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INSTABILITIES IN BEAM CONTROL 
FEEDBACK LOOPS 

IN PROTON SYNCHROTRONS 

1. K. MESTHA 

Accelerator Systems Division 
Superconducting Super Collider Laboratory,. Dallas, Texas 75237 

C. M. KWAN and K. S. YEUNG 

University of Texas, Arlington, Texas 76019 

A generalized beam control model is derived in terms of accelerator parameters. Using this model, 
stability conditions are derived for several loop configurations with and without a synchroniza­
tion loop in the feedback system in the absence of beam-loading effects. A new synchronization 
scheme analyzed in this paper enables phase-locking of the reference bunch in the lower-energy 
machine with a reference bucket in the higher-energy machine with controlled phase slippage 
when ideal phase values are suitably adjusted for transfer. The mathematical technique used here 
greatly enhances the stability analysis for fast-cycling machines. Analogy with commonly used 
frequency domain techniques is shown with some examples. Limits under model approximations 
are presented. Detailed derivations are shown for the configuration planned for the Low Energy 
Booster of the Superconducting Super Collider. Only the results are tabulated for other loop 
configurations. The approach indicates explicitly how the time-varying gains can be designed for 
fast-cycling machines. In cases where the derivative of the synchronous phase and the momentum 
error are large, the method shows how to obtain a suitable compensation. 

1 INTRODUCTION 

There are two important parameters-the magnetic field and the accelerating 
voltage-associated with beam control. Since the magnetic field system is de­
signed to bend and focus the beam, it has a long time constant. Hence all the 
beam control feedback loops are concentrated at the radio frequency (rf) acceler­
ating system. The rf accelerating cavities are driven by programmed amplitude 
and frequency function. An rf power amplifier drives the cavity, and a high voltage 
appears on the gap. The amplitude of this voltage is programmed and is controlled 
by each cavity-local feedback loop.l The frequency function is generated globally to 
all the cavities. To control the beam in the synchrotron there may be six different 
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primary feedback loops interacting with the beam at a given time. Three loops 
are local to the rf cavity: high-bandwidth cavity phase and amplitude loops used 
to minimize the effects due to beam loading, and a low-bandwidth cavity tuning 
loop. The loops global to the ring accelerating system are a radial loop to keep the 
beam on orbit, a beam phase loop to damp the dipole synchrotron oscillations, and 
a synchronization loop to essentially lock with the succeeding machine for beam 
transfer. 

There are several ways these loops are designed using classical techniques.2 The 
loop design approach adopted by many authors assumes an incomplete beam model, 
especially for fast-cycling machines with resonant magnetic field, since in such cases 
the time variation in accelerating frequency places greater demands on the loop 
stability. We therefore have developed a generalized time-domain control model. 
The model will allow us to analyze and design different hardware-intensive feedback 
strategies from the viewpoint of beam dynamics. Due to the complexity of the 
model and the stability analysis of the loops that follows, we have divided the 
studies into two parts. The first part is related to the global loops by assuming 
that the local cavity loops are fast compared to the global loops; hence this part 
will be applicable to low-intensity proton synchrotrons. The second part covers the 
studies with the cavity model, including the effects due to beam loading and cavity 
tuning. The results of the second part will be published elsewhere. 

The generalized control model was developed from a particle tracking model. 
The derivation of the particle tracking model is shown in Reference 3. We then ap­
ply the simple linear state feedback concept and obtain instability boundaries for 
different loop configurations with and without the synchronization loop through­
out acceleration. Linear, time-varying state feedback techniques are used since the 
control problem is multi-state. We also show the analogy with the frequency do­
main results whenever necessary. We use a new synchronization loop4 to phase-lock 
the two accelerators, which enables us to close the loop from any point during the 
accelerating cycle. When the synchronization loop is not in place, conceptually 
the loop configurations are those being used in various machines around the world. 
Improvement to the existing loops is suggested due to the time-varying nature of 
the accelerating system. Wherever possible, we have attempted to derive math­
ematical expressions for the instability boundaries in terms of the rf and lattice 
parameters. A detailed derivation of the stability chart for the loop gains is shown 
for the configuration planned for controlling the Low Energy Booster (LEB) of the 
Superconducting Super Collider. The charts will help to avoid the unstable region 
during acceleration, thereby preventing unwanted longitudinal oscillations of the 
beam. Also, for operation of machines below and above transition, the signs of 
the loops become extremely important, as can be clearly seen from the diagrams. 
Especially when the synchronization loop is closed very early on. during the cycle, 
the signs of the loop gain are not apparent, but they are clear from the equations 
of the instability boundary shown in this paper. To make the chart applicable for 
many types of practical implementations, we introduce the concept of moving the 
imaginary axis by a certain amount towards the left half of the s-plane. 
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2 FEEDBACK CONTROL MODEL 

For the purpose of designing feedback controllers to control the beam due to both 
magnetic and electric field errors, the tracking model shown in Reference 3 is not 
sufficient. The longitudinal dynamics of the beam contained in this model must 
be extracted in differential-equation form by identifying suitable control inputs 
such as (1) frequency and phase of the signal driving the rf cavities, and (2) the 
machine parameters to be controlled. In general, the controllable parameters with 
global rf feedback are the (1) coherent dipole beam oscillations, (2) radial orbit 
deviation from the mean orbit, and (3) the synchronizing phase with the higher­
energy machine. Before discussing the derivation of the model, it will be useful to 
know the planned loop configuration for the LEB. 

The global low-power rf signal driving the cavities is generated by a single 
frequency source, namely a Direct Digital Synthesizer (DDS) as shown by the 
schematic diagram in Fig. 1. The frequency and phase of the rf signal are con­
trolled by feedback loops from the beam to the frequency source and by a global 
phase shifter. The local phase shifters are passive and are required only to phase 
the rf signal going to each cavity due to the geometrical spacing between the cav­
ities. By varying the frequency and phase of the rf signal, the voltage seen by the 
beam and hence the energy can be varied. The deviation in the orbital position is 
measured with horizontal electrodes at the beam position monitor and is corrected 
by varying the phase of the rf signal in the global phase shifter. This loop, called the 
"radial loop," generally has slow time response and is not able to damp "coherent 
dipole oscillations" in the beam due to field errors. The coherent oscillations are the 
motion connected with the bunch, whereas the incoherent oscillations are motion of 
the individual particle inside the bunch. Therefore a "beam phase loop" is included 
to the frequency source. In this loop the beam signal is compared directly from a 
wall current monitor with the rf signal in a beam phase detector. It is compared 
to the synchronous phase of the beam, and an error signal is obtained. The error 
signal is proportional to the dipole oscillations in the beam. The beam phase error 
is converted to appropriate frequency shift througl,l a feedback controller. The fre­
quency shift is added to the programmed frequency curve at the input end of the 
DDS. 

With only radial and phase loops, the beam will circulate around the ring with­
out proper synchronization of a given bunch with the stable bucket in the Medium 
Energy Booster (MEB). The synchronization is required for filling batches of LEB 
bunches into the MEB for collider operation. The configuration of the synchro­
nization loop shown in Fig. 1 provides the means to phase-lock the reference beam 
bunch in the LEB to the reference bucket in the MEB. In this approach a Time to 
Digital Converter (TDC) is used to measure the position of the designated LEB ref­
erence bunch for each MEB revolution. The time-of-flight information is multiplied 
by a stored velocity profile for the synchronous particle. By comparing these values 
with the ideal phase values for the designated LEB reference bunch for each MEB 
revolution, an error signal is generated. The error signal is converted to frequency 
shift from the controller, which is then added to the ideal frequency program. Thus 
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the LEB reference bunch is phase-locked to the ideal phase values stored in the 
computer. This enables phase-locking of the bunch with controlled phase slippage 
when ideal phase values are suitably adjusted for transfer. As is well known, the 
difficulty lies mainly in studying the stability of feedback loops with all three loops 
in operation. The loop configuration shown in Fig. 1 is not unique, and it is difficult 
to know whether this is an optimum approach without analyzing the loops together. 
Other possible configurations include the radial loop to the input end of the DDS 
or to the global voltage function. Also, the synchronization loop can be connected 
to the phase shifter. By knowing the stability region for a given configuration we 
would be able to decide on the best approach for the accelerator. A good control 
model will help in this regard. We describe the derivation of the model by first 
discussing the synchronization scheme in detail. 

