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The accelerating frequency of the Low Energy Booster planned at the Superconduct
ing Super Collider Laboratory is designed to vary between 47MHz to 60MHz in 5Oms. 
Such a large variation in frequency places greater demands on the global beam control feed
back loops. A new method of synchronizing the Low Energy Booster with the Medium 
Energy Booster is under development. This type of approach demands a high level of sta
bility analysis of the feedback loops since it interacts with other loops already in operation. 
In currently operating machines, classical feedback controllers are used. In the presence of 
non-linearities, field errors and measurement errors, the classical controllers fail to give 
good control over the synchronization. Sliding-mode controllers can give robustness to the 
loop in the presence of uncertainties. However, it requires the knowledge of beam model 
with some indication of the uncertainities and non-linearities. Therefore, in this paper we 
show a brief description about the derivation of the control model and then the design of 
two types of sliding-mode controllers. The first sliding-mode controller is conventional and 
the second is designed by input-state linearization of the original non-linear equation. The 
simulation results show that the loop performance is good in the presence of errors com
pared to the linear state feedback controllers. 

1. Introduction 
There are two important parameters such as the magnetic field and the accelerating. 

voltage associated with the beam control. Since the magnetic field system is responsible to 
bend and focus the beam, it has a long time constant. Hence all the beam control feedback 
loops are concentrated at the Radio Frequency (RF) accelerating system. There are 8 RF 
accelerating cavities planned for the Low Energy Booster (LEB), located in one superpe
riod with necessary geometrical spacing between them as shown in Figure 1. The RF cav
ities are driven by programmed amplitude and frequency function. RF power amplifier 
drives the cavity and a high voltage appears on the gap. The amplitude of this voltage is 
programmed and is controlled by each cavity local feedback loop (Mestha 1991). The fre
quency function is generated globally to all the cavities. 

1.1 Description of the Planned Synchronization Loops 
The low power RF signal driving the cavities are generated by a single frequency 

source, namely a Direct Digital Synthesizer (DDS). The frequency and phase of the RF sig
nal is controlled with feedback loops from the beam to the frequency source and a global 
phase shifter. The local phase shifters are passive. They are required only to phase the RF 
signal going to each cavity due to the geometrical spacing between the cavities. By varying 
the frequency and phase of the RF signal the voltage seen by the beam and hence the energy 
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can be varied. 
There are errors in the bending magnetic field which lead to orbital deviation in the 

fOIm of radial position if the beam energy is not matched to the magnetic field. The devia
tion in the orbital position is measured with horizontal electrodes of the beam position mon
itor and is corrected by varying the phase of the RF signal in the global phase shifter. This 
loop is called the 'radial loop' . This loop has generally slow time response and is not able 
to damp 'coherent dipole oscillations' in the beam due to field errors. Therefore a 'beam 
phase loop' is included to the frequency source. In this loop the beam signal is compared 
directly from a wall current monitor with the RF signal in a beam phase detector. It is com
pared to the synchronous phase of the beam and an error signal is obtained. The error signal 
is proportional to the dipole oscillations in the beam. The beam phase error is converted to 
appropriate frequency shift through a feedback controller. The frequency shift is added to 
the programmed frequency curve at the input end of the DDS. 

With only radial and phase loops the beam will circulate around the ring without 
proper synchronization of a given bunch with the stable bucket in the Medium Energy 
Booster (MEB). The synchronization is required for filling batches ofLEB bunches into the 
MEB for collider operation. The configuration of the synchronization loop shown in Figure 
1 provides the means to phase-lock the reference beam bunch in the LEB to the reference 
bucket in the MEB (Mestha, 1991). In this approach a TIme to Digital Converter (mC) is 
used to measure the position of the designated LEB reference bunch for each MEB revolu
tion. The time of flight information is multiplied with a stored velocity profile for the syn
chronous particle. By comparing these values with the ideal phase values for the designated 
LEB reference bunch for each MEB revolution an error signal is generated. The error signal 
is converted to frequency shift from the controller which is then added to the ideal fre
quency program. Thus the LEB reference bunch is phase-locked to the ideal phase values 
stored in the computer. This enables phase-locking of the bunch with controlled phase slip
page when ideal phase values are suitably adjusted for transfer. 

