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Abstract 

A perturbation technic is used to find the constant of motion of a one-dimensional 

autonomous system. The convergence of the method is discussed through some examples. 

In addition, the approach is extended to one-dimensional non-autonomous systems where 

some examples are given. 
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1. INTRODUCTION 

The new Lagrangian formulation of the Mechanics, for one-dimensional autonomous 

systems [1-6], is based on the constant of motion associated to the system. Once the con­

stant of motion is found, the Lagrangian, Hamiltonian and Generalized Linear Momentum 

can be found, at least in principle. So, the constant of motion plays the central function 

in this new formulation. 

In general, the constant of motion associated to a dynamical system arises from the 

solution of a partial differential equation [5] which most of the time is not easy to solve. 

Therefore, some approximation method is required in order to obtain its expression at any 

desired order. In this paper, the normal perturbation technic [7] is applied to find in some 

degree of approximation the constant of motion associated to a one-dimensional system. 

The approach is used in autonomous system and is extended to non-autonomous systems. 

II. CONSTANT OF MOTION FOR AUTONOMOUS SYSTEMS 

An autonomous system is characterized by the fact that the force, F, acting on the 

motion of the particle does not depend explicitly on time, t. Therefore, the motion of the 

particle is described by Newton's equation of motion, 

(1) 

where :c represents the coordinate of the system, and m is the mass at rest of the particle. 

By defining a new variable, v = d:c / dt, this equation can be written as a one-dimensional 

autonomous dynamical system, 

d:c/dt = v (2a) 



and 

dv/dt = F(z,v)/m . (2b) 

A constant of motion associated to this system, K, is given by the solution of the 

following partial differential equation [5] 

v 8K/8z + (F(z,v)/m) 8K/8v = 0 . (3) 

This equation is, in general, difficult to integrate, but suppose that the force can be sepa-

rated in two parts, 

F(z,v) = fo(z,v) + iI(z,v) . (4) 

The first part, fo, is the part of the force for which the Eq. (3) is integrable and has the 

known solution K o , 

v 8Ko/8z + (Jo(z,v)/m) 8Ko/8v = 0 , (5) 

and the second part, iI, is the part which is considered a perturbation to the system. 

Suppose also that the constant of motion can be expressed of the form 

00 

K(z,v) = Ko(z,v) + LK(n)(z,v) , (6) 
n=l 

where K(n) is of the order (lI)n in force strength, that is 

(7) 

Defining K(O) = Ko and substituting (4) and (6) in (3), it follows 
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(8) 

Using (5) in (8) and neglecting the terms of the order Ii+! , the next equation is obtained 

8K(n) lo(z,v) 8K(n) fI(z,v) 8K(n-l) 
v 8 + = - 8v' for n = 1,2 . . . (9) 

z m 8v m 

This equation can be solved by the characteristics method where the equations for the 

characteristics are given by 

dz m dv m dK(n) -= -----~-. 
v lo(z,v) -fI(z,v)K~n-l)' 

(10) 

where K~n-l) represents the partial differentiation of K(n-l) with respect to v. From 

the first two terms of (10), the first characteristic curve is obtained which, indeed, can be 

the known constant 

(11) 

This one can be used to express (whenever possible) v as a function of Ko and z, 

v = v(Ko,z) , (12) 
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which, in turns, can be substituted in the first and last terms of (10) to obtain the following 

general solution 

(13) 

where C(Ko) is an arbitrary function of the characteristic curve Ko. By selecting this 

function equal to zero, the solution of (9) is given by 

(14) 

or applying iteratively (14), it follows 

that can be defined symbolically as 

(15b) 

In the next subsections, some examples of application of this approach will be given. 

A. Free Particle Under a POlition Depending Force 

The motion of a particle of mass m, under the action of a force which depends only on 

the position, f(z), can be analyzed by the following dynamical system 

dz/dt = v (16a) 

and 

dv/dt = f(z)/m . (16b) 



Consider f( z) as the perturbation of the free particle motion which has associated the 

constant of motion 

(17) 

Then, using (14), the following functions are obtained 

:z: 

K(l) = - J f(z')dz' (18a) 

and 

K(i) = 0 , for j ~ 2 . (18b) 

As a result, the constant of motion obtained for the system (16) converges for any strength 

in the force to the expected expression 

:z: 

K(z,v) = mv2 /2 - J f(z') dz' . (19) 