2.1 The Synchronization Model 

For extraction purposes the phase of the lower-energy machine must be adjusted to 
match the phase of the higher-energy machine. The higher-energy machine will be 
coasting with no acceleration at the time the lower-energy machine is accelerated. 
In the literature one sees two schemes5,6 for achieving synchronous transfer of the 
beam: phase-locking and phase-slippage. In the phase-locking scheme, at a known 
time before injection to the next accelerator the phase and frequency of the accel­
erating machine are locked to the extraction frequency. In accelerator jargon the 
process of synchronization is known as "cogging." For low-energy accelerators with 
a long flat-top region, there is generally enough time available for cogging. But 
for resonant field machines, the time is limited because the magnetic field does not 
remain at the flat top for a long time. Also, since the time required to phase-lock 
the two machines depends on the slip factor, 'fI, which is a function of the lattice 
parameters, it would be difficult to maneuver the beam with large energy excursions 
close to the flat top. Also, locking in advance with a variable frequency machine 
becomes difficult due to large phase accumulation. Alternatively, it has been a 
tradition in that type of machine to use the phase-slippage scheme without using 
any active feedback. In this scheme, the frequency of the accelerating machine is 
offset a few cycles relative to the extraction frequency at a pre-determined time 
before transfer. As a result, the phase of the accelerating frequency slips relative to 
the fixed frequency. Consequently, several phase coincidence points of the reference 
wave occur at a beat frequency equal to the offset frequency. One of these points 
is used to trigger the synchronous transfer of the beam. 

Two techniques for synchronization mentioned above do not provide a means 
to transfer by selecting a particular bunch as the first bunch in the higher-energy 
machine. A more general approach for synchronization is to consider the locking 
of the phase of the variable-frequency source with the phase of the fixed-frequency 
source throughout or anytime during the acceleration of the lower-energy machine 
with active feedback. In this scheme we can choose a reference bunch in the lower­
energy machine and force it to follow a pre-programmed "trip-plan" so that at the 
instant of transfer it will have the same energy and phase as the higher-energy 
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reference wave. The trip-plan has at least one point at flat B-field region where the 
machines have exact phase for the purpose of synchronous beam transfer. We have 
been successful in testing the scheme with two oscillators for the LEB frequency 
profile. We were able to lock the oscillators for the complete LEB acceleration cycle. 
The implementation technique used in the "proof of principle" test is discussed in 
Reference 4. The trip-plan approach affords all the benefits of existing schemes and 
also, by choosing the appropriate control strategy, enables us to keep track of the 
gap in the lower-energy machine. 

As indicated above in the trip-plan approach, the reference bunch of the lower­
energy machine is tracked with respect to a designated empty bucket of the higher­
energy machine. The empty bucket is the destination point for the reference bunch 
of the lower-energy machine. Let t~ be the time covered by the ideal reference 
bunch in the higher-energy machine for kth turn in the lower-energy machine. The 
lower-energy machines are small in circumference compared to the higher-energy 
machine; hence for the machines with non-integer circumference ratios, at flat top, 
after the reference bunch in the higher-energy machine has crossed the reference 
point, the reference bunch in the lower-energy machine takes a certain time to cross 
the marker. During one turn of the reference bunch in the higher-energy machine, 
the lower-energy machine reference bunch may have circled several turns depending 
on the path covered by the reference bunch and the speed at that time. A general 
scenario is shown in Fig. 2. If t~ is the time when the reference bunch in the lower­
energy machine reaches the reference point in the kth turn, then the trip-plan is 
given by 

(2.1) 

The subscript k indicates the turn number, and the superscript s indicates the 
parameter used for a synchronous particle throughout this paper. Hence, vz repre­
sents the velocity of the synchronous particle for kth turn. The trip-plan is plotted 
for the LEB and MEB synchronization in Fig. 3. For synchronous transfer, the 
synchronizing phase is equal to zero (ignoring the transfer line delays). The MEB 
to LEB circumference ratio is 3960/570 = 6.9473684, which means that when the 
frequencies are the same at the end of one MEB :turn, the LEB reference bunch 
would have completed six full turns and a semi-turn. By adding this semi-turn 19 
times, we get one full LEB turn. Hence, there will be 19 MEB turns before the 
LEB reference bunch reaches the same reference point again. This is clearly visible 
in the trip-plan in Fig. 3. 

The trip-plan calculated by Eq. (2.1) is for an ideal synchronous particle. In the 
presence of field errors, the actual path covered by the reference bunch is different 
and can be referred to as "trip." Ignoring the errors in the higher-energy machine, 
and with the beam assumed to be coasting at fixed frequency, the trip for kth turn 
of the lower-energy machine is given by 

(2.2) 

where 6Vk is the change in velocity from that of the synchronous particle and tk is 
the actual traversal time of the lower-energy machine. The actual traversal time of 



6 L. K. MESTHA, C. M. KWAN AND K. S. YEUNG 

the lower-energy machine reference bunch is different from tt used in Eq. (2.1) due 
to field errors. It can be modeled by adding up the total traversal time required by 
the actual particle up to k turns as follows: 

Ic 

tic = tk - L eTn , 

n=l 

(2.3) 

where eTIc is the deviation with respect to the time taken by the synchronous particle 
in the lower-energy machine. The negative sign appears because in the machine 
operating below transition a particle with too much energy travels on a circle with 
greater radius, but since it is faster it takes less time to return to the gap than the 
ideal particle. By subtracting Eq. (2.1) from Eq. (2.2), the error in synchronizing 
phase can be obtained for kth turn as follows: 

(2.4) 

To lock the two reference bunches, we need to reduce the synchronization phase 
to zero. eSo is the phase error we have deliberately created by selecting a given 
reference bunch in the lower-energy machine that may be several meters away from 
trip-plan. The deviation in the actual velocity of the bunch is generally small. 
That is, the ratio (evlc)/vZ is small if we choose enough samples in the trip-plan. 
Hence, terms within the flower brackets can be ignored. Eq. (2.4) is in difference­
equation form, which can be converted to differential-equation form by introducing 
T' as the traversal time of the ideal synchronous particle. While transforming to 
continuous domain, the summation term is replaced by the integral. Hence, the 
synchronization phase error is written as 

(2.5) 

The synchronization model will be useful if we express in terms of the radial orbit 
shift and the dipole field error. SUbstituting for ~: from Reference 3, the following 
equation can be obtained: 

cS - , J [ , 2 eR 1 eB] d cs 
u - -v 1] IT R' - (/')2 B' t + u 0, (2.6) 

where 1]' = (:rr) - ('Y! )2) is the slip factor for a synchronous particle. 
When the field error is zero, the synchronization phase error is due to the or­

bital deviation. The relationship between the phase error and orbital deviation is 
weighted by the slip factor. If we have synchronized the reference bunch in the low­
energy machine to the trip-plan earlier in the cycle, then smaller slip factor would 
be beneficial. It means the particle tries to stay on orbit. This is quite the opposite 
of the requirement for the existing synchronization schemes, such as phase-locking 
and phase-slippage schemes. 
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2.2 Transverse Orbital Deviation 

The mean orbital deviation is zero for an ideal synchronous particle. In the presence 
of field errors, it is not zero. A general model is required to describe the longitudinal 
dynamics associated with the orbital deviations. For a given turn in the low-energy 
machine, the dynamics are well described by the particle tracking model shown in 
Reference 3. However, to obtain a differential equation with appropriate control in 
the presence of errors, we need to use the energy equation shown in Reference 7. 
If dE is the difference between the energy of the synchronous particle and the 
particle we are tracking, then 

dEk+1 = dEk + (e(V: + 6Vk) sin 4>k - eV: sine 4>AJ) , (2.7) 

where 8Vk is given by 
8Vk = 8Vk

c + 8Vk
e

, (2.8) 
with 8Vk

c the control supplied to the cavity gap voltage, 8vke the error in the cavity 
voltage for kth turn, and 4>~ the particle phase for the ideal synchronous case. The 
quantity 8Vk

c can be set to zero when we do not use global amplitude feedback. The 
energy equation is in finite difference form. It can be transformed to a differential 
equation in the usual way, as follows: 

d8E = eV'f3'c [(1 8V
c 

8V
e

) .. (A.) _ . (A.')] 
dt 211'R' + V. + V. sm 'I' sm 'I' . 

