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Abstract 

The concept of phase space density provides a properly macroscopic de­
scription of a beam bunch of mutually non-interacting particles. Ideally, 
simulations of particle beam behavior ought to concentrate directly on 
the dynamics of the beam phase space density rather than on that of 
individual particles-an immediate benefit being the elimination of the 
statistical uncertainty inevitably arising from the sampling of such par­
ticles. Here a preliminary step is taken in the direction of this desirable 
goal-a "toy" one-degree-of-freedom (the transverse horizontal) beam 
phase space density is simulated for a highly simplified lattice consisting 
of a purely linear FODO ring which contains a single thin-element non­
linear kick. These meager ingredients produce a fascinating collection of 
beam density snapshots in the phase space-including such phenomena 
as the filamentation and "fragmentation" of a kicked beam, the process 
of formation of phase space islands under a variety of circumstances, and 
spiral twisting of the beam density within the dynamic aperture. 

1.0 Introduction and Basic Concepts 

Particle beam evolution simulations have heretofore largely focused on the tracking of a 
relatively small number of individual particles. Particle beams are, however, macroscopic, not 
microscopic, objects, containing upwards of 108 particles in each bunch, which are therefore 
more satisfactorily described by their density in phase space. Below we briefly develop the basic 
concepts, formalism, and dynamical equations associated with particle beam density in phase 
space for mutually non-interacting particles in the restricted context of a single transverse 
degree of freedom (the formulas generalize straightforwardly to the more realistic case of three 
degrees of freedom). In the next section the results of highly simplified, but surprisingly 
result-rich simulations which apply these concepts are presented. 

Consider a particle beam consisting of N discrete, mutually non-interacting particles, whose 
motion we propose to study in only the horizontal transverse degree offreedom. With each such 
particle we thus associate the pair of phase space co-ordinate Xi(S) and XHs), i = 1,2··· ,N. 
The appropriate definition of the beam phase space density in this case is, 

1 N 
PN(X,p, s) == N L 8(x - Xi(s»8(p - Xi(s». 

i=1 

(1) 

* Operated by the Universities Research Association, Inc., for the U. S. Department of Energy 
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Note that PN(X, p, s) satisfies the key intuitive requirement that, 

ff dx dp PN(X,p, s) = 
R 

The fraction of the N particles which have their phase space 

coordinates within Rat s, where R is any region of phase space. 

This implies in particular that, 

1: dx 1: dpPN(X,p,S) = 1 at all s. 

(2) 

(3) 

The N mutually non-interacting particle phase space co-ordinates (Xi(S), XHs)) , i = 1" .. ,N, 
each satisfies Hamilton's equations, 

'!!"(X.( )) = 8H(Xi(S), XHs), s) . 1 N 
ds • s 8XHs) , Z = ,"', , (4a) 

(4b) 

with the same single-particle Hamiltonian function H. 
The solutions to Eqs. (4) can be expressed in terms of a single-particle one-to-one symplectic 

map (T.;.o' T;;.o) which carries each of the N particles forward from its initial conditions at 
s = so, 

Xi(S) = T.;.o[Xi(so), XHso)], i = 1"" ,N, 

XHs) = T:;'o[Xi(SO), XHso)], i = 1"" ,N. 

(5a) 

(5b) 

It is helpful at this stage to introduce the vector notations Zi(S) == (Xi(S), XI(s)) , i = 
1, ... ,N, f.;.o == (T';'o,T;;.o)' and Z == (x,p). We shall now obtain the rule for the 
evolution of PN(Z, s) from the initial PN(Z, so) by substituting Eqs. (5) into the definition (1) 
of PN(Z, s) and then applying a delta-function identity. 