1.2 Goal of Robust Controllers for the LED 
The feedback strategy described above has been studied with linear state feedback 

controllers in Reference (Mestha, Kwan, Yeung, 1991) for small operating region. The 
beam control model is non-linear, time varying and has field error terms as uncertainties. 
Although the implementation of Figure 1 looks simple, stability and performance of the 
loops are not guaranteed when there is significant uncertainties and non-linearities. The 
uncertainties in our control problem are (1) Field errors (Cavity voltage and magnetic field) 
(2) Errors in the measurement of radial position (3) Systematic and random errors in the 
beam phase measurement (4) Errors in the frequency source due to the stability limits on 
oscillators (5) Errors in calculating the 'trip-plan' (6) Errors while ramping the pro
grammed frequency. The linear controllers shown in Figure I do not guarantee optimal per
formance and stability under these conditions. Hence, in this paper we have shown briefly 
the derivation of the non-linear beam model associated with the control objective and then, 
we introduce the design of two sliding-mode controllers to overcome the effects of errors 
mentioned above. The implementation of such a scheme does not look far from reality not 
only due to the advancement in the technology of Direct Digital Synthesizers and the com
putational power of Digital Signal Processors, but is also due to the simplicity in modifying 
the planned hardware (with state feedback controllers of Figure 1) to add the robustness 
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offered by the sliding-mode controllers. 
The first sliding-mode controller is conventional and is designed to minimize the lin

ear combination of the synchronization phase error, beam phase error and the radial posi
tion error to zero. Whereas with the second controller, the objective is targeted towards 
achieving the synchronization phase error zero at all time after reaching sliding. It is 
applied to the beam model after input-state linearization to achieve robustness; to the loop. 
The input-state linearization techniques hitherto are used to only autonomous systems and 
they are not robust. With the application of sliding-mode techniques, a generalized design 
shown in this paper can handle the non-autonomous case in the presence of uncertainties. 

2. Beam Control Model 
For the purpose of designing feedback control law to operate in the presence of errors 

and system non-linearities, a good tracking model is helpful. We can derive the model by 
using a macro-particle concept, in which a single particle is tracked tum by turn and rest of 
the particles in a bunch are assumed to follow the single particle. A beam bunch in this 
paper is referred to as a macro particle. The longitudinal dynamics contained in the turn by 
turn tracking model is then transformed to the differential equation form by identifying 
suitable control inputs. Detailed description of the derivation of the model is covered in 
Reference (Mestha, Kwan, Yeung, 1991). 

For describing the tracking of a single macro particle we will consider the circular 
orbit in the LEB. Whatever the shape of the real orbit of the particle, its shape is replaced 
by circle with circumference equal to the actual path length as shown in Figure 2. For math
ematical consideration let us consider a simple case with a single accelerating cavity with 
an infinitesimally small gap length inserted in the beam line as shown in this Figure. The 
particle travelling in the beam line will see accelerating field only at the pointlike gap and 
will see no accelerating field elsewhere. Analogous to the accelerating case we also con
sider thin magnetic lenses such that the magnetic field will be maintained constant for one 
complete traversal across the gap. The magnetic field will be changed each time at the exit 
from the gap along the particle orbit. 

As we pointed out in Figure 1, our ultimate goal is to be able to synchronize a given 
beam bunch from the LEB WIth a selected reference bucket in the MEB without loosing 
particles and diluting emittance. The LEB has 114 bunches and the MEB has 792 stable 
buckets and some of them may be filled. While synchronizing, we must make sure that the 
orbital deviation is under control and the beam phase oscillations are damped. In this paper, 
we will show briefly the derivation of specific equations representing the system dynamics 
useful for designing sliding-mode controllers. First we obtain the synchronization model in 
terms of the machine parameters and then show the derivation of the model for orbital devi
ation and the phase oscillations. 

2.1 Synchronization Model 
As indicated above, in the synchronization loop the reference particle of the LEB is 

tracked with respect to a designated stable bucket of the MEB. Let t~ be the time covered 
by the ideal reference bucket in the MEB for kth turn in the LEB.1f ti is the time when the 
reference particle in the LEB reaches the reference point in the kth turn, then if v~ is the 
velocity of the reference particle, the 'trip-plan' is given by: 
We have plotted the trip-plan for the LEB to MEB synchronization in Figure 3. The values 
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(2.1) 

shown on y-axis (the modulo of the LEB circumference) can be called the 'synchronizing 
phase'. For synchronous transfer, the synchronizing phase is equal to zero (ignoring the 
transfer line delays). We can readjust the trip_plan and arrange any point equal to the syn
chronous transfer point. 