(2.9) 

The particle phase, 4>, can be written in terms of the nominal synchronous phase, 
4>"; of the deviation from the synchronous phase representing the synchrotron os­
cillations, 84>'; of the systematic phase error, ¢e; and also of a small phase shift, 
84>c, as supplied by the controller. That is, 

(2.10) 

The phase shift 84>c is included as a control input, since the radial loop can be 
connected to the global phase shifter after the frequency source, as in the case of 
Fermilab Booster low-level rf systemS, 9 (also see Fig. 1). From Reference 7 it is well 
known that 

8E = (f3')2~ E'. (2.11) 

The momentum change can be expressed in terms of the radial position change and 
the field change.3 Hence by taking the first derivative of Eq. (2.11), we can express 
the rate of energy change in terms of the radial position change and field change 
by the following equation: 

d8E· d8R d8B . 
Tt = A 18R + A1 Tt + A2Tt + A28B, (2.12) 

where the coefficients ...11 and ...12 are the first derivatives of A1 and A2 and are 
given by 

and (2.13) 
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Comparing Eqs. (2.12) and (2.9) and rewriting the resulting equation, we obtain 
the desired equation for the radial orbital deviations: 

d6R As [( 6V
c 

6V
e
). .,].4.1 A 2 ·.4.2 - = - 1 + - + - sm(¢) -sm(¢ ) --6R--6B--6B, (2.14) 

dt A1 V' V' A1 A1 A1 

where As is the time-varying coefficient given by 

eV'f3'c 
As = 271"R' . (2.15) 

Eq. (2.14) combined with Eq. (2.10) describes the dynamics of the orbital deviation. 

2.3 The Particle Phase Model 

For control purposes, the longitudinal dynamics described by Eq. (2.14) are incom­
plete without representing the synchrotron oscillations in terms of the controllable 
and measurable parameters. The particle phase has synchrotron oscillations when­
ever we are tracking an off-momentum particle. The momentum offset could be due 
to field error. If f~ is the nominal frequency as programmed in the oscillator, 6ff is 
the control input generated by the controller, and 6fk is the error in the oscillator 
itself, then the beam phase equation can be written as 

(2.16) 

6rk can be expressed in terms of radial orbit shift and dipole field error, as was 
done in Eq. (2.6). 

¢k+1 - ¢k (f' cfc cfe) [ ,2 6Rk 1 6Bk ] 
r~ = 271" k + U k + U k 1 + llk'T R' - (,:)2 B: . (2.17) 

Eq. (2.17) can be written in the differential-equation form by ignoring the second­
order terms as follows: 

d¢ = 271"/'llif 6R _ 271"/, 6B + 271";' + 271"6r + 271"6r· 
dt R' h')2 B' 

(2.18) 

The term 271" /' can be ignored because it is multiples of 3600
• By substituting from 

Eq. (2.10) for the particle phase, we obtain the following differential equation for 
the synchrotron oscillations: 

d6¢' = 271"/'llif 6R 271"6r _ d6¢c _ 271"/, 6B 271"6fe _ d¢~ f3' c¢e (2.19) 
dt R' + dt (,,)2B' + dt + 271"R' , 

where ¢e is the change in systematic phase error per turn. In most machines, 
depending on the electronics used, this type of error would not be large. Eqs. (2.6), 
(2.14), and (2.19) are compared with the tracking code of Reference 3 for the 
expected values of the errors and the control inputs. The simulated results agree 
very closely with the tracking code for the LEB parameters. 
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3 STATE SPACE MODEL 

The main reason for generating an accurate beam model with errors was to analyze 
the loops using well-known state-feedback techniques. Application of the state­
variable techniques to the rf beam control has advantages over the conventional 
transfer function approach. The state-feedback technique permits the analysis of 
systems with rapidly changing parameters, as in fast-cycling synchrotrons. All 
the internal modes of excitation are visible, whereas with the transfer function 
approach, they tend not to appear because of the pole-zero cancellation with the 
numerator and the denominator. Hence, in this section we convert the beam control 
model to state-variable form. 

The model shown in the main text can be written in state space form by assuming 
the following definition for the measured quantities and the control inputs: 

Xl 6S u = 6r 

X2 6R W 6Vc/V'. 

X3 6¢' (3.1) 

X4 = 6¢c 

In the above equation 6S, 6R, and 6¢' are measured quantities, whereas 6¢c is 
a control input used to shift the phase of the global rf signal. Also, in our beam 
model the global frequency shift and the amplitude shift are represented by control 
inputs. The field shift, 6B, cannot be considered like this, since we are not feeding 
any signal to the magnet system power supply from the global beam control system. 
Now, by using the new variables in Eq. (2.6) we obtain the state space description 
for the synchronization model as follows: 

(3.2) 

where the time-varying coefficients are shown in Tab. 1. Similarly, the state space 
description of the radial orbit shift can be obtained by substituting Eq. (3.1) in 
Eq. (2.14). After simplifying the algebra and rearranging the coefficients, we get 
the following non-linear equation: 

3:2 a22x2 + (a23 - ii23W) sin(x3 + X4) + (a24 - ii24W) COS(X3 + X4) 

+ii24 + d2l 6B + d2l 6B, (3.3) 

where the time-varying coefficients are again listed in Tab. 1. The state space 
description of the phase oscillations is given by substituting Eq. (3.1) in Eq. (2.19). 
Thus, 

(3.4) 

Eqs. (3.2) and (3.4) are linear and time-varying. For synchrotrons such as the Super 
Collider, the time variation can be ignored. Eq. (3.3) is non-linear in nature, but 
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is linearizable for a small range of operation in X3 and X4. Linear control methods 
can be applied to the simplified model. 

4 LINEAR STATE FEEDBACK CONTROLLER 

It is generally easy to design a linear controller for a time-varying system. Linear 
state feedback techniques are attractive when all the states are measurable. To 
simplify the complexity further, we will ignore the global amplitude feedback loop 
from any of the states Xl, X2, X3, and X4. At the end of this paper we show the 
design by including the global amplitude loop. Hence w is considered zero. By 
ignoring errors, the straightforward linear model of the system can be written as 
follows in matrix form: 

Eq. (4.1) is a linearized open loop control model for time-varying machine such as 
the LEB. For a time-invariant machine such as the Super Collider, the coefficients 
all and a22 are zero. In standard vector form Eq. (4.1) can be written as 

(4.2) 

where ~ represents the state vector, A represents the system matrix, B represents 
the input matrix, and 1£ represents the control vector. Eq. (4.2) is known as a state­
differential equation. In Tab. 1 all the state equations are summarized, including 
the general open loop linear control model. 

Clearly the system matrix A is singular. This means the open loop system is 
unstable. It is true that if we do not have feedback and if there is oR error, then 
the locking to the trip-plan is not perfect. The feegback of the state variables with 
appropriate gain vector will stabilize the loops. For the configuration shown in 
Fig. 1, the following state feedback law can be applied: 

u = -klXl - k3X3 - u e 

v = -k2X2 - k4X4, (4.3) 

where ue = (d32 ¢Je - ;P3)/27r. With the above feedback strategy the loop diagram 
of Fig. 1 is rewritten in Fig. 4. The term ~3 - d32 tPe /27r is added with u in Eq. (4.3) 
for the time-varying machines such as the LEB, to cancel out ;P3 and ¢Je appearing 
in the system Eq. (4.1). From the simulation results with the tracking code of 
Reference 3 an improvement in the loop performance is seen due to the nullification 
of these terms. The phase shift, o¢Jc, is derived by integrating v from Eq. (4.3). It 
is interesting to note in the feedback strategy that k4 is deliberately chosen to be 
non-zero. The reason for this will be clear when we look at the closed loop system 
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matrix obtained by substituting Eq. (4.3) in Eq. (4.1): 

o 
= 

=> (4.4) 

