, etc
350 bytes

c:: Particle Kick
200 Floating Pt Operations c::

0 .9
~ ~

1= Static VO 2bytes/ftop E
.2 .2 Vl
c: en c: ~

~ - Dynamic I/O .2bytes/ftop - >-.
~ >-. ~ .0
.~

.0 u 0 0 'E "<:t
~ "<:t

~
Q.. Q..

::2 ~
0 ~

z

Figure 2. Diagram of the Memory/processing Requirements for Particle Tracking Studies

2.0 SSC Experience with the iPSC/860
On the basis of analyses of this type and early experiences using such a machine at ORNL, the

SSC purchased a 64 node iPSC/860. Each node has 8 Meg of onboard memory, and i860
microprocessor with a peak rate of 30 MFLOPS (peak, double precision). The nodes are arranged in a
hypercube configuration, and are connected LO the Unix network through the System Resource
Manager (SRM), an 80386-based microcomputer. The machine was delivered on January 4,1991, and
has been in use since that time.

2

Machine stability was initially poor. It has improved, but is still an issue. Failures have been of
two types: cube failure and SRM failure. Of these, cube failure is the less severe, as software running
on the SRM is capable of rebooting the cube, and under proper circumstances can be done by users.
SRM failure, however, is more severe, requiring a cold reboot of the SRM itself, which requires
intervention by the system administrator. A second problem with the overall system is that the SRM
has proved to be a bottleneck during the program development phase.

Stand-alone versions of the tracking kernel of TEAPOT, one in C and one in Fortran (Ztrack),
have been developed for the hypercube. Code development was enhanced by network mounting
directories from the users' personal workstations to the SRM. This allowed using the supplied cross
compilers (as well as the users own editor) on the workstations to speed the compile leg of the
standard compile-execute-edit debugging cycle. This was initially unstable, but has improved during
the past few months. It is unclear whether this was related to the SRM per se, or to the network.

The codes have been used to perform tracking simulations on all four circular machines that will
make up the SSC. Runs take anywhere from a few minutes to several days. For longer runs, the
codes generate restart files to ensure that a machine crash will not require restarting a run from the

_ very beginning. In general, the codes operate at approximately 5 MFLOPS per processor, making
each processor roughly equivalent to a Sun workstation (spare II). The total processing power of the
hypercube for tracking calculations is thus 320 MFLOPS or 1.5 times the Cray XMP. A comparison
of code performance is summarized in the table below:

Table 1. Computation Times for Tracking Codes

Ma:hine

CrayYMP

CrayXMP

64 Node IPSC/860

Version

Scalar, Fortran

Vector, Fortran

Vector, Fortran

Fortran

C

Assembly (est.)

Run Time
(hours)

103.5

13.8

20.0

11.5

11.3

5.5

The hypercube has made its initial contributions primarily to the collider, as shown in Figure 3.
In this figure, one particle is started at each dot on the figure in part a with a transverse displacement
given by its vertical coordinate and a momentum displacement given by its horizontal coordinate.
The number of turns that each particle survives is recorded, and this information is used to generate
the contours in part b.

3.0 Current Status and Work in Progress
The system level software is in its infancy, and is thus somewhat disappointing, largely due to

limitations on the individual processing delivered by scalar code running on the nodes individually,
rather than parallelism-related constraints such as communication. Since acquiring the machine we
have received two upgrades to the operating system and the compilers, both of which have brought
improvements in the speed of the codes. It is reasonable to expect that future releases will boost the
speed of compiled Fortran/C to around 10-15 MFLOPS (sustained, "real" performance on tracking
codes.) Beyond this, handwritten assembly code will be required, and we are developing in-house
capabilities along these lines.

Machine stability has improved, but continues to be a problem. The machine is prone to SRM
crashes when under periods of heavy time-sharing use (many users with many small heterogeneous
jobs running simultaneously). As more codes are developed, this problem will be to some extent
self-correcting, as production runs will reduce the number of users who may do simultaneous

3

Coupled
4 ,
~••.........••..
J •••••••••••••••••••
1···················
~···················T

3 -t T
~

I 1···················
~••••.

I
0... -, •••••••••••••••••••

e:.24.-:.
co••.....••....•

.0 ••••••••

* 10'

X

........ ~ ·······1 -= ••••

*10' OeCoupled
4

j
.................. . ..•........•......•
•••••••••••••••••••••.....••...

3 i ···········•...... •.......••••....•••••••••

*10'

X

........

*\0' Coupled

0

2
*10'

X

*10 ' OeCoupled
4

2

x

,-, ABOVE 49500

D 45000- "'9500

D 40500 - 45000 - 36000 . 40500 -31500 - 36000 -27000 31500 - 22500 . 27000 - 18000 " 22500 - 13500 - 16000

m 9000· 13500 -<!5DQ - 9000 -BELOW 4500

~ ABOVE 49500

~ 45000 - 49500

D 40500 - 45000 -36(){)() - 40500 -31500 - 36000 -27000 - 31500 -22500 - 27000 - 18000 - 22500 - 13500 - 18000 - 9000· 13500 - 4500· 9000 -BELOW 4500

Figure 3. Sample Output from a Hypercube Run showing Survival Information vs. Transverse Displacement
x and Momentum Variation dp/p. The left side shows the actual data points, while the right shows
a contour map interpolated from these points.

development. Also, we are learning to make our codes less dependent upon the SRM, which will
improve not only system reliability, but code perfonnance as well.

New challenges are also appearing, and we are gearing to meet them: We are acquiring new tools
to allow us to quickly port applications from other machines to the cube, and are developing the
capability to interface codes running on the cube with codes running on the workstations, making the
use of the cube easier.

The process thus far has not been without pain. However, parallel processing is in use at the
SSe. The current generation of parallel computers are like adolescents, having achieved full physical
development but not yet having acquired maturity in any other area. The raw computing power is
there, the promise is enormous, but the operating environment is not stable, the system level
compilers are primitive, and application software is almost non-existent. Still, if one does not expect
too much, it is possible to acquire and utilize a parallel computer to do calculations that would not
otherwise be possible.

4

