
Object-Oriented Approach for
the Design of the Simulation

Facility of the sse

Superconducting Super Collid4~r
Laboratory

SSCL-677
July 1994
Distribution Category: 400

G. Bourianoff
A. Reshetov
N. Malitsky

Disclaimer Notice

This report was prepared as an account of work sponsored by an agency of the United States
Govemment. Neither the UnHed States Govemment or any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legalliabilHy or responsibilHy
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that Its use would not Infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily oonstHute or Imply HI endorsement, recommendation, or favoring
by the United States Govemment or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the UnHed States Govemment or any
agency thereof.

Superconducting Super Collider Laboratory is an equal opportunity employer.

Object-Oriented Approach for the Design
of the Simulation Facility of the sse

G. Bourianoff, A. Reshetov, N. Malitsky

Superconducting Super Collider Laboratory*
2550 Beckleymeade A venue

Dallas, Texas 75237

July 1994

SSCL-677

* Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

Object-Oriented Approach for the Design
of the Simulation Facility of the sse

G. Bourianoff, A. Reshetov, N. MaJitsky

Abstract

Modern accelerator simulation and control systems represent major challenges from the

point of view of development and maintenance of a large volume of code as well as pro­

viding portability in changing the software and hardware environment. It would be highly

desirable to use object-o·riented technology for the design of these systems.

Some initial efforts for the development of such portable object-oriented tools for the

Simulation Facility of the SSC had been done by the Project Management Division. In
this report the closed orbit correction module is described. This essentially is a C++ class

with methods implementing specific correction functions.

III

1.0 INTRODUCTION
A typical module in the Simulation Facility consists of the three processes runmng

simultaneously (Figure 1)

Application

DB

TIP-QS831

Figure 1. Control Application Scheme.

1. display program to support interaction with an operator;

2. application itself that realizes specific algorithms in accordance with operator

requests;

3. simulator module to emulate a real accelerator.

These processes are interactive only through the external database and so when the op­

erator activates some command, the display program places the request into the database

and then the application reads the command and activates the simulator, also through the

database request. This scheme was chosen to insure the maximum portability because for

some database management systems (f. e. EPICS3) display programs exist only as inde­

pendent tasks and cannot be directly incorporated into the source code of the application.

Besides, this approach enables one to change realization of one process while not affecting

two others.

The application uses C++ Application Isolation Code (AIC) library4 to insure portable

access to the database. AlC is realized as a set of C++ base classes that provide basic

control data types and some operations for this data. An application based on the AlC

approach consists of some derived classes which include specific data and functions to

handle it. Details of the database call interface are hidden from the High Level Application

Code (HLAC).

AIC could utilize different underling database management systems. In particular, it

could simply use a share memory model. Changing of the underling model would require

only relinking of the application with another library.

As a basis for the shared database in the Simulation Facility of the SSC, the EPICS
channel access system was selected.

EPICS consists of a set of software tools running on real-time computers known as IOCs

(Input Output Contro11ers) for data acquisition and control logic, and Unix workstations

providing operator interface and high level application code, alarm handling and archiving.

Access from an application program is through a standardized set of subroutine calls that

gives access to the data as a named channel.

EPICS channel access (CA) is designed as a high level language interface to the EPICS

database. It provides for application independence from network architecture and fa­

cilitates data retrieval and synchronization in a distributed environment. CA could be

considered as an interface to various hardware data acquisition and control systems. The

EPICS database is to be shared among many processes and could, as well, be accessible by

external analog and digital gadgets. It consists of some predefined data fields with prop­

erties reflecting type, size, updating rate, and links to external devices. For this reason

data layout inside the CA system directly reflects hardware architecture of the SSC Control

System. Inside application of each data base field could be referenced as a one-dimensional

array. But engineering solutions do not always coincide with data representation inside

high level control algorithms. For example, it's sometimes convenient to handle application

data from various channels as a single array or structure. ("Give me an array containing

all BPM readings from a certain turn with an appropriate set of defaults for data type,

read/write attributes, etc.")

This consideration leads to the necessity of the development of the additional layout

between application and database that we ca11 Application Isolation Code (AIC). The AlC

is to provide data concentration and isolation functions. This allows accelerator physicists

to concentrate on the physics and avoid the complications associated with data attributes,

error conditions etc.