The closed loop system matrix, Ac/, is non-singular. However, we still do not know 
the stability bounds on the system. It can be obtained by applying the following 
stability theorem: 

For a system to be globally asymptotically stable (see stability theorem in Refer­
ence 10), these conditions must be met: all the eigen values of Ac/(t) have negative 
real parts, the matrix, Ac/(t), remains bounded, and the following integral is finite: 

(4.5) 

Solving Eq. (4.4) for eigen values is complicated. Hence, an alternative approach 
is to obtain a closed loop characteristic equation by taking the Laplace Trans­
form of Eq. (4.4) at a given time in the acceleration cycle and applying Ruth­
Hurwitz (RH) criteria. Still, for global asymptotic stability the matrix, Ac/(t), 
must remain bounded and the integral shown in Eq. (4.5) must be satisfied as long 
as the beam stays within the machine. Analogy with the currently used radial loops 
is clearly visible when we substitute the equation for v from Eq. (4.3) in the state 
equation for X4 in Eq. (3.4), since the ratio 

X4(S) k2 
X2(S) S - k4 

(4.6) 

is a single-pole filter and is the transfer function used in the radial loop. By choosing 
appropriate negative values of k2 and k4' the gain and corner frequency of the filter 
can be fixed. The phase shift, X4, is obtained from'the following equation: 

X4 = j(k2X2 + k4X4)dt. (4.7) 

As a second example, say for a two-pole filter in the radial loop m place of a 
single-pole filter, v can be chosen as follows: 

v = -k2 j X2dt - k4 j X4dt - kSX4. (4.8) 

In writing Eq. (4.8), the time variation in the gains, k2' k4' and ks is ignored. The 
transfer function of the filter is then equal to 

X4 (s) k2 
X2(S) = s2-kss-k4' 

( 4.9) 
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By choosing the magnitude and signs of the gains k2' k4' and ks, the stability of the 
system can be analyzed. When u is used as in Eq. (4.3) and v as in Eq. (4.8), the 
closed loop system matrix becomes sixth order. However, for the sake of simplicity 
we have examined the case with only a single-pole transfer function. 

To obtain the characteristic equation of the closed loop matrix we proceed as 
follows. First take the Laplace Transform of Eq. (4.4) at a given time in the cycle 
and generate a characteristic matrix, which is given by: 

-a12 
s - a22 

-(aa2 - k2 ) 

-k2 

(4.10) 

where I is the identity matrix. From the characteristic matrix it is clear that for 
a time-invariant machine (which could be the case even when the beam is just 
coasting), if k4 is zero, then the system will show a pole at the origin. This means 
the loops are marginally stable. For the LEB, when we approach the top energy 
the change in the beam velocity is small, meaning all ::::: O. Hence the stability 
of the loops cannot be guaranteed. This justifies the use of a non-zero k4 for the 
configuration of Fig. 1. For stability analysis, as we discussed earlier, we generate 
a characteristic equation from the matrix of Eq. 4.10, then apply RH criteria. The 
4th-order characteristic equation of the characteristic matrix is 

(4.11) 

The coefficients of the characteristic equation are written in terms of the loop gains 
and the machine parameters as follows: 

aa = ka ba1 - k4 - (all + a22) 
a2 = -(kak4ba1 + aa2a2a) + alla22 - (kaba1 - k4)(all + a22) 
a1 = a2aaa2k4 - a2aba1k2ka + a12a2aba1k1 + alla2aaa2 

+a22all(kaba1 - k4) + (all + a22)ba1kak4 
ao -a12a2aba1k1k4 - all (a2aaa2k4 + a22ba1kak4 - a2abalk2ka). (4.12) 

By applying RH criteria we obtain the following four inequalities for stability: 

(i) (aaa2 - adal - a~ao > 0 
(ii) (aaa2 - ad > 0 

(iii) aa > 0 
(iv) ao > o. ( 4.13) 

Conditions shown in Eqs. (4.13) are critical for the loops to remain stable through­
out acceleration. It is, however, unclear from the inequalities alone what the limits 
are on the gains for the loops to remain stable at all times. Hence the conditions 
can be further explored to obtain meaningful information by plotting the trajecto­
ries of the stability boundaries. At first we do the analysis by ignoring all and a22, 
for simplicity. This is done below. 
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5 INSTABILITY BOUNDARIES 

Boundaries for the loop instability can be calculated by equating equations obtained 
from RH criteria to zero. Since there are four gains in the loop, it becomes difficult 
to imagine a 4th-dimensional stability boundary. Hence, we can further simplify 
the problem to a two-dimensional case by first fixing ks and k4 to satisfy the 
inequality as > 0 in Eq. (4.13), then plotting the boundaries for k2 versus kl 
from the remaining inequalities. To plot the boundaries we proceed as follows: 

Condition (i): Equating the left-hand side of the inequality (i) in Eq. (4.13) to zero, 
we obtain the contour for marginal stability: 

(5.1) 

Now by substituting the coefficients shown in Eq. (4.12) into Eq. (5.1), the contour 
can be expressed in kl and k2 space: 

with 

M = 
R$ks 

v$1J$,f 

D = a[-1 + ek~l 
E Ma[-1 + 27reksk4] 

F = 
CJ&k4 

v$ 

The variables a, e, and Care 

a = (27rk::- k4) J& 
/ 

e hR" (27rks - k4) 
27rJ&cv2 27rks +k4 

C = 27rksJ& hRs ks (2 k k)k - -- 7r S - 4 4, 
vS vS cv2 

where v is the synchrotron tune equal to 

v= 
-h1JseVS cos(¢s) 

27r(3sEs 

(5.2) 

(5.3) 

(5.4) 

Eq. (5.2) is in a generalized, second-degree form. We can show from the formulas 
of plane analytic geometry that this equation is a parabola since it satisfies all the 
conditions for the parabola. ll But the parabola is tilted (since the coefficient of the 
product klk2 is not zero), with the coordinate axes kl and k2 with an angle a given 
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by 
2M 

tan 2a = 1 _ M2' (5.5) 

Hence we need to perform coordinate transformation. The transformation formulas 
are given by 

kl = kl cos a - k2 sin a = (k1 - Mk2)/V1 + M2 
k2 = k1sina+k2cosa=(Mk1+k2)/V1+M2. (5.6) 

Substituting Eq. (5.6) into Eq. (5.2), we obtain the equation for the parabola: 

- -2 -
k2 = Pk1 + Qk1 + R, (5.7) 

where the coefficients are given by 

P = 

Q 

R = 

-Mek4(27rk3 - k4)(211'k3 + k4)P 

1 + M2 + ek4(211'k3M2 - k4) 
Mek4(27rk3 - k4) 

-0 
(5.8) 

The coefficients P, Q, and R of the parabola can be further simplified by choosing 
the ratio k4/k3 ~ 1. Also, the time constant of the beam phase loop can be 
chosen approximately equal to 1/ k3. For the LEB a value of k3 = 3000 is chosen. 
If a time constant of 1/4 of the synchrotron period is needed, then k3 must be 
chosen to be approximately 100,000, because one shortest synchrotron period is 
approximately 40jls. Even then, M is less than 1. With such a choice of k3 , the 
factor M in Eq. (5.3) is far less than 1. So, the coefficients of the tilted parabola 
can be reduced to 

(5.9) 

The vertex of the parabola (k1v , k2v ) in the new coordinate system is given by 

(5.10) 

The parabola is plotted in Fig. 5 for the LEB parameters at 1 ms from the in­
jection, with k3 = 3000 and k4 = -20. The vertex of the parabola is in the first 
quadrant, and it is concave down. The stable region, as required by the RH cri­
teria, inequality (i) in Eq. (4.13), is inside the parabola. Note that if k4 is chosen 
positive, the parabola becomes concave up, with the vertex in the fourth quadrant. 
The stable region will again be inside the parabola. The parabola intersects the 
kl axis at two points. The left lobe intersects at the origin, and the right lobe 
intersects at (211' r k3/V 8

, 0). For smaller gains, k3, the x-coordinate of the vertex 
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moves closer to the origin. Also the y-coordinate of the vertex increases, and the 
point of intersection of the right lobe moves closer, tending to cause the parabola 
to become more focussed. This reduces the upper limit on the synchronization loop 
gain. Conversely, the larger the gain k3, the more spread out the parabola is. 

