
ZLIB++: Object-Oriented
Numerical Library for
Differential Algebra

Superconducting Super Collidc~r
Laboratory

SSCL-659
January 1994
Distribution Category: 400

N. Malitsky
A. Reshetov
Y.Yan

ZLIB++: Object-Oriented Numerical Library
for Differential Algebra

N. Malitsky and A. Reshetov

Superconducting Super Collider Laboratory*
2550 Beckleymeade A venue

Dallas, TX 75237

and

Y. Yan

Stanford Linear Accelerator Center
Stanford, CA 94309

January 1994

SSCL-659

.. Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

1.0 INTRODUCTION
New software engineering tools and object-oriented design have a great impact on the

software development process. But in high energy physics all major packages were imple

mented in FORTRAN and porting of these codes to another language is rather complicated,

primarily because of their huge size and heavy use of FORTRAN mathematical libraries.

But some intrinsic accelerator concepts, such as nested structure of modern accelerators,

look very pretty when implemented with the object-oriented approach. In this paper we

present the object-oriented version of ZLIB,l numerical library for differential algebra,2 and

show how the modern approaches can simplify the development and support of accelerator

codes, decrease code size, and allow description of complex mathematical transformations

by simple language.

2.0 TRUNCATED POWER SERIES

The truncated power series (TPS) expansion of the arbitrary function U(z) is defined

as:1

where

n
U(z) = 2: u(k)zk ,

k=O

ZT = [Zl' Z2, ... , zn] ,

z k = zk1 Zk2 zkn
- 1 2'" n ,

n

k = 2: ki' for 0 ::; ki ::; n .
;=1

(1)

In the new object-oriented version of ZLIB, TPS is considered as C++ class ZSeries,

which includes overloaded assignment, additive, multiplicative operators and two addi

tional functions dif and poisson (Appendix A). To simplify the form of the TPS trans

formation equations we include the additional private member order [order n of TPS

expansion in Eq. (1)] and several rules for its usage. Below we describe the main elements

of class ZSeries and their relationship with the subroutines of the previous FORTRAN

version of ZLIB. Full description of fundamental TPS operations may be found in a users

guide for ZLIB 1.0.1

2.1 Definitions
In expressions and examples in this report we will use the following notation:

U, V, W are the instances of class ZSeries;

C IS constant or variable of the double type;

IS

ZLIBJlIM IS

global variable, which determines

the maximum TPS order;

global variable, which determines

the phase-space dimension.

The parameters ZLIB_ORDER and ZLIBJlIM must be defined by user before all

assignment operators, because they determine memory allocation for members of class

ZSeries.

2.2 Assignment Operators
An assignment operator is used to set a ZSeries variable to constant or another ZSeries

value. This operator returns void and so a vague statement (a = b) = c will result in a

syntax error. Here is the summary of different cases of assignment operator:

2.2.1 Operator =
1. W=c;

w(k) = c

2. W=V;

w(k) = u(k)

for 0:::; k :::; W.order

W.order = o.

for 0 :::; k :::; V.order

W.order = V.order .

2.2.2 Operators += and -=
1. W += C;

w(k) = w(k) + c for k = 0 ,

w(k) = w(k) for 0 < k :::; W.order .

2. W += V;
W.order U.order

W(z) = L w(k)zk + L u(k)zk,
k=O k=O

W.order = max(W.order, V.order) .

3. W -= C; and W -= Vj

These subtraction operators are determined similar to addition (Section 2.2.2).

2.2.3 Operator *=
1. W *= c j

w(k) = w(k) * c for 0:::; k :::; W.order .

2

2. W *= U;

W.order U .order

W(z) = L w(k)zk * L u(k)zk,
k=O k=O

W.order = min(W.order + U.order.ZLIB_ORDER) .

2.2.4 Operator 1=
1. W /= c;

w(k) = w(k)/c for 0 ::; k ::; W.order .

2. W /= U;
The implementation of this operator is based on two functions: multiplication (Sec

tion 2.2.3) and inversion l/U (Section 2.4) and defined as:

W* = (l/U).