B. Free Particle Moving in a Dissipative Medium 

Suppose that a particle is moving in a dissipative medium characterized by a force 

that is proportional to the square velocity, f( v) = -av2 , where a is the constant of 

proportionality which depends on the medium itself. Its motion can be studied through 

the dynamical system 

dz/dt = v (20a) 

and 

(20b) 
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Considering I(v) as the perturbation to the free motion which has the constant of motion 

(17), the application of the operator (14) to (17) brings about the functions 

K(n) = mv2 (20.x/m)n /2n! , for n ~ 1 . (21) 

So, from (6) and (21), the solution is given by 

K(x,v) = (mv 2/2) exp(20.x/m) (22) 

which is the expected solution [5], and its convergence is independent on the dissipation 

strength. 

C. Harmonic OJcillator in DiJJipative Medium 

The motion of the harmonic oscillation of a particle of mass m, dampened by a frictional 

force proportional to the particle velocity, I( v) = -a v, can be studied with the dynamical 

system 

dx/dt = v (23a) 

and 

dv/dt = -w2x - o.v/m , (23b) 

where w is the angular frequency of the free oscillations. Assume that the friction term is 

the perturbation to the harmonic oscillations characterized by the constant of motion 

Ko = mv2/2 + mw2x 2/2 . 

6 
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Therefore, from the expression (14), it follows [8] 

z 

K(l) = a J V2Ko/m - w2e2 de = 

= ~ {wzv + (v 2 + w2z 2
) arcsin (J wz )} 

2w v 2 +w2z 2 
(25) 

which brings about the solution at first order in perturbation as 

This solution can be compared with the exact solution shown in Refs. [4] and [5] (see also 

Eq. (40a) below). The multivalued function "arcsin" brings about the shrinking behavior 

of the trajectories in the phase space. It is clear from (16) and (14) that higher order 

perturbation terms are not so trivial to be calculated. 

III. EXTENSION TO NON-AUTONOMOUS SYSTEMS 

Suppose now that the force depends on time and is given by 

F(z,v,t) = fo(z,v) + h(z,v,t) , (27) 

where fo is the part of the force which the dynamical system 

dz/dt = v (28a) 

and 

dv/dt = fo(z,v)/m , (28b) 
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has associated the known constant of motion 

(29) 

which satisfies the Eq. (5). By adding a time depending force to this system, 

dx/dt = v (30a) 

and 

dv/dt = fo(x,v)/m + b(x,v,t)/m , (30b) 

the system becomes non-autonomous and the constant of motion associated, K, must 

satisfy the following equation 

8K 1 8K 8K 
v 8x +;;; [fo(x,v) + b(x,v,t)] 8v + at = 0 . (31) 

Assume a solution of the form 

00 

K(x,v,t) = Ko(x,v) + LK(n)(x,v,t) , (32) 
n=l 

where K(n) is of the same order of fj. Substituting (32) in (31), it follows 

8Ko 8Ko fo(x,v) 8Ko 
7ft + v 8x + m 8v + 

L

oo {8K(n) 8K(n) fo(x,v) 8K(n) b(x,v) 8K(n-1)} 
+ ~ +v ~ + ~ + ~ + 

v, vX m vV m vV 
n=l 

00 8K(n) 
+ Lb(x,v,t) 8v = 0 . (33) 

n=l 
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Using the fact that Ko does not depend explicitly on time and satisfies (5), and dropping 

the terms of order fj+1 in (33), the time depending function K(n) is the solution of the 

equation 

8K(n) +v 8K(n) + fo(:e,v)8K(n) = _!I(:e,v,t)8K(n-1) 
at 8:e m 8v m 8v 

(34) 

Similarly, this equation can be solved through the characteristics method. The character-

istic equations for (34) are given by 

d:e m dv m dK(n) 
- = = dt = , 

fo(:e,v) -!I(:e,v,t)K£n-1) v 
(35) 

and its first characteristic curve, G1 , obtained from the first two terms of (35), can be the 

known function K o , 

(36) 

From this relation, there are two equivalent ways to obtain the second characteristic curve, 

depending upon either v is expressed in terms of G1 and:e, or :e is expressed in terms 

of G1 and v. The result is 

J:e __ d_:e_' __ t 
v( Gt, :e') 

v 

J m dv' 
fo(:e(G1,v'),v') - t 
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From (36) and (37), the variables :z: and v may be known as a function of time. Then, 

from the last two terms of (35), the solution of (34) could be given by 

t 

K(n) = - ~ J !J(:z:(C1, C2,e),V(C1 , C2,e),e)K~n-l) de + A(CI, C2) , (38a) 

where the function A is arbitrary. So, the solution (32) can be written symbolically as 

(38b) 

However, it is necessary to mention that special care must be taken when the Lagrangian 

for this type of system is looked for (see Ref. [2]). Two application examples follow. 