Condition (ii): By substituting Eqs. (4.12) in the RH criteria, inequality (ii) of 
Eq. (4.13), then equating the results to zero, the second contour for marginal sta­
bility can be obtained: 

kl + Mk2 = C. (5.11) 
Now by applying coordinate transformation, i.e., by using Eq. (5.6) in Eq. (5.11), 
we obtain the following equation for the straight line: 

- C 
kl = VI + M2' (5.12) 

For the LEB, Eq. (5.12) can be reduced to 

kl = 27rr k3 . 
v 3 

(5.13) 

This instability line is parallel to the k2 axis and intersects the kl axis at 27r r k3/ v 3 
, 

which is the same point where the right lobe of the parabola intersects with the 
kl axis. The region on the left side of this line satisfies RH criteria, inequality (ii) 
of Eq. (4.13), for stability and hence is a stable region as shown by the dotted lines 
in Fig. 5. 

Condition (iii): In this case, 27rk3 is selected to be greater than k4 for stability. 

Condition (ivy: From the RH criteria, inequality (iv) of Eq. (4.13), for stability we 
note the product klk4 < 0 for machines operating below transition. The stability 
boundary can be obtained by equating the product klk4 to zero, then transforming 
the identity to a new coordinate system by using ~qs. (5.6). After transformation, 
the equality is given by , 

(5.14) 
The stability region depends on the sign of k4 and is shown in Figs. 6( a) and 6(b) 
for the LEB, which includes a region common to the three inequalities, (i), (ii), and 
(iv). The contour enclosing the shaded area is the instability boundary in kl' k2 
space for k4 < 0 and k4 > O. The real values of the gain can be obtained from the 
transformation formulae shown in Eqs. (5.5) and (5.6). We have to watch out for 
the sign of the radial loop depending on the other loop gains. 

As we stated earlier, for the loops to remain stable the inequalities shown in 
Eq. (4.13) must be satisfied along with the condition that the integral shown in 
Eq. (4.5) is finite. By evaluating the definite integral for the duration of the accel­
erating period, say for the LEB, we see that the integral reaches a finite value. In 
the stability analysis discussed so far with the synchronization loop operating along 
with the beam phase loop and the radial loop, we have ignored the time-varying 
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terms, all and a22. We included these terms and plotted the parabola at differ­
ent times during the acceleration cycle for the LEB. The k2 axis coordinate of the 
vertex reduces in magnitude without significant change in the kl axis coordinate of 
the vertex. The angle of tilt, a, of the parabola turned out to be very significant; 
this will be discussed later with additional stability diagrams at a different time 
during the cycle. However, the terms all and a22 did not have a major effect on the 
instability boundaries. On the other hand, the approximations used in deriving the 
state space model from the finite-difference equations combined with the sampling 
effects in the feedback loops cause considerable changes to the stability trajecto­
ries. To make the chart applicable for many types of practical implementations, we 
introduce the concept of moving the imaginary axis by a certain amount toward 
the left half of the s-plane. This effectively restricts the guaranteed stable region 
to a small area in kl' k2 space. The details are shown below. 

6 STABILITY LIMITS DUE TO MODEL APPROXIMATIONS 

The beam control model shown in Tab. 1 is a result of the approximation we in­
troduced while converting the discrete equations to continuous form. With the 
continuous model, the closed loop stability analysis obviously becomes simple, but 
when applied to the real accelerator the performance will be somewhat different. 
On the other hand, the application of linear discrete theory using the discrete model 
for loop stability may be complicated, since the traversal time of the macroparticle 
is modulated over the accelerating cycle, leading to irregular sampling. Further­
more, if the feedback loops are implemented digitally, the sampling period enhances 
the stability problems. Hence, we show a technique below to use the stability dia­
gram discussed earlier for most of the practical implementations. The technique is 
discussed by taking the example of the LEB. 

Fig. 7 is plotted to portray the location of the roots of the characteristic Eq. (4.11): 
AI, A2, A3, and A4 for the loop gains kl = 25, k2 = 5000, k3 = 3000, and k4 = -20. 
Roots Al and A2 are very close to the imaginary axis; the closed loop system 
response is dominated by the root closest to the imaginary axis, since the time 
response of the mode with the root Al decays very slowly compared to the mode 
with the root A4. Also, since two eigen values are closer to the imaginary axis when 
compared to A3 and A4, they may be in the marginal stability region due to model 
approximations for the choice of the loop gains, kl' k2' k3, and k4' even though 
these gains satisfy the stability bounds shown in Fig. 6. Another way to learn the 
stability bounds is by moving the imaginary axis of Fig. 7 left by an amount £ and 
redrawing the stability contours. By selecting the gains to fall within the new con­
tours, we can guarantee that the loops remain stable. The value of £ can be chosen 
by trial and error; this is purely intuitive. By partitioning A4 into subintervals, 
we can choose f to be equal to one of them. In this way we are ensuring that the 
eigen values within the £ boundary obtained with gains kl' k2' k3, and k4., indicate 
the marginal stability. This method, however, does not overcome the effects due to 
unmodeled dynamics in the system. Now the new s-parameter, s, can be defined 
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as 
S=S-l. (6.1) 

Substituting for s from Eq. (6.1) in Eq. (4.11), a new characteristic equation is 
obtained: 

s4 + a3s3 + a2s2 + als + ao = 0, 
where the new coefficients are given by 

a3 = a3 +4f 
a2 = a2 + 3f(a3 + 2f) 
al = al + f(2a2 + 3W3 + 4(2) 
ao = ao + f(al + W2 + f2a3 + (3). 

By applying RH criteria, we obtain the new inequalities for stability: 

(i) (a3a2 - al)al - a~ao > 0 
(ii) (a3a2 - ad > 0 

(iii) a3 > 0 
(iv) ao > o. 

(6.2) 

(6.3) 

(6.4) 

By equating the left-hand side of the inequalities (i), (ii), and (iv) to zero, new 
contours of the instability boundary for different values of f are obtained. The new 
coefficients of the parabola can be obtained by following the procedure described 
in Section 5 above. Hence we do not show the expressions of the coefficients of 
the new parabola. Notice that the new parabola (with f and the parameters all 

and a22 included) also has the tilt angle, a, described by Eq. (5.5). Therefore, 
the contours of the new stability region are shown in Fig. 8 by performing the 
coordinate transformation using Eq. (5.6) for the LEB at 1 ms, 20 ms, and 49 ms 
for k3 = 3000, k4 = -20, and an f value of -150. Clearly, the common stability 
region is reduced as acceleration proceeds due to model approximation. 

On most occasions it is likely that the synchronization loop is not closed at the 
beginning of the acceleration cycle, unless there is a requirement to synchronize a 
particular bunch as the first bunch in the higher-Ejnergy machine. When the syn­
chronization loop is not closed, the beam phase loop and the radial loop will be 
operating. Loop gains have to be designed based on a new stability limit. Hence an 
analysis of the loop stability is done below for operations without the synchroniza­
tion loop for the configuration of Fig. 1. Also, there are several alternative feedback 
configurations possible, and it is difficult to know which approach is a good one. 
Hence we evaluate most of the commonly known loop configurations by following 
the procedure outlined above. We then discuss the stability diagrams for each of 
them. 

7 STABILITY OF LOOPS WITH ALTERNATIVE FEEDBACK STRUCTURES 

In this section we obtain the stability diagrams for beam control loops with sev­
eral possible structures with and without the synchronization loop in place. The 
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procedure is very similar to the studies shown above. Tabs. 2 through 7 show 
the feedback structures and the inequalities for stability for a time-varying ma­
chine with the shifted imaginary axis. Also, the contours are obtained as simple 
equations when €, all, and a22 are ignored. Salient points are highlighted on the 
diagram. The "adder circuits" in the following sections are used to indicate the 
summing node before the DDS. 