N 
_ _ 1 '" (2) _ - -

PN(Z, s) - N L.J a (z - T';'o[Zi(SO)]) 
i=1 

N 
_ 1 '" (2) --1 - . --1 [:;'I - N L.J a (T.;.o[Z] - Zi(SO)) x Jacoblan(T.;.o Zj). 

i=1 

(6) 

Because f.;.o is symplectic, Jacobian(f.~.1o[Z1) = 1. Referring again to the definition (1) of PN, 
we see that Eq. (6) implies that, 

(7) 

which is the fundamental rule for the evolution in s of PN. The appearance of the inverse, or 
"s-reversed", map f,-:.1 in Eq. (7) may strike those accustomed to individual particle tracking , ° 
as counter-intuitive. Further on in this section we shall, however, be showing that the "counter-
intuitive" Eq. (7) is in fact equivalent to the celebrated theorem of Liouville. One can as well 
obtain the "s-reversed" feature in differential form by taking the partial derivative of PN(Z, s) 
with respect to s in Eq. (1), and then using Hamilton's equations (4) in conjunction with the 
properties of a-functions to obtain, 

8PN(X,P,S) {H } as = ,PN (x,p), (8) 
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where { h."p) is the Poisson bracket with respect to (x,p). Eq. (8) is the Vlasov or Liouville 
equation for PN, and is formally "s-reversed" from the equation one obtains for a function F 
of only dynamical variables (X(s), X '(s)), the latter being, 

~ (F(X(s), X'es))) = -{H, F}(x(.),X'(,», (9) 

It is clear, however, that PN(X,p, s) is a different object from such an F(X(s), X'es)). The 
Vlasov Eq. (8) is, of course, solved by the fundamental s-evolution Eq. (7). 

Our phase space density PN(£, s) has a 8-function "spike" at the £ locations of each of the 
discrete particle Zi(S), i = 1,· .. ,N (the phase space "fraction" of each such 8-function "spike" 
is liN). The evolution in s of PN(£, s) is thus essentially the evolution of the N individual 
particle phase space points Zi(S). While this is a conceptually satisfactory state of affairs, 
it renders simulation of PN impractical because of the extremely large size of N for beam 
bunches. For practical simulations one needs to deal with a "smoothed" continuous version of 
phase space density in the limit that N tends to infinity. Such a "smooth" continuous density 
emerges naturally if one conceives of selecting the initial (injected) Zi(SO)' i = 1,··· , N, by a 
random Monte-Carlo process from an underlying smooth probability distribution density d(Z). 
The essence of the idea behind the Monte-Carlo procedure is that the initial PN(£, so) thus 
obtained has the limiting behavior 

(10) 

where R A (£) is a phase space region of "area" A which shrinks toward just the point £ as 
A -> O. This result comes under the technical nomenclature of "the law of large numbers". 

Given such a Monte-Carlo selection of the initial Zi(SO)' i = 1,·· ·N, from the underlying 
smooth probability density d(Z), one may, for arbitrary s, define a smoothed P in the limit 
N -> 00 as, 

smoothed p(£,s) == lim lim Al jjd2£'PN(£"S). 
A-aN-co 

(11) 

RA(i') 

We can ask how this smoothed P evolves with s. Making use of Eq. (7) for the evolution with 
s of PN, and also the symplecticity of f.;.o' we obtain, 

smoothed p(£,s) = lim lim Al jjd2£'PN(£',S) 
A_aN_co 

(12a) 

RA(i') 

= lim lim Al jj d2£' PN(f.-:; [£'], so) 
A-aN-co ,0 

(12b) 

RA(i') 

1· l' 1 = 1m Im-
A-aN-co A 11 (12c) 

At this point we again make use of the symplecticity of T,;.o to assert that the phase space 
"area" of the image region f.~.lo[RA(Z)] is A. Further, since RA(Z) shrinks toward just the 

point £ as A -> 0, the image region f.-} [RA(z.] must perforce shrink toward just the point , 0 .) 

f.-} [Z) as A -> O. Thus, from Eq. (12c) and Eq. (10), we have that, 
, 0 

smoothed p(£, s) = d(f.-:,t [Z]) 
, 0 

--1 = smoothed p(T •.• [Z), so), , 0 

3 
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where Eq. (13b) follows from Eqs. (10) and (11). Eq. (13b) is our principal result, i.e.,that the 
smoothed p obeys exactly the same fundamental rule for evolution in s as does the "spiky" 
PN, namely Eq. (7). Eq. (13a) makes explicit the nature of smoothed p(z,s) at any s in terms 
of the smooth probability distribution density d(Z) underlying the Monte-Carlo selection of 
the initial (injected) Zi(SO), i = 1,··· , N. With smoothed p in hand, one has passed to a 
truly macroscopic description of the beam. 