Since the MEB to LEB circumference ratio is 3960/570=6.9473684, which means 
when the frequencies are the same at the end of one MEB turn the LEB reference particle 
would have completed 6 full turns and a semi-turn. By adding this semi-turn 19 times, we 
get one full LEB turn. Hence, there will be 19 MEB turns before the LEB reference particle 
reaches the same reference point again. This is clearly visible in the trip-plan in Figure 3 
above. The trip-plan calculated by Equation 2.1 is for an ideal synchronous particle. In the 
presence of field errors, the actual path covered by the reference particle is different and can 
be referred to as 'trip'. By ignoring the field errors in the MEB at the time of injection to 
the MEB (since the beam is assumed to be coasting at the top LEB frequency) for kth turn 
of the LEB, the trip is given by: 

(2.2) 

Here ov k is the change in velocity from that of the synchronous particle and t k is the actual 
traversal time of the LEB reference particle. The actual traversal time of the LEB reference 
parti~le is different from t~ used in Equation 2.1 above due to errors (Edwards and Syphers, 
1990). It can be modelled by adding up the total traversal time required by the actual par
ticle up to k turns as follows: 

k 

t k = t~ - 1: O't n 
(2.3) 

n=l 

where o't k is the deviation with respect to the time taken by the synchronous particle in the 
LEB. The negative sign is due to the fact that, in the LEB (machine planned to operate 
below transition) a particle which has too much energy travels on a circle with greater 
radius, but is faster and hence takes shorter time to return to the gap than the ideal particle. 
By subtracting Equation 2.2 with Equation 2.1 the error in synchronizing phase can be 
obtained for kth turn as follows: 

To lock the LEB reference particle and the MEB reference bucket to the trip-plan we need 
to reduce the phase error, 0", k to zero. 0"'0 is the phase error we have deliberately created 
by selecting a given reference particle in the LEB. The deviation in the actual velocity of 
the particle for every MEB turn is generally small. That is the ratio (ov k) / v~ is small, if 
we chose enough samples in the trip-plan. Hence terms within the flower brackets can be 
ignored. Equation 2.4 is in difference equation form which can be converted to differential 
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equation form by introducing "ts as the traversal time of the ideal synchronous particle. 
While transforming to continuous domain the summation term is replaced by the integral. 
Hence the synchronization phase error is written as: 

sJ~h 0'V e -v -dt 
"t5 (2.5) 

The synchronization model will be useful if we express in terms of the radial orbit shift and 
the dipole field error. This can be done by substituting the expression for the deviation in 
the traversal time in the presence of field errors (Bovet. C. et al, 1970). The resulting equa
tion for the synchronization model is as follows: 

(2.6) 

The superscript' 5' is used to represent the parameters fo the ideal synchronous particle. 
Clearly, when the field error is zero, the synchronization phase error is due to the orbital 
deviation. The relationship between the phase error and orbital deviation is weighted by the 
slip factor, 115

• If we have synchronized the reference particle in the LEB to the trip-plan 
earlier in the cycle then smaller slip factor would be beneficial. It means the particle tries 
to stay on orbit. 

2.2. Transverse Orbital Deviation 
The mean orbital deviation is zero for an ideal synchronous particle. In the presence 

of field errors, it is not zero. A general model is required to describe the longitudinal 
dynamics associated with the orbital deviations. To obtain a differential equation with 
appropriate control in the presence of errors we need to use the energy equation shown in 
Reference (Edwards and Syphers). If !lE is the difference between the energy of the syn
chronous particle and the particle we are tracking, then, 

!lEk+ 1 = !lEk+ (e(V~+OVk)sin<pk-eV~sin(<pk)~) 

where 0 V k is given by 

(2.7) 

(2.8) 

with 0\1 as the control supplied to the cavity gap voltage and 0\1 the error in the cavity 
voltage for kth turn and (<p k) 5 is the particle phase for the ideal synchronous case. <p k is 
the particle phase of the non-s~nchronous case and V~ is the amplitude of the programmed 
voltage function for the synchronous particle. The quantity 0\1 can be set to zero when we 
do not use global amplitude feedback. The energy equation is in finite difference form. It 
can be transformed to differential equation in the usual way, as follows. 

doE 
dt = (2.9) 

The particle phase, <p can be written in terms of the nominal synchronous phase, <p~, the 
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deviation from the synchronous phase representing the synchrotron oscillations, ocl>s and 
also, a phase shift, ocl>c as supplied by the controller. That is, 

(2.10) 

The phase shift ocl>c is used in the feedback strategy shown in Figure 1. It is well known in 
accelerators that 

(2.11) 

The momentum change shown in Equation 2.11 can be expressed as: 

oP = if, oR _ oB (2.12) 
pS T RS BS 

Substituting Equation 2.12 in Equation 2.11 for the momentum change and by taking the 
first derivative of the resulting equation with respect to time, we get the following equation: 

(2.13) 

where the coefficients, Al and A2 are the first derivative of Al and A2 and are shown in 
Table 1 below. Comparing Equations 2.13 and 2.9 and rewriting the resulting equation we 
get the desired equation for the radial orbital deviations as follows: 

doR 
dt 

(2.14) 

where A3 is the time varying coefficient of Equation 2.9 as shown in Table 1. Equation 2.14 
combined with Equation 2.10 describes the dynamics of the orbital deviation. 