Beam Phase Loop to the Adder Circuits, and Radial Loop to the Phase Shifter 
The inequalities for this configuration are shown in Tab. 2. The marginal stability 

contours obtained by equating the left-hand side of the inequalities (i) and (iii) to 
zero are hyperbolae when a22 i= 0 and € i= O. But when a22 and € are ignored, 
all three conditions describe straight lines, k2 = a32, k2 = 0, and k3 = O. In 
Fig. 9(a) stability conditions are shown for the LEB at 1 ms for € = O. Since a22 
is not completely zero, we see the hyperbola from condition (i) with asymptotes at 
k2 = a32 and k3 = O. Condition (iii) is also a hyperbola, but it is almost coincident 
with the k2 = 0 axis due to the size of the scale. The shaded area in the k2-k3 space 
is in the second quadrant, which indicates the stability region for the loops. Since 
the line k2 = a32 (the asymptote of the hyperbola for condition (i)), is proportional 
to the product, i'TJ' , we see that the region of stability will contract as acceleration 
proceeds. The instability boundaries for € values of -150 are shown in Fig. 9(b) at 
49 ms. The closed contour enclosing the shaded area has considerably contracted 
when compared with the area at 1 ms. If the gains k2 and k3 are selected to lie in 
the shaded area at 49 ms for the LEB, the loop stability can be guaranteed. With 
such a choice, the difficulty of arranging the hardware to vary the radial loop gain 
with time can be prevented. Of course, the time variation ue (see Tab. 1) is required 
in the beam phase loop for machines like the LEB. For machines operating above 
transition, the stability region will fall in the first quadrant of the k2-k3 space as 
indicated by the asymptote k2 = a32. If there is transition crossing in the middle 
of the cycle, the sign of the radial loop gain must be changed. 

Beam Phase Loop, Radial Loop, and Synchronization Loop to the Adder Circuits 
This type of configuration seems to offer a large stability region with capability to 

synchronize a selected reference bunch with the higher-energy machine. In Tab. 3 
the loop equations are shown with the instability boundaries for an ideal situation. 
Fig. 10( a) is plotted to show the stability region in the k1-k2 space when the 
beam ,phase loop gain is fixed at 3000. The intersection of the line represented by 
condition (i) with the k2 = 0 axis is linearly dependent on the loop gain of the beam 
phase loop and the rf frequency-to-velocity ratio. Because of the time dependency, 
the stable region is confined to one quadrant only. In Fig. 10(b) the stability region 
is shown with model approximations when € = -150. Condition (iii) is acting in 
such a way that the common stable region between 1 ms and 49 ms is reduced. 

Beam Phase Loop and Radial Loop to the Adder Circuits 
The stability diagram and the related inequalities are shown in Fig. 11 and Tab. 4, 

respectively. The point of intersection of the lines k2 = TJ'/ti' / R' and k3 = 0 is 
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a salient point in this diagram. The radial loop gain k2 is required to be varied 
with time, since the salient point moves toward the origin in the k2-k3 space. 
For (; = -150, curves do not demonstrate an observable difference. When the 
configuration shown in Tab. 4 is used in conjunction with Tab. 3 for synchronization, 
a high-gain capability is possible. 

Beam Phase Loop to the Adder Circuits, Radial Loop and Synchronization Loops 
to the Phase Shifters 

In this scheme the synchronization loop is connected to the phase shifter as shown 
in Tab. 5. The instability boundaries consist of a parabola and two straight lines, as 
in Figs. 12(a), 12(b), and 12(c), at 1 ms, 20 ms, and 49 ms, respectively. The stable 
region is well spread out in the k1-k2 space at 1 ms and 20 ms. However, at 49 ms 
there seems to be no clear region available for stability when (; = -150. This means 
that the instability in the loop would start growing somewhere close to the end of 
the acceleration cycle if the beam phase loop gain is not decreased substantially. 
Alternately, if k3 is decreased progressively, then the kl coordinate of the vertex 
of the parabola moves further left, as shown in Fig. 12(d). This figure is drawn 
for the case with k3 = 1000, a factor of 3 less than in Figs. 12(a) through 12(c). 
The straight line representing condition (ii) becomes more negative, expanding the 
stable region. Thus an additional time variation in the beam phase loop is required 
to have sufficient stability region. 

Beam Phase Loop and Synchronization Loop to the Adder Circuits, and Radial Loop 
to the Global Amplitude 

Instead of connecting the radial loop to the adder circuits or to the phase shifter, 
one can also insert it to modulate the cavity voltage, as shown in the configuration 
of Tab. 6. In this case the stability boundaries differ from the other configurations. 
As shown in Fig. 13, the common stability region during the whole acceleration 
cycle is narrow at 30 ms, which coincides with the point where the synchronous 
phase angle is maximum. Effectively, it turns out that the radial loop gain must 
vary in time unless the phase loop gain is reduced substantially at the maximum 
phase angle point to increase the stability region shown by the shaded area in the 
k1-k2 space. 

Beam Phase Loop to the Adder Circuits and Radial Loop to the Global Amplitude 

When the synchronization loop is removed from the configuration of Tab. 6, the 
loop stability region is as shown in Fig. 14. The boundary equations are presented 
in Tab. 7. Variation in the beam phase loop gain may not be required if k2 is 
selected to be very high. 

Other loop configurations, such as the beam phase loop and the radial loop to 
the phase shifter, are inherently unstable and are not discussed. 
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8 SIMULATION RESULTS 

Simulation studies are carried out for the configuration described above. We present 
the results for Fig. 1 in the presence of errors. Sources of errors in the beam 
control loops are many, and they depend on the type of implementation. Usual 
source of errors are (1) field errors (cavity voltage and magnetic field), (2) errors 
in the measurement of radial position, (3) systematic and random errors in the 
beam phase measurement, (4) errors in the frequency source due to the stability 
limits on oscillators, (5) errors in calculating the trip-plan, (6) errors while ramping 
the programmed frequency, and (7) systematic error in the global phase shifter. 
Descriptions of these errors are shown in Reference 12. 

The decay of the states :1:1> :1:2, :1:3, and :1:4 are shown in Figs. 15(a) through 
15(d) for feedback configuration of Fig. 1, with and without systematic errors. The 
change in systematic errors in the global phase shifter and the beam phase loop 
do not appear to give synchronism if the synchronization loop is closed early on in 
the cycle unless the error is known accurately. Whereas, the constant systematic 
error does not seem to affect synchronization. In Fig. 15(e) the control input is also 
shown. The particle we tracked was 30 m away from the reference point at t = O. We 
chose the sampling interval of 1 MEB turn (which is equal to 13.249 Jls-hence the 
cable delays can be ignored). The tracking model we chose was in finite-difference 
form, as shown in Reference 3. The steady state errors in :1:1 and :1:2 are derived 
in Appendix A. When there is no systematic error in the bending field, the steady 
state error in synchronization is !3'c4>e/(27r)2k1R', which clearly depends on the 
gain of the synchronization loop. If we know 4>e in advance, we can compensate 
for it by including the time-varying gain in the phase loop, as shown by Eq. (4.3). 
Another useful piece of information to note is the radial position at the time of 
transfer; this is equal to R'6B/(,,)2,fTJ' B' (Eq. (A.8», which is independent of 
4>e. Also, since the bunch contains several particles we need to know whether the 
particle with a maximum initial phase offset could be tracked into the same bucket. 
Fig. 15(f) shows the difference in phase of the offset particle with the synchronous 
phase. This information is useful in determining ~hether there is any particle loss. 
The initial offset with respect to rf signal was ±165°, receiving the same control 
input as shown in Fig. 15(e). Particles over 1650 did not remain in the same bucket. 

It appears that the random errors do not give problems in synchronization when 
the loop is closed very early on during acceleration. The systematic error, however, 
is going to be a problem unless it is decoupled by adding linear or non-linear 
dynamics in the closed loop system or by recalculating the trip-plan by trial-and­
error or by increasing the synchronization loop gain. The stability regions we 
have predicted in several figures above are confirmed through simulation using the 
tracking code of Reference 3. Also, the choice is to have a large stability region for 
the gains and to provide time variation throughout acceleration whenever necessary. 
In the analogue implementation of the beam phase loop, 4>' is not usually subtracted 
from the output of the beam phase detector of Fig. 1; instead a filter is used to de­
couple the synchronous phase. No doubt, analogue and digital implementation both 
perform the same function, but for the case when the synchrotron frequency falls 
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within the cutoff frequency of the filter, the stability margins of the loops change. 
Hence a better way to implement is to subtract ¢' digitally from the digitized phase 
information. 