We wind up this section with a brief demonstration that Eq. (7) (or Eq. (13b)), in which the 
"counter-intuitive" s-reversed map f.-:} appears, is, in fact, equivalent to Liouville's theorem. 

, 0 

Liouville's theorem doesn't directly deal with our p(z, s), but rather makes an assertion 
about the character of p(z, s) when it is evaluated at the z-value of an arbitrary beam particle 
trajectory at s. Let this arbitrary beam particle trajectory be denoted Z(s). Then the "co­
moving" phase space density of the Liouville theorem is defined as p(Z(s), s). Since Z(s) is 
some permitted beam particle trajectory, it must satisfy, 

(14) 

Now we apply equations (7) and (14) in sequence to our "co-moving" p(Z(s), s) to obtain, 

p(Z(s), s) = p(f.~;JZ(s)], so) 

= p(f.~.lo[f.;.o[Z(so)l]' so) 

= p(Z(so), so), 

(15) 

i.e., any "co-moving" phase space density p(Z(s), s) does not vary with s. This is the theorem 
of Liouville. 

Conversely, let us assume Liouville's theorem, and see if we can obtain the "counter­
intuitive" Eq. (7). The Liouville theorem asserts that 

p( z, s) = p( Zo , so), (16) 

where z is the phase space location at s of a beam particle that was at phase space location 
zo at s = So. Thus, 

(17a) 

which implies that, 
(17b) 

If we substitute Eq. (17b) into the right hand side of Eq. (16), we obtain the "counter-intuitive" 
Eq. (7). This completes the demonstration that Eq. (7) (and thus also the Vlasov equation 
(8)) is equivalent to Liouville's theorem. 

We hasten to point out that the "co-moving" phase space density p(Z(s), s) of the Liouville 
theorem is of no direct interest in the simulation of beam evolution, as p(Z(s), s) does not 
evolve at all with s. The interesting quantity to compute is our fixed point phase space 
density p(z, s), which evolves according to Eq. (7). 

2.0 Simulation Results from a Simple Model 

Evolution of beam phase space density in a single transverse (horizontal) degree of freedom 
was simulated at the center of a focusing quadrupole of an extremely simple lattice. The beam 
was injected at this point and then passed through a linear FODO lattice back around to this 
point (a 2x2 transfer matrix characterized by a nominal fractional tune and the focusing quad 
beta value was used to simulate this portion of the beam's journey), where it was subjected to a 
non-linear kick which could be selected as a thin-element sextupole, octupole, or decapole-or 
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some combination of these. Multiple turns through this "toy" lattice were simulated, starting 
from initial (injected) smoothed phase space densities of the Gaussian form, 

( -0)- (_{3) (_ (X-XO)2+{32(p-PO)2)) 
p X, P, s - - 2 2 exp 2 2 . 

~a a 
(18) 

Such an initial p will, of course, be invariant if the non-linear kick is chosen to be zero and the 
"off-center" parameters Xo and Po are as well chosen to be zero. 

As the s-evolution of p is governed by Eq. (7) (or Eq. (13b)), the resultant p after n turns 
may be formally written as, 

p(z, s = nC) = p(f;J;o[Z], s = 0), (19) 

where C is the machine circumference. The appearance of the "s-reversed" n-turn map f;J.o 
in Eq. (19) implies that we must use the negative of the conventional (i.e., for individual particle 
evolution) nonlinear kick followed by the inverse of the conventional2x2 FODO transfer matrix. 
The correct details of such s- reversal demand attentiveness and care on the part of the 
programmer accustomed to simulating individual particle evolution. The penalty for not 
getting the details of s-reversal right is normally a rather trivial error in the orientation of the 
phase space density (e.g., an "off center" beam with fractional tune between zero and one-half 
would turn-by-turn circulate anti-clockwise instead of clockwise around the phase space if one 
neglected to invert the conventional FODO transfer matrix). In one instance, however, a much 
more severe penalty for neglecting an aspect of s-reversal was encountered. It was decided to 
look at the effect of slowly and smoothly ramping the nonlinear kick up to its final strength 
over many turns, in contrast to its being present at its full strength from injection. Of course, 
if one s-reverses a gentle, smooth initial ramp-up, one gets a gentle, smooth final ramp-down. 
Ignoring this aspect of s-reversal produced grossly wrong results. 