2.0 APPLICATION ISOLATION CODE
AIC is realized as a set of C++ base classes that provide basic control data types

and attributes as well as some operations for this data. An application based on the

AIC approach consists of some derived classes that include specific data structures and

functions to handle these structures.

2

AIC is intended to provide the following features:

• a simple representation of control data in a structured manner;

• independence of high level application from database and hardware related features;

• portability of control code with respect to different operating systems as well as

different database packages;

• uniform approach to data retrieved from vanous sources (EPICS database, text

file (s), share memory).

The choice of C++ for this work stems from several advantages offered by this language:

1) Strong type checking is very useful for early elimination of syntax errors while designing

applications. 2) Operator overloading (arithmetic, indexing and assignment) results in

human-readable control algorithms that look similar to handling of native data types in

C++. For example, the command to tell the control system the number of turns to average

for the beam position monitor data would look like:

avg_turns = 16;

where avg_turns is an instantiation of a defined data class.

Any application built on the top of the AIC code consists of three parts:

1. declarations of the control variables and methods;

2. initialization of these variables;

3. implementation of the specific methods.

A key question of AlC design is the binding of C++ language names with external

(data field) names. Different approaches are possible: a) describe external data names

and attributes in a separate header file so that recompilation is required if information

changes; b) create a library of functions which return database-specific attributes and link

this library with the application (statically or dynamically); and c) extract this information

from some text file at run-time. All these methods merely reflect the compile-build-run

cycle of an application's development. We have chosen a combination of the first and

last approaches. Attributes relevant to data handling inside the algorithm (DA-READONLY,

DA_CONSTANT, DA..5YNCRONIZE) are defined in constructor for the application data classes

and exact names for the database fields (channel names and data types for EPICS) that are

subject to possible changes outside the application are located in some external resource

file. T~ "':';::!~"':'~~'"'''_ ~hese fields are referenced by some symbolic names and AlC binds these

symbolic names with the real ones.

3

Declaration of application-specific variables inside derived classes includes references to

some original C data types (int, float, double ...). For example, the operators

gdaData(float) bpm[Hv];

gdaData(float) corrector[HV];

gdaData(short) losses;

gdaData(short) avg_turns;

are defining some variables of short and float type. In Secti~.m 3.0 a set of the variables for

the closed orbit correction module is described in more detail.

This style enables one to utilize thus defined variables inside mathematical expres­

sions without casting operators (such as (int) <expression». This approach provides

for the application heavy C++ data type checking mechanism. It implies that call

findMaximumBpm(&bpm[H], bpm[H].getCountO) for a function defined as double

findMaximumBpm(double* bpms, unsigned size) will be marked as a syntax error at compile

time.

These variables are referenced to records in the external resource file in which the exact

CA names for bpms are provided. This binding and initialization of application variables

are performed inside constructors for derived classes (as is standard in C++). At the mo­

ment a variable is bound to some key referenced to an external resource file, the attributes

of the variables are also defined. Such attributes include:

• DA_CONSTANT - to declare that a variable ought to be read from the external database

only once;

• DA-READONLY, DA_WRITEONLY, DA-READWRITE - to define the direction of lil­

put/output operations;

• DA-SYNCHRONIZE - to declare a variable whose value at any moment is equal to that

inside the database.

DA-SYNCHRONIZE variable is reading any time when it is involved in arithmetic or com­

parison operations and writing when it's assigned.

DA-READONLY and DA-READWRITE variables are updated from the database only when

a specific directive is issued. This directive is an overloaded operator » (something like

database » bpm[H] » bpm[V]j). It's also possible to read all DA-READONLY and

DA_READWRITE variables with one operator (database » this;).

DA_WRITEONLY and DA_READWRITE variables are marked as ready-to-write when modi­

fied and go to the database when an explicit command is issued.

4

Thus DA..8YNCHRONIZE attribute toggles variable's property with respect to im­

plicit/explicit updating. Utilization of asynchronously accessible variables helps to save

time in distributed networking systems.

3.0 DECLARATION OF CONTROL VARIABLIGS

An application written according to AIC specifications consists of class definition and

implementation. The main program of the application itself must declare instance of the

application class and call relevant functions. This approach is similar to user interfaces

implemented in various window systems.

Declaration of any variable is defined as

gdaData(<type» <id>;

where <type> - is one of simple C types (int, float, double ...) and <id> - any legal identifier.