9 CONCLUSIONS 

In this paper we describe the application of modern linear state feedback techniques 
for analyzing the stability of rf beam control feedback loops. Since the state feed­
back concept is in time-domain, it is particularly useful for fast-cycling accelerators 
where the rf frequency is changing rapidly with time. Terms such as the derivative 
of the synchronous phase and systematic errors are found to be important and must 
be suitably compensated either in the beam phase loop or in the radial loop. A 
novel method of phase-locking a reference bunch in the lower-energy machine with a 
stable bucket in the higher-energy machine is analyzed without disabling the other 
feedback loops. 

A generalized beam control model is derived from a single-particle tracking model, 
giving a good insight into the time-varying nature of the control problem for fast­
cycling machines. The generalized model enlarged the class of loop configurations 
that can be treated in detail. The stability limits were expressed in terms of the 
machine parameters for quick reference. A new technique is introduced to obtain 
the limits in the presence of model approximations, since such approximations 
tend to reduce the stability margin. Diagrams shown in this paper give a clear 
understanding of the signs of the loop gains for machine operation below and above 
transition; this is especially useful when the synchronization loop is closed. For 
some loop configurations, time-varying gains are essential and are apparent from 
the boundary equations. With the synchronization loop closed, although the loops 
are stable, systematic errors will not give the desired synchronism of the reference 
bunch unless they are decoupled. If for some reason such decoupling is not possible, 
then non-linear robustifying loops are required. The design of a type of such loops 
is described in Reference 12. At the end the stab!lity limits were confirmed using 
the particle-tracking model in finite-difference form. Since the beam control loops 
were studied by ignoring beam-loading effects on rf cavities, the stability diagrams 
are accurate when the local cavity loops are fast compared to global loops. 
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APPENDIX A: STEADY STATE ERROR CALCULATION 

The steady state error in the states Xl, x2, and X3 are attributable to the systematic 
errors in the magnetic field, 6 B, and the phase shift, <jJe. We show below how to 
calculate the steady state error for the configuration of Fig. 1. The same technique 
can be applied to other loop arrangements. 

--
Consider the general state space model of Tab. 1, which can be rewritten in the 

following form: 

[m [T 
a12 0 

a~3l [m + [~ 
0 0 nm a22 a23 -a24 0 

a32 0 0 b3l 

0 0 0 0 

[dB 0 0 

~] [~J] -~'. + 0 d2l 0 (A.l) 
0 d31 d32 

0 0 0 

We consider no systematic error in the beam phase loop for simplicity. Now by 
substituting u = -klXl - k3X3 + (;pS /27r), V = -k2X2 - k4X4, and w = 0 in the 
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general equation Eq. (A.I), we obtain the following closed loop matrix equation: 

m] [ all 
a12 0 

a~, ] m] -kbb" 
a22 a23 = a32 - k2 -k3b3l -k4 

k2 0 k4 

[d
l1 0 0 

~] [;~] + 0 d21 0 (A.2) 
0 d3l d32 

0 0 0 

That is, 

(A.3) 

where d. and ye contribute to the error component. Taking Laplace Transform of 
Eq. (A.3), we obtain 

(AA) 

The steady state values of the states Xl, X2, X3, and X4 are calculated at 50 ms by 
designating the steady state condition on the state matrix as ~. 

~ = Limit s~(s). .-0 (A.5) 

Substituting Eq. (AA) in Eq. (A.5), ~ is obtained: 

(A.6) 

Solving for Xl and X2 from Eq. (A.6), the following steady state values are obtained: 

and 
R' 6B 

X200 = - (-y' )2"Yt 1J' B" 

(A.7) 

(A.S) 

Clearly, from Eq. (A.7) we note that when there is no systematic error in the 
bending field, the synchronization phase error due only to the change in systematic 
error, ¢e, is 

f3·c¢e 
Xl oo = (271")2klR" (A.9) 

By having a large loop gain in the synchronization loop, the steady state error can 
be reduced. Also, steady state error in the radial position does not depend on the 
radial loop gain, as seen by Eq. (A.S). 
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LIST OF PRINCIPAL SYMBOLS 

(.)' : ( .) Synchronous quantity 

Oc: 0 Control variable 

(. k (.) Variable at the kth turn 

oe: Error between actual quantity (-) and that of synchronous particle (-). 

00: Initial value of the quantity (-) 

(.): First derivative of quantity 0 

6(·): Small variation in the quantity (-) 
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TABLE 1: State space model. 

Non-Linear State Space Model: 

Xl = allX1 + a12 X2 + dlloB - allxO 

X2 = a22x2 + (a23 - a23W) sin(x3 + X4) + (a24 - a24W) COS(X3 + X4) 

+ a24 + d21 0B + d2108 

X3 = a32X2 + b31 U + V - ~$ + d31 0B + b310r + d32 </Je 

Coefficients: 
. , 

all = ~. 

V·7J·"Y 2 
a12=-~ 

a22 = -47 
- & (1 + 6V') A.$ a23 - Al l7" cos 'I' 

Variables: 

a23 = -*cos</J$ 

o 
o 

b31 
o 

a24 = * (1 + 6J:) sin </J$ 

a24 = -* sin </J$ 

2'1r 1''1'"(2 
a32 = R' T 

d tI' 
11 = ("(')2B' 

d21 =-~ 
- A 
d21 =-z-

25 

Xo = oSo Xl = oS X2 = oR X3 = o</J$ X4 = o</Jc U = or W = oVc /V$ 

Errors: oB or ove </Je ue = (d32 </Je - ~$)/b31 
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TABLE 2: Loop equations. 

Loop Diagram: 

Feedback Strategy: 

v = -k2x2 

Coefficients of the Characteristic Polynomial: 

ao = ao + alf + a2f2 + f3 ao = -a23b3lk2k3 

al = al + 2W2 + 3f2 and al = -(k3b3la22 + a23a32) 

a2 = a2 + 3f 

Stability Inequalities: 

(i) (a2al - ao) > 6 
(ii) a2 > 0 

(iii) ao > 0 

Instability Boundaries for f = 0, a22 = 0: 

k3 = 0 
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TABLE 3: Loop equations. 

Loop Diagram: 

Feedback Strategy: 

u = -kIXI - k2X2 - k3X3 - ue 

Coefficients of the Characteristic Polynomial: 

aa = aa + alf + a2f2 + f3 

al = al + 2W2 + 3f2 

a2 = a2 + 3f 

Stability Inequalities: 

(i) (a2al - aa) > 0 

(ii) a2 > 0 

(iii) aa > 0 

aD = a12a23b31kl - auaa 

and aD = a23b31k2 - b31a22k3 - a23a32 

al = aD - au (k3b31 - a22) 

a2 = k3b31 - (au + an) 

Instability Boundaries for f = 0, au = 0, a22 = 0: 

k 27r/, 
1 + 27r M k2 = v' k3 kl = 0 k3 = 0 

27 
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TABLE 4: Loop equations. 

Loop Diagram: 

Feedback Strategy: 

u = -k2X2 - k3X3 - ue 

Coefficients of the Characteristic Polynomial: 

ao = ao + al f + f2 

al = al + 2f 

Stability Inequalities: 

(i) al > 0 

(ii) ao > 0 

Instability Boundaries for f = 0, au = 0, an = 0: 

k3 = 0 
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TABLE 5: Loop equations. 

Loop Diagram: 

Feedback Strategy: 

u = -k3x3 - ue 

v = -klXl - k2X2 

Coefficients of the Characteristic Polynomial: 

aa = -a12a23b31klk3 + alla23b31k2 aa = aa + €(al + m2 + €2a3 + €3) 

al = al + €(2a2 + 3m3 + 4€2) 

a2 = a2 + 3€(a3 + 2€) and 

a3 = a3 + 4€ 

al = (alla22 - a23k2)b31k3 + alla23a32 

a2 = -k3b31 (all + a22) - a23a32 + allan 

a3 = k3b31 - (all + a22) 

Stability Inequalities: 

(i) (a3a2 - adal - a~aa > 0 

(ii) (a3a2 - al) > 0 

(iii) a3 > 0 

(iv) aa > 0 

Instability Boundaries for € = 0, all = 0, a22 = 0: 
2 _ 27r1',,''Yf 

kl = Pk2 + Qk2 k2 - R' 

Vertex of the parabola: 

k3 = 0 
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TABLE 6: Loop equations. 