2.3 The Particle Phase Model 
For control purpose the longitudinal dynamics described by Equation 2.14 is incom

plete without representing the synchrotron oscillations in terms of the controllable and 
measurable parameters. If '" is the nominal frequency as programmed in the oscillator, oft 
is the control input generated by the controller and 5ft is the error in the oscillator itself, 
then the beam phase equation can be written as, 

(2.15) 

Using equation for o"t k in Equation 2.15 the following phase equation is obtained. 

cl>k+ 1 - cl>k [ORk 1 OBkj --- = 2lt CIt + oft + oft) 1 + ll s
kif,T- - --2 -

~ r (~~ 
(2.16) 

Equation 2.16 can be written in the differential equation form by ignoring the second order 
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terms as follows. 

dq, 
dt (2.17) 

The term 2Itf can be ignored since it is multiples of 360 degrees. By substituting from 
equation 2.10 for the particle phase we get the following differential equation for the syn
chrotron oscillations, 

2 ItfTty; d5q,c 2rcf dq,~ 
= ___ T 'OR + 2rc5f - -d - 2 5B + 2rc5f - -d 

RS t (y) B S t 
(2.18) 

It is useful to rewrite the control model in state space form and is done below. 

2.4 State Space Model 
The model shown in section 2.3 can be written in state space form by assuming the 

following definition for the measured quantities and the control inputs. 

Xl = 5", 

x2 = 'OR 

x3 = 5q,s 

x4 = 5q,c 

u = 'Of 
w = 5VC 

(2.19) 

In the above equation 5"" 'OR, 5q,s are measured quantities (see Figure 1). Whereas, 5q,c, 
is a control input used to shift the phase of the global RF signal. Also in our beam model 
the global frequency shift and the amplitude shift are represented by control inputs. The 
field shift, 5B, cannot be considered like this, since we are not feeding any signal to the 
magnet system power supply from the global beam control system. Now, by using the new 
variables in Equation 2.6 we obtain the state space description for the synchronization 
model as follows: 

(2.20) 
where the time varying coefficients are tabulated in Table 1. Similarly, the state space 
description of the radial orbit shift can be obtained by substituting Equation 2.19 in Equa
tion 2.14. Mter simplifying the algebra and rearranging the coefficients, we get the follow
ing non-linear equation. 

X2 = a22x 2 + (a23 - a23 ro ) sin (x3 +X4 ) + (a24 - a 24 ro) cos (x3 +X4 ) 

+ a 24 + d21 5B + d21 5iJ (2.21) 

The time varying coefficients are shown in the Table 1. The state space description of the 
phase oscillations is given by substituting Equation 2.19 in Equation 2.18. Thus 
Equations 2.20 and 2.22 are linear and time varying. For synchrotrons such as the super col-
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(2.22) 

lider, the time variation can be ignored. Whereas Equation 2.21 is non-linear in nature, but 
is linearizable for small operating region of x3 and x 4 . However, we show the design of the 
controllers for the non-linear beam model in the following section. 

3.0 Sliding-Mode Controllers 
The non-linear state space model described in Table 1 can be simplified to a third 

order system when we ignore the control going to the phase shifter i.e., ocpc = O. Also, for 
the present controller design we ignore the global amplitude loop (i.e., 0) = 0). Hence the 
modified equation becomes equal to: 

xl = aUxl + a l2x 2 + d ll 08 - allxO 

X2 = a22x 2 + a 23 sin (x3) + a 24 cos (x3) + Q24 + d21 08 + d21 08 

x3 = a 32x 2 + b 31 u - ~~ + d31 08 + b 31 of (3.1) 

Our control objective is to stabilize the system and also drive the states, Xl' x 2 and x3 on 
the average to zero in the presence of errors. Two sliding schemes can be applied to this 
problem with each having slightly different emphasis on the control objective. 

3.1 Conventional Sliding-Mode Approach 
In this scheme the sliding variable is defined as the linear combination of the states as 

follows: 

(3.2) 

Note that we normalized the coefficient of x3 to 1. The reason is that the sliding plane is 
completely determined by gland g2 when 0 = O. Clearly, during sliding the variable 0=0. 

This means the states are confined to the sliding plane. If we chose right coefficients, g I 
and g2' the states will be asymptotically converging to zero. Ideally, when the system is 
operating, we would need to have all the states driven to zero except for Xl since we need 
X 1 to be zero only at the time of transfer. However, due to the way 0 is chosen eventhough 
there is synchronism (i.e. Xl = 0), x 2 and x3 may not be zero in the presence of field error 
(see Equations 3.1). The design of the controller proceeds as follows. 