Array specifications are allowed. Here is an example of class definition (corrector module):

class coApplicationSet: public daSet {

public:

cOApplicationSet(char* pAliases);

void lOop(void);

II·· .

private:

gdaData(ENUM)

gdaData(float)

gdaData(float)

gdaData(short)

gdaData(short)

semaphore[3] ;

bpm[HV];

bpmJIlax[HV] ;

loss_element;

pdaData(char) corr _comments[N _CORR_COMMENTS];

II· ..

};

5

I I Constructor; pAliases is the

pointer to the resource file

I I Dispatcher function

I I flags to share database

II bpm{H] - horizontal;

bpm[V] - vertical bpms

II 2 maximums (H and V)

I I non-zero if something is

wrong in simulator

II # of turns for 1 simulation

step

I I strings to display on

the screen

coApplicationSet is derived from AIC class daSet which used to handle database

input/output requests.

AIC defines basic definitions for the following types: int, short, long, double, float, ENUM. To

specify another class (f. e., unsigned) it needs to include the following line in the header file:

declare(gdaData, unsigned);

pdaData keyword is used to declare pointers to base types: pdaData(char) will be

used to declare strings, while gdaData(char) could declare a single character as a database

specific type.

4.0 IMPLEMENTATION OF THE CONTROL CODE

Constructor of the application class and all declared functions must be included in the

application source code. Every AIC variable must be initialized in the constructor of the

class. There are three overloaded initialize functions:

initialize(<id>, <name>, <attribute»;

initialize(<id>, <size>, <name>, <attribute»;

ini tialize(<id>, <from>, <size>, <name>, <attribute»;

where

• <id> - identificator of the variable/array;

• <from> - first value of the index (1 - to implement Fortran paradigm);

• <size> - size of the array;

• <name> - symbolic name of the variable (reference in the alias file);

• <attribute> - any of DA_CONSTANT, DA-READONLY,

DA_WRlTEONLY, DA-READWRITE, DA_SYNCHRONIZE.

Let's look at the corrector example:

coApplicationSet: :coApplicationSet(char* pAlias):

daSet(pAlias)

{

initialize(bpm, HV, "bpm", DA_READONLY);

initialize(bpmJIlax, HV, "opLbpm-IIlax", DA_WRlTEONLY);

initialize(corr, HV, "corr", DA_WRITEONLY);

initialize(corr_max, HV, "opLcorr...max", DA_WRITEONLY);

ini t ialize(avg_start, "avg...start", DA_READONLY) j

ini t ialize(avg_turns, "avg_turns", DA_READONLY) j

ini tialize(loss_element, " loss_element" , DA_SYNCHRONIZE)j

initialize(semaphore, 3, " flags" , DA~YNCHRONIZE~)j

II·· .

}

Symbolic names must be defined in some ASCII file (with name pAlias) to establish

binding with the real database names and attributes. For the corrector module this file

includes the following lines (first word - symbolic name, second - EPICS name and type,

all others are considered as comments):

flags [0]

flags [1]

flags [2]

*
bpm[O]

bpm[1]

loss_element

corr[O]

corr [1]

avg_start

avg_turns

*
corr_comments[O]

corr_comments[1]

corr_comments[2]

corr_comments[3]

*

flag_opi:bi To synchronize with XMCA

control_flag:bo To synchronize with hypercube

update_flag:bi

h_bom:wf

v_bom:wf

loss_element:wf

h_corr:wf

v_corr:wf

avg_start : ao

avg_turns:mbbo

Averaged values for all bpms

opi_corr_comment1:wf

opi_corr_comment2:wf

opi_corr_comment3:wf

opi_corr_comment4:wf

opi_command_corr[1] clear_corr:bo

opi_command_corr[2] fil11_corr:bo

opi_command_corr[3] set_corr:bo

opi_command_corr[4] adjust1_corr:bo

opi_command_corr[5] pull_corr:bo

opi_command_corr[6] fil12_corr:bo

7

opi_command_corr[7] setlast_corr:bo

opi_command_corr[8] co_corr:bo

opi_command_corr[9] smooth_corr:bo

opi_command_corr[10] adjust2_corr:bo

opi_command_corr[ll] checkoff_corr:bo

opi_command_corr[12] match_corr:bo

opi_command_corr[13] stop_corr:bo

opi_command_corr[14] run_corr:bo

*
filename_corr:wf

filename_bpm:wf

nn_corr:wf

In daSet basic class assignment, comparison and arithmetic operators are overloaded. It

enables one to manipulate with AIC variables as with ordinary C variables. For example,

operator

loss_element = 0;

will drop loss_element value. Because this variable IS defined with the

DA_SYNCHRONIZE attribute, zero value will be immediately written to the database.