Loop Diagram: 

Feedback Strategy: 

u = -klXl - k3X3 - ue 

w = -k2X2 

Coefficients of the Characteristic Polynomial: 

ao = ao + al£ + a2£2 + £3 

al = al + 2W2 + 3(2 

a2 = a2 + 3( 

Stability Inequalities: 

(i) (a2al - ao) > 0 

(ii) a2 > 0 

(iii) ao > 0 

and 

ao = a12a23b31kl + auao 

ao = a24b31k2k3 + b31a22k3 + a23a32 

al = -aD + all (-k3b31 + k2a24 + a22) 

a2 = k3b31 - (k2a24 + au + a22) 

Instability Boundaries for £ = 0, all = 0, a22 = 0: 

R - 'E!.L...k 
- Ii< 3 
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Loop Diagram: 

Feedback Strategy: 

w = -k2X2 

TABLE 7: Loop Equations. 

t r1 -t,x,-u' 

-0-1 DDS 1-­
V' 

Coefficients of the Characteristic Polynomial: 

ao = ao + alf + f2 

a1 = a1 + 2f 

Stability Inequalities: 

(i) al > 0 

(ii) ao > 0 

and 

ao = -(a24b3lk2k3 + b3la22k3 + a23a32) 

a1 = k3 b3l - (k2a24 + a22) 

Instability Boundaries for f = 0, a22 = 0: 

31 
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• 
Local Phase Shifter 

f ....--....., Global Phase Shifter t---~f-----"'~ 
---. + --l DDS I - c" J------i._---.j 

~ .s 
.---"------, .g 

Trip Plan'-.. -~-_-X-l .... 1 
Cl 

--- X -----1\ TDe I: 

~--~-------~~ 

Radial Loop 

LED Reference 
MEB Reference " 

Processing Electrarics 

BPD - Beam Phase Detector 
DDS - Direct Digital Synthesizer 
TDC - TIme to Digital Converter 

FIGURE 1. Schematic representation of the global beam control feedback loops for 
the LEB. 
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High Energy Machine 
Reference Signal 
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Reference Signal 
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Higher Energy 
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Lower Energy 

8 ~achine Reference Bunch in the 
~ Lower Energy Machine 

t --: 
k 

-6 
Reference Bucket in the 
Higher Energy Machine 

FIGURE 2. Conceptual diagram showing the arrival time of a reference bunch in 
the Lower-Energy Machine. 
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600~--~--~~--~--~----~ __ ~ ____ ~ __ ~ 

4000 
MEB tum nUmb8rs 

FIGURE 3. LEB trip-plan. 
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r 
- k3X 3 + (~s 127t) \- x3 
Beam Phase Loop 

Global Phase Shifter 
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+ 1 x. 
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~ 

.!:! oS J (k2x2 + k4x4) dt I::: 
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1 x, 

~ 
I::: Xl 

~ 

~ a::: 

FIGURE 4. Schematic loop diagram of Fig. 1. 
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FIGURE 5. Stability region for conditions (i) and (ii) at 1 IDS. 
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FIGURE 6(a). Combined stability region for Fig. 1 at 1 ms when k3 = 3000, 
k4 = -20. 
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FIGURE 6(b). Combined stability region for Fig. 1 at 1 InS when k3 = 3000, k4 = 20. 
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FIGURE 7. Eigen value locations at 1 ms for kl = 25, k2 = 5000, k3 = 3000 and 
k4 = -20. 
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FIGURE 8. Common stability region for LEB when ka = 3000 and € = -150. 
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Condition {i} @ 49ms 
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FIGURE 9(a). Stability diagram in k2-k3 space for Tab. 2 when € = o. 
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FIGURE 9(b). Stability diagram in k2-k3 space for Tab. 2 at 49 ms. 



(a) 

t 
k2 

INSTABILITIES IN BEAM CONTROL FEEDBACK LOOPS 43 

1.5 x 10
8 

1.0 
Condition (iii) 

@ 1ms & 49ms 
0.5 

0 ------------

-0.5 

-1.0 

-1.5 
-4000 -2000 0 2000; 4000 

k1 --" 

Condition (i) 
@49ms 

6000 8000 

TIP'02502 

FIGURE 10(a). Stability diagram in k1-k2 space for Tab. 3 when k3 = 3000 and 
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FIGURE 10(b). Stability diagram in k 1-k2 space for Tab. 3 when k3 = 3000 and 
f = -150. 
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FIGURE 11. Stability diagram in k3-k2 space for Tab. 4 for f = 0 at 1 ffiS. 
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FIGURE 12(a). Stability region in k1-k2 space for Tab. 5 when k3 = 3000 at 1 ms. 
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FIGURE 12(b). Stability region in k 1-k2 space for Tab. 5 when k3 = 3000 at 20 ms. 
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FIGURE 12(c). Stability region in k1-k2 space for Tab. 5 when ka = 3000 at 49 ms. 
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FIGURE 12( d). Stability region in k 1-k2 space for Tab. 5 when k3 = 1000 at 49 ms. 
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FIGURE 13. Stability region in k1-k2 space for Tab. 6 when ks = 3000. 
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FIGURE 14. Stability region in k2-k3 space for Tab. 7 for { = -150. 
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FIGURE 15(a). Synchronization phase error with respect to time. 
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FIGURE CAPTIONS 

FIGURE 1 Schematic representation of the global beam control feedback loops for 
the LEB. 

FIGURE 2 Conceptual diagram showing the arrival time of a reference bunch in 
the Lower-Energy Machine. 

FIGURE 3 LEB trip-plan. 

FIGURE 4 Schematic loop diagram of Fig. l. 

FIGURE 5 Stability region for conditions (i) and (ii) at 1 ms. 

FIGURE 6(a) Combined stability region for Fig. 1 at 1 ms when ka = 3000, k4 = 
-20. 

FIGURE 6(b) Combined stability region for Fig. 1 at 1 ms when ka = 3000, k4 = 20. 

FIGURE 7 Eigen value locations at 1 ms for kl = 25, k2 = 5000, ka = 3000 and 
k4 = -20. 

FIGURE 8 Common stability region for LEB when ka = 3000 and f = -150. 

FIGURE 9(a) Stability diagram in k2-ka space for Tab. 2 when f = O. 

FIGURE 9(b) Stability diagram in k2-ka space for Tab. 2 at 49 ms. 

FIGURE lO(a) Stability diagram in k1-k2 space for Tab. 3 when ka = 3000 and 
f = O. 

FIGURE 10(b) Stability diagram in k 1-k2 space for Tab. 3 when ka = 3000 and 
f = -150. 

FIGURE 11 Stability diagram in k3-k2 space for Tab. 4 for f = 0 at 1 ms. 

FIGURE 12(a) Stability region in k1-k2 space for Tab. 5 when ka = 3000 at 1 ms. 

FIGURE 12(b) Stability region in k1-k2 space for Tab. 5 when ka = 3000 at 20 ms. 

FIGURE 12(c) Stability region in k1-k2 space for Tab. 5 when k3 = 3000 at 49 ms. 

FIGURE 12(d) Stability region in k1-k2 space for Tab. 5 when ka = 1000 at 49 ms. 

FIGURE 13 Stability region in k 1-k2 space for Tab. 6 when ka = 3000. 

FIGURE 14 Stability region in k2-ka space for Tab. 7 for f = -150. 

FIGURE 15(a) Synchronization phase error with respect to time. 

FIGURE 15(b) Radial orbit shift with respect to time. 

FIGURE 15(c) Beam phase error with respect to time. 

FIGURE 15( d) Global phase shift (control input) with respect to time. 

FIG URE 15( e) Frequency shift (control input) with respect to time. 

FIGURE 15(f) Phase difference of the offset particle with respect to time. 