For the graphical representation of the simulated p, it is convenient to change its independent 
phase space variables from (x,p) to the "{3-scaled" (x, (3p). Then the injected phase space 
density (18) becomes just a (possibly) off-center Gaussian of rotation, whose contour lines are 
circles. To plot p, we lay down a square grid of ]{2 square cells, centered on (x = 0, (3p = 0). 
The grid typically has a side length of several a, so that it covers the phase space region of 
significant injected beam density. We compute the n-turn p, in accord with Eq. (19), at each 
of the (K + 1)2 nodes of our square grid, and then plot the resulting 3-D surface and/or its 
contour lines. 

Since we compute, i.e., essentially track in reverse s, the phase space density at (K + 1)2 
nodes, one might wonder if it would be just as well to track (I< + 1)2 individual particles in 
the conventional fashion. Indeed, we know that if we Monte-Carlo select the initial (injected) 
phase space co-ordinates for these particles according to the initial p of Eq. (18), then as the 
number of particles thus selected goes to infinity, we can in principle obtain the n-turn p of 
Eq. (19) by the smoothing process of Eq. (11). Of course, it is not a viable proposition to 
track an infinite number of individual particles. In case the number is finite, the "smoothing 
region" RA(Z) of Eq. (11) must encompass enough of these particles to reduce the statistical 
uncertainty to a tolerable level. If, for example, RAUl contains only one such particle, the 
statistical uncertainty is an intolerable 100%. One hundred particles in RA(Z), for a statistical 
uncertainty of around 10%, would probably be considered tolerable. So the phase space density 
resolution one could achieve by tracking a finite number of individual particles would be defined 
by phase space regions containing around 100 particles each. These regions of threshhold 
resolvability would be much larger where the phase space density was small than where it was 
large. 

The above state of affairs for individual particle tracking contrasts sharply with our direct 
phase space simulation on the (I{ + 1)2 nodes of our square grid of I<2 square cells. Our 
regions of threshhold resolvability are just the square cells themselves, which are of uniform 
size throughout our grid. We track only (I{ + 1)2/ K2 ::::: 1 node points per resolvable cell. Unlike 
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the situation with individual particles whose initial conditions are selected by a Monte-Carlo 
process, our precise initial p values at the node points can propagate no statistical uncertainty 
whatsoever. The bottom line is that we naturally achieve a uniform resolution throughout 
our square grid, irrespective of variations in the value of p over that region, and that we 
achieve that resolution by tracking about one node point per resolved cell-with no statistical 
uncertainty whatsoever, rather than about 100 individual particles per resolved region, with 
about a 10% statistical uncertainty. 

It is no wonder then, that the phase space density plots we display below reveal some 
interesting details which individual particle tracking cannot practically resolve. 

Figure 1 is a sequence of contour plots of p showing the progression with turn number 
of the phase space density from a centered Gaussian of revolution to a sharply delineated 
triangular region (the separatrix) which bounds the dynamic aperture in the presence of just 
the sextupole kick at a fractional tune very close to ~. Figure 2 shows the corresponding 
sequence of 3-D surface plots. Here we see that within the triangular dynamic aperture, the 
phase space density is being twisted into a progressively tighter spiral shape with increasing 
turn number-a subtle effect that eventually runs into the limit of our grid resolution, and 
would be virtually impossible to see with workaday individual particle tracking. Figure 3 shows 
that this spiral twisting is eliminated when the sextupole is adiabatically ramped (a smooth 
quadratic spline shape was used for the ramp) up to its full strength over the first 1000 turns. 
The contour lines within the triangular dynamic aperture then assume the rounded triangular 
shapes characteristic of individual particle trajectories under these circumstances. 

o turns 50 turns 

100 turns 200 turns 300 turns 1000 turns 

10000 turns 

Figure 1. Contour plots for sextupole only with tune near i (0.336666667). 
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100 turns 200 turns 300 turns 

10000 turns 

Figure 2. 3-D plots for sextupole only with tune near t (0.336666667). 