Reading/writing of variables with other attributes will be postponed until explicit opera­

tor (» or «) is used. Example:

strcpy(*corr_comments[O), "Loading correctors ... ,,);

database « corr_comments[O);

/ / Say to him what we're doing

/ / and confirm it quickly

First operator here changes the value of corr _comments [0] and the second writes it to

the database. It would be simultaneously reflected in the displayed window if the EPICS

display program that accesses this data field is running.

Operator

database < < this;

will write all changed variables to the database and operator

database > > this;

will read all variables with attributes DA_READONLY or DA-READWRITE.

8

avg_turns in all expressions behaves as an ordinary short variable, but using it as a short

argument in functions calls results in syntax error. In order to facilitate it operators * and

& also have been overridden.

*avg_turns will give short value of this variable without changing variable attributes and

&avg_turns will give short* and change flag will be set up. Example from the corrector

module:

bpm..max[pos] = max (*bpm..max[pos], *bpm[pos][i]);

In AIC access methods of the gdaData(< ... » classes are defined as follows:

in line canst char*

in line unsigned

inline unsigned

inline daDataStatus

inline daDataStatus

in line void

inline void

getName(void);

getSize(void);

getCount(void);

getStatus(void);

getStatus (daDataStatus test):;

setStatus(daDataStatus ns);

unsetStatus(daDataStatus ns);

/ / returns name of the variable

/ / returns size (in bytes) of

the variable

/ / returns # of elements in

the variable

/ / returns status of the variable

(daDataStatus type)

/ / return TRUE if status includes

test option

/ / set status to ns

/ / drop option ns from the status

The following attributes can be used in initialize, getStatus, setStatus and

unsetStatus functions:

{

};

enum daDataStatus

DA_NOT -DEFINED,

DA_CHANGED,

DA..READONLY,

DA_WRITEONLY,

DA_READWRITE,

DA_CONSTANT,

DA_SYNCHRONIZE

9

The first two attributes (DA~OT_DEFINED, DA_CHANGED) could be combined

with others. For example, variable corr _max[H] could have status DA_CHANGED &

DA_WRITEONLY.

Function corr.Jl1ax[H].getStatus(DA_CHANGED) will return TRUE if corr_max[H]

had been changed and not yet written to the database.

These variables and functions are used to write application's code in a self-explained

and intuitive way. An application module (Figure 1) is designed to provide an interface

between the operator and simulator (or real accelerator). It dispatches commands from

the operator (as defined in the Section 5.0) to the simulator (via database), waits for the

answer from the simulator and processes received data to provide a better representation

in the display program.

The main task of the closed orbit corrector application is to set up correctors in the

accelerator in accordance with the realized algorithm.

5.0 CLOSED ORBIT CORRECTION

The closed orbit correction module is a part of the control system for the Low Energy

Booster at the sse that includes 90 BPMs and 45 correctors (for horizontal and vertical

motion). It is used to establish and smooth the closed orbit for a completely uncorrected

lattice and is realized as. a set of the following commands:

1. Set first correctors - set the first pairs of horizontal and vertical correctors to

minimize the beam deviations in the next two pairs of BPMs. The strengths B [xj / B p

for horizontal correctors CORRxj are determined from the following equations:

where tlBPM:r;i is the beam deviation in i-th horizontal monitor BP Mxi and

R(CORRxj- > BP Mxi) is the element R(I, 2)CORR:r;j->BPM:r;i of the transfer matrix

between j-th horizontal corrector CORRxj and i-th horizontal monitor BP Mxi:

R(CORRxj- > BPMxi) =

R(I, 2)CORRxJ ->BPMxi = J'-(3-C-O-R-R-xj-*-(3-B-P-M-Xi * sin('lj.JCORRz)->BPM:zJ

where 'Ij.J and (3 are Twiss parameters. The strengths of the vertical correctors are

determined from similar expressions.