Differentiate Equation 3.2 and substitute Equation 3.1 in the resulting equation, we 
get: 

a = gt a 11x l + (gla 12 +g2a 22 +a32 )x2 +g2 (a23 sinx3 +a24cosx3 +Q24) +b31 u+ 

(3.3) 

Now select the control input, u as follows 

(3.4) 
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where,: 

Uc = -f [gla l1 x l + (gla 12 + g2 a22 + a32 )x2 + g2 (a~3 ( sinx3 + a~4) COSX3 + a24)] 
31 

Us = -b
i 

[ko+k3!X3i] sgno 
31 

Since a 23 and a 24 contains 0 ye term we had to chose the nominal values a~3 and a~4 
respectively in the continuous part of the control input. In the switching part of the control 
input x3 is assumed to be less than I radians (true for the LEB). The gains, ko and k3 help 
to overcome the errors. They are chosen as follows. 

ko > , up181 d lI50 - QlIXo + (d21 + d31 ) 50 + d21 58 - +~ + b'l oj" + 82 ~: 0 V" Sinq,~1 

(3.5) 

Hence the sliding condition: 

ocr < 0 (3.6) 

Even if Equation 3.6 is satisfied for all time the system may not be stable, but is confined 
to the sliding plane. This is because our control problem is multistate. If we choose the coef
ficients of the sliding plane, gland g2 properly then the system asymptotically converges 
to origin. When the system is sliding x3 can be expressed in terms of other two states, which 
is obtained by substituting 0 = 0 in Equation 3.2. Thus: 

(3.7) 

By substituting Equation 3.7 in the Equation for x3 in Equation 3.1 we get the following 
second order system. 

Xl = a l1 x 1 +a12x2+dlloB-allxO (3.8) 

i2 = a22x2+a23sin(-glxI-g2x2) +a24cos(-glxl-g2x2) +a24+d2IoB+d210B 

To analyze the stability of this reduced-order non-linear system, we can use the theorem 
from the reference (Slotine and Li, 1990). According to the theorem, if we linearize Equa
tion 3.8 and show that the linear system is asymptotically stable, then the non-linear coun
terpart is locally stable. Hence to analyze the stability linearized equations of 3.8 are given 
below: 

Xl = allx l + a l2x 2 + dllOB - allxO 

x2 = - a 23 g 1x l + (a22 - a 23g 2)x2 + d2l OB + d 21 0B (3.9) 

For stability of the linear system all the roots of the characteristic equation must lie in the 
left half of the s-plane for all time i.e., 

Real Parts of roots of det (sf - A) < 0 
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and the following definite integral is bounded due to the time varying coefficients. 

0.05 

J A.T (t) A. (t) dt < 00 

o 

Applying Equation 3.10 we come up with the following conditions on gland g2: 

(g2all a23 - all a22 ) 
g2> --------

a12a23 

(3.10) 

(3.11) 

The coefficients gland g2 must satisfy Equation 3.11 and are chosen to get appropriate 
time constant in the loop, because during sliding they represent the time constant of the 
closed loop system. 

3.2 Generalized Input-State Linearization and Sliding-Mode Control 
The input-state linearization technique (Hunt, Su, Meyer, 1983) is well known for the 

control community. The technique is useful to design the controllers for non-linear systems 
without the uncertainties. They deal with only the non-linear autonomous systems and is 
not robust. Hence we have come up with a possible generalized design which can handle 
the non-autonomous case and also in the presence of uncertainties the system is robust. The 
robustness is achieved by using sliding-mode techniques. 

Definition 1: 
An n-th order non-autonomous system in the form, 

i = f(~, t) + g (~, t) u 

y = h (~) (3.12) 

is said to be of relative degree r in the region Q if, for all ~ in Q, we require r times dif
ferentiation on y in order for control u to appear. The relative degree is set to be well 
defined if the coefficient of u in the rth derivative of y is non-zero in the region Q. 

Definition 2: 
An n-th order system in the form of, 

i = f(~, t) + g (~, t) u (3.13) 

is said to be input-state linearizable in the generalized sense if there exists a region Q in 
R n

, a diffeomorphism T: Q ~ Rn
, and a non-linear time-varying feedback control law 

u = a (~, t) + f3 (~, t) u (3.14) 

such that the new state variable ~ = T (~) and the new control input U satisfy a linear time 
invariant relation 
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i = d?+PU (3.15) 

where 
Z1 0 I 0 0 0 

z2 0 0 I 0 0 

? = z3 d = 0 o 0 0 b = 0 

zn 0 o 0 0 I nx1 nx1 nXn 

The new input U is the linear control to stabilize Equation 3.15. The final system shown by 
Equation 3.15 is in the form known as Brunovsky Form (Brunovsky, 1970) which is simply 
the extra state transformation of the non-linear non-autonomous state Equation 3.13. 