A. Diuipative Harmonic Oscillation with Driving Term 

This example is the same as the example 2.3 above, yet it is adding an extra periodic 

function which depends on time, !(t). The associated dynamical system can be written as 

d:z:/dt = v (39a) 

and 

dv/dt = -w2 :z: - o:v/m + !(t) . (39b) 

Assuming that the driving force, !(t), is the perturbation caused in the dissipative har-

monic oscillator which is characterized, for small dissipation, by the constant of motion [5] 
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where Wa is defined by 

Wa = a./2m . (40b) 

Considering only one branch of the "arctan" function and for very weak dissipation, (40a) 

can be approximated by 

(41) 

and the second characteristic curve is given, from (37), by 

(42a) 

where n > 0 is defined as 

(42b) 

From (41) and (42a), the variables z and v can be expressed in terms of the constants 

0 1 , O2 and the time t, 

and 

With these expressions and (38), the constant of motion at first order approximation is 

given by 

K(z, v, t) = Ko(z, v) + K(l)(z, v, t) , (43) 
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where Ko is given by (42) and K(1) is given by 

t 

K(1) = - f [v(CI, C2 , 7") + waz(C}, C2 ,7")] f(7") d7" . (44) 

B. Perturbation of a Oharged Particle in an Accelerator Ring 

When the motion of a charged particle along an accelerator ring is displaced because of 

errors in the magnetic field, its transversal motion [9], called betatron motion, is governed 

by the dynamical system 

drJ!d¢ = p (45a) 

and 

(45b) 

where 8 is the length coordinate along the ring; f3( 8) is called the beta function; II is 

a constant that measure the number of oscillations per turn made by the particles in the 

ring which is called the "tune" of the machine; ¢ is a function which is related with the 

beta function as 

8 

1 f du ¢(s) = - - j 
II f3(u) 

(46a) 
o 

17(8) is a function which is related with the displacement, Y(8), and the beta function as 

17(S) = f3-1/2(8)Y(S) ; (46b) 

and F( 8) is related with the magnetic field errors, t1B, as 

F(s) = (t1B)(s)/(Bp) , (46c) 
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where (Bp) is a constant called "Magnetic Rigidity." Note that ¢ plays the role of time 

in (30), 11 plays the role of the coordinate x, and p plays the role of the velocity v. 

Assume that these errors are the perturbation of the system (45), which has the constant 

of motion 

(47a) 

when F = o. This constant of motion is v 2 times the so called "emittance" of the 

particle, and is the first characteristic curve of the associated system (34). The second 

characteristic curve is given by (37) as 

O2 = !arcsin (~) -¢. 
v 2Ko 

(47b) 

From (47a) and (47b), it follows 

(48a) 

and 

(48b) 

Thus, at first order approximation in (38a), it follows 

rP 

K(l) = v2y'2Ko J cos (VC2 + v4>'){33/2(s(4>'»F(s(4>'» d</>' , (49) 

or using again (47a) and (47b), the constant of motion at first order approximation is given 

by 
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¢J 

x Jcos [arCSin ( VTJ ) - v¢J + V¢J'] f33/2(s(¢J'»F(s(¢J'» d¢J' • (50) Jp2 + V2TJ2 

It is pointed out that the relation (46a) establishes a one-to-one relationship between 

¢J and s since the beta function is a positive defined function for any s value. 

IV. CONCLUSION 

The constant of motion associated to a one-dimensional autonomous system is found 

using the standard perturbation ~ethod. The examples given show that the approach 

can converge very rapidly and independently on the force strength, suggesting a rather far 

freedom of applications and showing that may be a useful approach in some cases where 

the constant of motion is not so obvious to find. The application of the approach to non-

autonomous systems is straightforwardly extended although the complication to obtain 

higher order approximation is manifested. 
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