2.3 Additive and Multiplicative Operators
Additive (+ and -) and multiplicative (* and /) operators are similar to corresponding

assignment operators (Sections 2.2.2,2.2.3 and 2.2.4), but unlike assignment operators they

return reference to tmpZSeries, temporary instance of class ZSeries, which is created as

a result of the expression. This allows user to write usual mathematical expressions as:

2.4 Inverse Operator
Inversion of the object U is expressed as a Taylor expansion of 1/(1 + V), where V =

(U - u(O))/u(O):

1
W = l./U = ----,----.......

u(O) (1 + U;(~~O))

1 U.tmpOder n (U -U(O))n
= u(O) * ~ (-1) u(O)

The implementation of this expression is based on ZSeries. multiplicative and additive

operators (Appendix B).

3

2.5 Functions

This object-oriented version of ZLIB supports two functions dif and poisson. As in

the case of additive and multiplicative operators (Section 2.3), these functions return ref

erence to temporary object tmpZSeries and may be combined with other operators in

the complex expression.

2.5.1 Derivative
The function dif(U,iv) returns the partial derivative (8j8ziv)U(i).

2.5.2 Poisson Bracket
Poisson bracket is the main operator of differential algebra. It associated with a Lie

operator : U (i) : as in Reference 2:

where S is the symplectic identity.

2.6 Access Operators
Access operators may be used to change directly the private members of class ZSeries

(coefficients of the TPS and its order order) and some specific rules of the transformation

of order, described in Section 2.3. These rules may be generalized and expressed as the

following: *
Rule 1 The order of the object W, created by constructor ZSeries :: ZSeriesO, is equal

to zero, i.e., for the new object W.order = 0;

Rule 2 The order of the object W in the left side of an assignment operator W = U is

determined by the order ofU, i.e., W.order = U.order.

Rule 3 The order of the object W, which is obtained as a result of additive operations

(+=, -=, + and -) is equal to the maximum order of items U and V, i.e., W.order =

max(U.order, V.order).

Rule 4 The order of the object W, which is obtained as a result of multiplicative opera

tions (*=,j=,* and j) or binary functions (poisson(U,V») is equal to min(U.order+

V.order, ZLIB_ORDER).

* These rules are valid also for the expressions with the constant c, regarding its order to be zero.

4

2.6.1 OperatorO(int)
This operator (round brackets) allows user to temporarily change the order W.order

of the object W in the intermediate expression. To assign new order newOrder "perma

nently" user could use the following construction:

U = U(newOrder) .

2.6.2 OperatorO(int, int)
The second parameter in operatorO allows user to bypass Rule 4 for multiplicative

operators (Section 2.6) in accordance with the following definition:

W = U * V(V.order, V.mltOrder)

W.order = min(V.mltOrder, W.mltOrder(from Rule 4» .

We used operatorO in the implementation of the inverse operator for the order of 1/U

not to exceed the order of U (Section 2.4 and Appendix B).

2.6.3 Operator[]
The subscripting operator[](int i) of the object U returns the reference to its private

member U.z[i], which represents the i-th coefficient u(i) of the TPS expansion in Eq. (1).

3.0 MAPS

Map U(z) is the development of concept of the truncated power series (TPS) and defined

as the m-dimensional vector of TPS expansions, Eq. (1):

()

U(z) = L ii(k)zk , (2)
k=O

where

n

k = L ki' for 0 :::; ki :::; n .
i=l

In the object-oriented version of ZLIB the map is considered as an object of C++ class

ZMap, which naturally was derived from the class ZSeries (Appendix C). Moreover, all

arithmetical operators of class Zmap follow the same Rules (Section 2.6) and are based

on ZSeries multiplicative and additive operators. This lea.ds to similar implementation of

member functions for these two classes. For example, compare inverse operator for ZMap

(Appendix D) and ZSeries (Appendix B). Below we describe only the essential distinction

between these classes and the additional ZMap functions.

5

3.1 Unit Map

Unlike the truncated power series the unit map I is defined as a vector:

1.1 =1;
i(z) = z,

I.order = 1 .

3.2 Operator[]
The subscripting operator[](int i) of the object M (the instance of class ZMap) returns

the reference to its private member M.z[i] the instance of class ZSeries) which represents

the i-th member Ui of the m-dimensional vector ii in Eq. (2).

3.3 Function Poisson (ZSeries&, ZMap&)
Function poisson(V, M) returns the Poisson bracket: V(z) : M(z) = [V(z), M(z)).2

Its implementation is based on the similar ZSeries function as:

ZMap& poisson(ZSeries&V, ZMap&M)

{

}

for(inti = 1; i <= ZLIB-DIM; i++)

bracket[i] = poisson(V, M[i));

return(bracket);

where bracket is the temporary instance of class ZMap.