10000 turns, 1000 trnsO 10000 turns, 1000 trnsO 

Figure 3. Same as 1O,OOO-turn cases in Figures 1 and 2, except that the sextupole is ramped 
adiabatically from zero to its full strength over the first 1000 turns. 
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Figure 4 is a sequence of contour plots of p for the same lattice parameters as Figures 1 
and 2, but here a much narrower beam is injected well off-center. Because the tune is near 
~, this beam travels clockwise around the phase space by about 1200 per turn. Due to 
the presence of the sextupole, this circulating beam begins to elongate away from its initial 
Gaussian shape. Indeed, the beam is pulled like a strand of taffy, and that strand, continuing 
to elongate, begins to conform approximately to part of a triangular outline. As the elongation 
continues, the "tail" of the "taffy" begins to "fragment", and the triangular outline tends to 
spiral somewhat inwards. Ultimately, this elongating, spiraling outline disintegrates completely 
into "fragments" which occupy a triangular annulus. This is quite a nice simulation of the 
filamentation and "fragmentation" process for beams "kicked" off center. Figure 5 shows one 
stage of the filamentation-triangularization- "fragmentation" process in 3-D. 

l, .... ' 
9 turns 36 turns 72 turns 288 turns 

i 
I i •• I 

~ .. o '. 

I ~'#,. r '!" •• """-; 
~. ". ' .. "-

I " , ... ~ .... ~. ,f~. 2) I c . -
.:1,1 

4t • 
" . . ...... ~ .. • • • . 4'. , .... .;,;p. . .,. ... . ;. . .;.: ~ . 

... 

600 turns 1200 turns 2400 turns 20000 turns 

20000 turns 

Figure 4. Same as Figure 1, except that here a much narrower beam is injected well off-center. 
Note progressive filamentation- "fragmentation" of this "kicked" beam. 
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288 turns 

Figure 5. 3-D plot of the 288-turn stage of filamentation from the contour plot turn-series of 
Figure 4. 

If we now change the tune to be near t and simultaneously boost the sextupole strength in 
order to keep the dynamic aperture on the same grid, we get the progression of contour plots 
in Figure 6. The dynamic aperture takes many more turns to "settle down" than in Figure 1, 
but its form is worth the wait. Instead of being a triangle, the aperture consists of a central 
square region ringed by four well-separated islands. Figure 7 shows this configuration in 3-D. 
Figure 8 shows that a gOO-turn adiabatic ramp-up of the sextupole doesn't permit the islands 
to form-the dynamic aperture is reduced to just the central square region. 

v:~::;",: 
Otums 5 tums 20 turns 

:~: .... \.;.-.~.: ... ~: ..• ~. ~.: ...... ~. .. .. . 
• '4 • +. . 

~"'. eo ~'O+. • ... 
;f • Y • 

" .:~: •... .' .' -, ... . . 
-.. : . . 
SOtums 100 tums 200 turns SOO turns 

~11·· ~:.g(l. ~.cf c7 
~ 

~O~ . . 
.~ .~ .'<::l 

~ 

1000tums 2000 turns 4000 turns 20000tums 

~ 
~Ot7 

~ 

------
SOOOO tums. 0 trnsO 

Figure 6. Contour plots for sextupole only with tune near :t (0.255). 
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50000 turns, 0 trnsO 

Figure 7. 3-D plot of the 50,OOO-turn stage of stable island formation from the contour plot 
turn-series of Figure 6. 

o 
50000turns,900trnsO 50000 turns, 900 trnsO 

Figure 8. Same as the 50,OOO-turn stage of Figures 6 and 7, except that the sextupole is 
ramped up adiabatically over the first 900 turns. Islands fail to form. 
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We now move the tune upwards from near t to near 0.283, a value close to that proposed 
for the SSC. Adding an octupole to the sextupole once again produces four islands ringing 
a "mainland" which roughly mixes some attributes of square and triangle, as shown in the 
contour plot progression of Figure 9. Figure 10 shows this configuration in 3-D. These islands 
are surprisingly robust-a 1000-turn adiabatic ramp-up of the sextupole-octupole combination 
diminishes their height without eliminating them, as shown in Figure 11. 