In definition 1 we have chosen y as the output. Whereas in our system we do not have 
one specific output. Hence we define any state as the output, say, y = zl (J") = Zl (Xl). 
By following definition 1, we see that the system Equation 3.13 is input-state linearizable 
when the relative degree of Z I (Xl) is known and if the coefficient of u appearing in rth 
derivative of Z I (Xl) is non-zero. The relative degree is found out by applying the transfor
mation shown in definition 2. 

i l = Xl = anx i + a l2x2 = z2 

i2 = Xl = (ail-an)xI + (anaI2+aI2a22+aI2)x2+a23sintx3) +a24 cos(x3) 

= z3 

z3 = ·xI = F (J". t) + G (J". t) u 

where F (J", t) is a complicated function of the states and G (J". t) is given by: 

A3 5vt' 
G (J", t) = 21tg2Aal2cos (q,~ +X3) (1 + y) 

I 

o 5vt' 
= G (1+y) 

(3.16) 

(3.17) 

In developing Equation 3.16, the system Equations 3.1 is used to replace the derivatives of 
the system states. Clearly, in the third derivative of Z I' U appears. Hence, the relative degree 
of the system is three. Also, since Z I being the output has the degree equal to the order of 
the system (see Equation 3.1), the state equations are input-state linearizable. According to 
definition 2 to cancel out the non-linearities in z3 we can chose u as follows: 

u = _ F (J", t) + 1 u (3.18) 
G (J". t) G (J", t) 

The resulting system is in the Brunovsky form. Z I' z2 and z3 become the new states of the 
transformed linear system. 

Remark: 
From definition 2, we see that an nth order system in the form of Equation 3.13 is input
state linearizable if there exists a function Z (J") such that the relative degree of system with 
Z (J") as output has a relative degree of n. 
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All three equations in 3.16 are in the companion form (Slorine 1984). If we know the 
parameters exactly then we can use the non-linear control, u as in Equation 3.18 to cancel 
all the non-linearities. However, in practice we have the system uncertainties and distur
bances. By applying the sliding-mode controller to the system equation in companion form 
we can achieve robustness in the loop. To design the controller we can define the sliding 
line in the usual form in terms of the output, Z 1 as follows: 

CJ = Z3 + C1Z2 + C2 Z 1 

= 11 + c 1i 1 + C2Z 1 (3.19) 

It is natural to define the sliding line as the linear combination of the new linearized states 
Z l' Z2 and z3. With this we would be driving the synchronization phase error zero. Since 
during sliding, CJ = 0, Z 1 = Xl = o. By virtue of the fact that xl = 0, the other states will 
be zero. 

Now by differentiating the sliding variable and using Equation 3.16 we get the fol
lowing equation. 

a = Yl X1 +Y2X2 +y3 sinx3 +y4 cOSX3 + Ga32x 2 + 
... .0 (3.20) 

~15B + ~25B + f325B + d3l G (5B - CPs + b3l U) 

where Y1' Y2 ' Y3 and Y4 are given by: 

Y1 = al + <x 1a ll +c1<X 1 +c2a ll 

Y2 = a2 +<x 1a 12 +c l <X2 +c2a12 + <x2a22 

Y4 = a4 + <x2a24 + C1<X4 (3.21) 

The variables ~ l' ~2' <Xl' <X2 ' <X3 and <X4 are shown below in terms of the machine param
eters: 

~1 = ~1 + <Xldll + <x2d 2l + Cl f3 1 +c2d ll 

~2 = ~2 + <x2d2l + c1f32 + f3 1 

2 . 
<Xl = all +a11 

<X2 = all a 12 + a12 + a12a22 

<X3 = a12a23 

with f3 1 and f32 given by: 

f3 1 = alldll + dll + a 12d21 

12 

(3.22) 

(3.23) 



To guarantee stability we need to define U such that: 
-1 

U = -- [u c + ussgn (0)] 
OOb31 

with Uc and Us as continuous and switching parts defined as below: 

Uc = YIXl+ (Y2+0oa32)x2+Y3sin(x3) +Y~(COS(x3) -1) 

where 

(3.24) 

(3.25) 

(3.26) 

Under sliding 0 = O. Substituting this condition in Equation 3.19 we can get the time 
domain solution for z l' which in turn gives Xl' an exponentially decaying state with a final 
value equal to zero. Thus, under sliding, Xl' Xl' X 1 tend to zero. A simple analysis of the 
original system equation 3.1 will show that X 2 ' x2 and x3 will tend to zero on the average 
in the presence of noise. 