2. Adjust main dipole field (rough) - correct main dipole field using two horizontal

BPMs (#6 and #8) placed before and after first pairs of main dipoles.

10

3. Pull beam through the lattice - repeat command #1 for each superperiod.

4. Establish closed orbit - set the last pairs of horizontal and vertical correctors (#44

and #45) to minimize the beam deviation after the second turn in BPMs defined in

command #1.

5. Measure closed orbit - find closed orbit by averaging beam deviations in all

180 BPMs over a fixed number of turns.

6. Smooth closed orbit - set all 90 correctors to minimize the deviations of closed

orbit determined in the previous command. The strengths of horizontal correctors

are calculated from a least-square algorithm to minimize "badness function" F:2

90 (~after. ?
F(Blx I/Bp, ... ,Blx45 /Bp) = L %lOrb,tx i

,

i=l BPMx ;

~ (after) ~ (before) 45 (/2 .1.) Bl
C10rbitx ; _ C10rbit",; _ L cos Jlx - 'PCORR"'J->BPM",; . / f3 ~

Vf3BPM"" - Vf3BPM",; j=l 2sin(Jlx/2) V CORR"'J Bp

h A (before) d A (after) th d . t' f I d b' . . h BPM b £ w ere 4..l.C10rbit~ an 4..l.C10rbit~ are e eVla Ions 0 c ose or It III l-t e ore
and after correction, 1/J and f3 are Twiss parameters, Jlx is the horizontal tune. Similar

expressions are used to determine the strengths of the vertical correctors.

7. Adjust main dipole field (sharp) - correct the main dipole field to minimize the

average horizontal corrector strength defined in the previous command.

8. Correct injection offset - set appropriate steering elements in the transfer line

Linac-LEB to minimize the beam deviation about closed orbit, defined in first pairs

of horizontal and vertical BPMs after first turn.

Because of the nonlinear relationship between Twiss functions and deviation about the

reference orbit this command is repeated two times.

The opr interface shown in Figure 2 is the display produced by the orbit correction

module. The upper plot indicates the particle trajectory generated by the simulator in

the present case or the actual BPM readings when the accelerator would be completed.

Modified corrector strength produced by the HLAC module is sent to the simulator and

reflected in the bottom plot. The column of buttons displays the whole set of the individual

11

correction commands which may be executed from within this module. These commands

may be combined in different modules and called independently to produce the desired

result.

File I
From~f:.···:O~·:·~I--~T~u~r~ns-/:C~Y~CI~e~I~:;::~--~~~~

Running ... complete
H: -1.5653e-05,-7.1841e-05
V: 0.000532358, 0.000467215

File I·
corre~c~to~r"'s-#~1;:2~j~>7~/3~2~··'.;::···~· ::;:::===::::::::==~=~

Correctors 31 (iteration 3, 3) ok
H: 8.02383e-05,0.000124482
V: 0.000416415, -0.000283

Select Command(s) and press this button ...
to run application

]1

I
H

off
clear

off
fill 1st turn

off
set 1st corr

off ...• II

adlust 1st turn II

close orbit

off
smoothing

.< <.:}.

adjust 2nd turn

I ch::~~:;~\1
I ~:::~;~:{>I
I> ~:~{I

X Offset IY'~;.'~~~·~'~10001
X Angle 17.~~q·~~~1

Y Offset 17°i~1!fo.~P.OjOO

Y Angle 10~·.~~~~~·~1

Set all correctors
by one command

TIP-QS832

Figure 2. Closed Orbit Corrector Display.

12

REFERENCES

1. R. Dalesio, M. R. Kraimer, and A. J. Kozubal, "Proceed.ings of the 1991 International

Conference on Accelerator and Large Experimental Physics Control Systems," Tsukuba

Japan, pp. 278-282.

2. L. Schachinger and R. Talman, "Thin-Element Accelerator Program for Optics and

Tracking," Particle Accelerators, 1987, Vol. 22, pp. 35-5{L

3. M. Botlo, M. Jagielski, and A. Romero, "EPICS Performance Evaluation," SSCL-644,

1993.

4. G. Bourianoff, B. Cole, M. Botlo, S. Hunt, A. Romero, N. Malitsky, and A. Reshetov,

"Simulation Facility for Development of High Level Control Code at the SSC," To be

published in Nuclear Instruments and Methods in Physic,s Research.

13