8tums 32tums 

'. 
128tums 256 tums 1024tums 

20000tums 

Figure 9. Contour plots for sextupole combined with octupole for tune near 0.283 
(0.283141592654). 

20000tums 

.• 

Figure 10. 3-D plot of the 20,000-turn stage of stable island formation from the contour plot 
turn-series of Figure 9. 
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2'()000 turns, 1000 trnsO 20000 turns, 1000 trnsO 

Figure 11. Same as the 20,000-turn stage of Figures 9 and 10, except for adiabatic ramp-up 
of the nonlinear kick over the first 1000 turns. Islands are merely diminished in height here. 

Going back now to the sextupole alone, and moving the tune to somewhat above t (0.221), 
we see in Figure 12 a crop of five islands ringing a mainland which is a rough hybred of 
pentagon and triangle. Figure 13 shows that these islands fail to form when the sextupole is 
adiabatically ramped up over 900 turns. 

50000 turns, 0 trnsO 50000 turns, 0 trnsO 

Figure 12. Sextupole only with tune near t (0.221). 
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50000 turns, 900 trnsO 50000 turns, 900 trnsO 

Figure 13. Same as Figure 12 except for 900-turn adiabatic sextupole ramp-up. 

Figure 14 shows five less well-separated islands at a tune somewhat above ~ (0.4325). Fig­
ure 15 shows their elimination by the 900-turn adiabatic ramp-up. 

o 

80000 turns, 0 trnsO 80000 turns, 0 trnsO 

Figure 14. Sextupole only with tune near ~ (0.4325). 
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80000 turns, 900 trnsO 80000 turns, 900 trnsO 

Figure 15. Same as Figure 14 except for gOO-turn adiabatic sextupole ramp-up. 

Figure 16 is a delicately chosen combination of sextupole, octupole, and beta at a tune just 
above t (0.34), which is known to produce some very long, looping closed particle orbits well 
beyond the purely sextupole triangular apertune. Three fat blobs appear at a substantial 
distance from the triangle at the center. Figure 17 shows that these blobs also largely vanish 
when the sextupole and octupole are put through a gOO-turn adiabatic ramp-up. 

f) 
• 

10000 turns, 0 trnsO 10000 turns, 0 trnsO 

Figure 16. Sextupole combined with octupole at a beta value and tune known to produce 
some looping closed orbits far beyond the sextupole-alone dynamic aperture. Tune is near t 
(0.34). 
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• 

10000 turns, 900 trnsO 10000 turns, 900 trnsO 

Figure 17. Same as Figure 16 except for 900-turn adiabatic ramp-up of the nonlinear kick. 

Figure 18 shows the slightly distorted square dynamic aperture produced by an oct up ole 
alone at a tune close to t. Figure 19 shows the largely rounded-corner square contour lines 
within the dynamic aperture when this octupole is adiabatically ramped up over 15,000 turns. 

40000 turns, 0 tmsO 40000tums,OtrnsO 

Figure 18. Octapole only with tune near t (0.248). 
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+-~---..... ~ ... -.:, .. , 
'. 

40000 turns, 15000 trnsO 40000 turns, 15000 trnsO 

Figure 19. Same as Figure 18 except for 15,000-turn adiabatic octupole ramp-up. 

Figure 20 shows a slightly distorted "five-pointed star" dynamic aperture produced by a 
decapole alone at a tune very near t. Figure 21 shows that when the decapole is adiabatically 
ramped up over 18,000 turns, the contours within the dynamic aperture change from being 
rounded-corner pentagons to being rounded corner five-pointed stars as one moves outwards. 
This deviation from the naively expected rounded-corner pentagon shapes no doubt reflects 
the significant decapole propensity for inducing amplitude dependent tune shifts. 

40000 turns, 0 trnsO 40000 turns, 0 trnsO 

Figure 20. Decapole only with tune near t (0.199). 
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40000 turns, 18OO0trnsO 40000 turns, 18000 trnsO 

Figure 21. Same as Figure 20 except for 18,000-turn adiabatic decapole ramp-up. 
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