4. Implementation 
Equations 3.4 and 3.24 are sliding-mode controllers with time-varying gains. For 

hardware implementation, it amounts to storing all the gains in the computer and fetching 
them during each processing point on real time. This increases the computational time. In 
any case the analog implementation will be difficult with time varying gains though not 
impossible. Hence it is useful to simplify the controllers. One way of doing this is to plot 
all the gains with respect to time and take the mean values. The deviation from the mean 
value is being taken care of by the gains in the switching part which contributes to the 
robustification of the loop in the presence of errors. For the LEB parameters shown in the 
reference (Mestha, Kwan, Yeung, 1991), we calculated the controllers with fixed gains. 
They are summarized in Table 2 below. In this table we show two types of state feedback 
controllers. They are shown to compare the results of the sliding-mode controllers. Loop 
configurations are shown in Figures 4 and 5. In addition to the state feedback loops, the sys
tem needs robustifying loops with gains shown in Table 2. The implementation of this type 
of simplified robust controllers does not look far from reality due to the advancement in 
Direct Digital Synthesizers and Digital Signal Processor technology. Especially for 
machines like the MEB and the HEB we can afford the computational time spent on the 
robustifying loops. 

5. Simulation Studies 
Simulations were camed out with controllers shown in Table 2 for different condi

tions. At first we discuss the possible source of errors below. 

5.1 Description of Expected Errors 
Source of errors in the beam control loops are many and depend on the type of imple-
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mentation. However, for the configuration shown in Figure 1, we have identified the errors 
expected during implementation. They are shown below. 

Field Error: 
Magnetic field errors could be due to the noise in the power supply driving the magnet sys
tem, or the vibration in the magnets. It is usually, multiples of power line frequency. Gaus
sian noise of bandwidth 1 kHz with a natural distribution is used. The amplitude of the 
random noise is considered 0.1 % for the field signal. The cavity-voltage error, 5 ve , cannot 
be ignored in the LEB. A 1 % error in the magnitude with a 50 kHz bandwidth (uncorrelated 
with the magnetic field error) Gaussian noise is a good representation to the practical sys
tem. 

dB = 10 x 10-4 X BS (t) x rand (normal) 

5ve = 1 X 10-2 X VS (t) x rand (normal) 

Measurement Error in Radial Position: 

(4.1) 

A radial beam position measurement system planned for the LEB would be able to give a 
minimum horizontal position of 0.1 mm from the central orbit. By using a 12 bit Analog to 
Digital Converter we extracted the radial position information from the tracking model. 
The sampling was done at each MEB tum and the samples were taken with each least sig
nificant bit corresponding to 0.1 mm. 

Systematic and Random Errors in Beam Phase Measurements: 
The random errors in the beam phase measurement were taken 1 % with a bandwidth of 
20KHz which is close to the LEB synchronous frequency. The noise is again uncorrelated 
with other noise functions mentioned above. The systematic error is expected to arise when 
the measured beam phase is compared with the synchronous phase, cp~, since the synchro
nous phase may not be calculated accurately. We assumed a systematic error of 2°. 

Errors in the Frequency Source: 
Stability of the oscillator is very important for operating the LEB. An oscillator such as the 
Voltage Controlled Oscillator would have an analog signal at the input which is subjected 
to noise. Fluctuations in frequency of as much as 200 Hz is not uncommon. A 20KHz band
width noise was used with maximum of ±2oo Hz frequency error, 51. 

Errors in the TDC: 
The Time to Digital Converters are not ideal. We assumed a measurement error of 3ns 
amounting to 0.9cms phase error in the synchronization. A 10KHz bandwidth noise was 
used in the simulation. 

Errors while ramping the Frequency: 
Mter injecting the beam in the LEB, the frequency must be ramped between 47MHz-
60MHz with a profile required by the synchronous particle. Starting point of the ramping 
is obtained by detecting the minimum magnetic field. However, there could be error in 
detecting the minimum field by as much as loo~s. This will create a wrong starting point 
for the frequency ramp, and hence the programmed frequency curve is no longer equivalent 
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to the frequency ramp required by the magnetic field. We used l00~s ramping error in the 
simulation. 

5.2 Summary of Simulated Results 
To illustrate the results, we show in Figures 6(a-d) the decay of the states xl X2 x3 

and x4 for control inputs with state-feedback controllers of Figure 1. In Figure 6(e) the con
trol input u is shown. The particle we tracked was 30 meters away from the reference point 
at t = O. We chose the sampling intelVal of 1 MEB turn (which is equal to 13.249~s). The 
tracking model we chose was in finite-difference form as shown in Reference (Mestha, 
Kwan, Yeung, 1991). Since the bunch contains several particles we need to know whether 
the particle with a maximum initial phase offset could get tracked into the same bucket. 
Hence we have shown in Figure 6(0 the difference in phase of the offset particle with the 
synchronous phase. This information is useful to know whether there is any particle loss. 
These figures are shown with and without errors. The initial offset with respect to the RF 
signal was ±1700

, but receiving the same control input as in Figure 6(e). Particles over 
± 1700 did not remain in the same bucket. Figures 7 (a-e) are shown to represent the states, 
control input and the phase difference for the modified state feedback controller. The con
trol input shown in Table 2 is obtained for a third order system. It is clear from the simula
tion results that the state feedback controller does not give synchronism in the presence of 
errors. We investigated the main cause for this. It turns out that the loops are sensitive to 
systematic phase error in the beam phase loop (state Xl)' When we add the robustifying 
loops we see a different performance in the synchronization. 

Figure 8(a-f) correspond to the states, control input and the sliding variable for the 
conventional state feedback controller shown in Table 2. Clearly we set: that the synchro
nism is in order in the presence of errors. We could track the particle upto ±169°. Those 
particles above this either fell into the next bucket or got lost. Figures 9(a-f) correspond to 
the simulation results for controller designed with input-state linearization technique. 
Clearly, the robustification for systematic error is good for the synchronous particle. How
ever, the particle with a phase offset of not more than ±500 was contained in the same 
bucket. 

6. Conclusions 
The new method of phase-locking the Low Energy Booster with the Medium Energy 

Booster is analysed by deriving a beam control model in the presence of errors. The model 
is multistate and non-autonomous. It gives a good indication of the difficulties in designing 
controllers to guarantee stability. We have shown the design of two types of sliding-mode 
controllers. In the course of attempting to synchronize a given reference bunch in the LEB 
with a stable bucket in the MEB, the controllers not only damp the coherent dipole oscilla
tions, but can also keep the radial beam orbit under control. The simulation results are com
pared with two types of state feedback controllers. The synchronization results with the 
state feedback controllers are shown to be not good in the presence of systematic errors. 
However, the results look very good when we apply the sliding-mode techniques. All the 
simulations were carried out using a single particle tracking code with the finite difference 
model as the beam and applying different feedback strategies at each MEB turn. We also 
tracked a particle with a large phase offset compared to the synchronous particle and 
applied the control generated for the synchronous particle to see whether it gets tracked 
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inside the bucket in the presence of errors. With the state feedback controllers we see that 
a particle with an offset in phase by ± 1700 gets tracked into the bucket. With the conven
tional sliding-mode we could track upto ±169°. The modified sliding-mode based on input
state linearization technique allows tracking of particles upto ±500

• The reason for failure 
in the modified sliding-mode case is due to the enhancement in noise in the numerical dif
ferentiation of the synchronization phase error. In all our simulations we assumed that the 
RF cavities have fast loop response compared to the global loops. Work is still required to 
assess the effects of Q of the resonant cavities. To implement the sliding-mode controllers 
with the modem day technology we either need to use f2'3t Digital Signal Processors com
bined with Direct Digital Synthesizers or convert all the loops to analogue domain. 
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Table 1: State Space Model 

Non-Linear State Space Model: 

Xl = a llx 1 + a 12x2 + d 1l 5B-aU xO 

X 2 = a22x2 + (a23 -a23 co) sin(X3 +X4 ) + (a24 -a24CO) cos (X3 +X4 ) 

+ a24 + d21 5B + d21 5B 

X3 = a32x2 + b31 u + v - ~~ + d31 5B + b31 5f 

X4 = -v 

Time Varying Coefficients: 

VS 

all = -
V

S 

Al 
a =--22 A 

1 

Variables: 

A 
- 3 ","S 
a23 = -ACOS",o 

1 

A 
a24 = A

3 
(1 + 5ve) sin CPt 

1 

A - 3 . ","S 
a24 = -ASln",o 

1 

eVS t3S c 
A3=--

21tRs 

Xl = 50/ u = 5f co = 5 VC 

Errors: 5B 5f 5ve 



Table 2: Summary of the Feedback Controllers 

State-Feedback Controller as in Figure 1: 

u = -(30x1 + 1ooox2 ) 

x4 = - J ( 1ooox2 - 20x4 ) dt 

Modified State-Feedback Controller: 

u = - (25x1 + 1ooox2 + 5OOOx3) 

Conventional Sliding-Mode Controller: 
cr = glx1 + g2x2 +X3 

U = -(25xl + 107x2 + 104x3 + us)/2n 

Us = (30lxll + 1061x21 + 1041x31 + 250) sgncr 

gl = 2.5, g2 = 5000 

6 = 0.5 

Modified Sliding-Mode Controller: 

cr = xl +ClX1 +C2x l 

- For saturation ftmction 

U = - (0.015x1 + 2 X 106x2 + 103x3 + us) 

Us = (0.002IXll + 1061X21 + 5OOlx31 + 150) sgncr 

C 1 = 3200, c2 = 5 x lOs 

6 = 5 x lOs - For saturation ftmction 
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