4.0 TRACKING
Tracking is one of the most important procedures in accelerator codes. In our "language"

it is defined simply and naturally:

(3)

where M is the ZMap object, and x and y, the instances of class Particle (Appendix D),

consist of the particle coordinates correspondingly before and after one turn. For multi

particle tracking user may use usual C++ operators:

6

mainO

{

}

ZMap M;

Particle * * X;

for(inti = 1; i <= numberParticle,s; i + +)

for(int j = 0; j < numberTurns; j + +)

x[i][j + 1] = M * x[i][j];

5.0 CONCLUSION

In this report we have described a new object-oriented version of the ZLIB package.

ZLIB++ defines two classes (ZSeries and ZMap) to represent specific accelerator objects.

We argued that simple C operators (such as =, +, -, /, *) are naturally suited to implement

different mathematical algorithms with these objects. It enables one to write simple, self

documented programs for applications of numerical methods of differential algebra in high

energy physics.

ZLIB++ was designed to be a foundation for further developments. New classes could

be naturally derived from the base ones, enabling expansion of the package in the open

architecture style.

7

ACKNOWLEDGEMENTS

We would like to thank Dr. G. Bourianoff for his strong support and for various helpful

discussions.

REFERENCES

1. Y. Van and Chiung-Ying Van, "ZLIB-A Numerical Library for Differential Algebra,"

SSC Laboratory Report SSCL-300, (1990).

2. Y. Yan, "Applications of Differential Algebra to Single-Particle Dynamics in Storage

Rings," SSC Laboratory Report SSCL-500, (1991).

/I File
IIIH"",M1t
/I
/I Cr~aud

/I Authors
/I

/I

/I
/I (C) Copyright
II SSC Ltlbttratory

APPENDIX A

: ZSerles.hh
: Tltu fill t:01ttairu Ih~ d~fotiliMt ttl ZSerle, cltJ'lr (1' PS •

trulICllud power serles).
: F~br/IIJry 1, 1994
: NiJuJltJy M aliJsky (JIUlliUJ:y@iYory.uc..gov)

Alemndv Resh~tov("sh~toV@V~moll.ssc.gov)

/I 2550 Beckley,rultuf~ Ave.
/I DalllU, n, 75237

/I

#d~fote ZSERlES_H
#defot~ ZSERlES_H

#include "Zdef.hh"

class ZSeries
{
pUblic:

ZSeriesO;
ZSerles(ZSeries& V);

/I Acc&u operalDr. &.IUMIiD"

ZSeries& operatorO(lnt il);
ZSeries& operatorO(lnt ii, Int i2);
double& operatorO(lnt number);

void operator= (double c);
void operator= (ZSeries& V);
void operator+=(ZSeries& V);
void operator+=(double c);
void operator-=(ZSeries& V);
void operator-=(double c);
void operator*=(ZSeries& V);
void operator*=(double c);
void operator/=(ZSeries& V);
void operator/=(double c);

/I Additive & Multip1icaIiFe Operators

ZSeries& operator+(ZSeries& V);

1/ Fri6nd opUtlJors

1/ F unclio".

private:

};

#mdlf

ZSeries& operator-(ZSeries& V);
ZSeries& operator*(ZSeries& V);
ZSeries& operator/(ZSeries& V);

friend ZSeries& operator-(ZSeries& V);
friend ZSeries& operator+(ZSeries& V. double c);
friend ZSeries& operator+(double c. ZSeries& V);
friend ZSeries& operator-(ZSeries& V, double c);
friend ZSeries& operator-(double c, ZSeries& V);
friend ZSeries& operator*(ZSeries& V, double c);
friend ZSeries& operator*(double c, ZSeries& V);
friend ZSeries& operator/(ZSeries& V, double c);
friend ZSeries& operator/(double c, ZSeries& V);
friend int ZSerlesSlze(ZSeries& V);
friend ostream& operator«(ostream& out, ZSeries& V);

friend ZSeries&
friend ZSeries&

-ZSeriesO;

dlf(ZSeries& V, Int iv);
palsson(ZSeries& V1~ ZSeries& V2);

APPENDIX B

/I File : ZSerlss.cc
/I Description
/I Creaud

: This file contains implementaJion of ZSerles cllUs
: Februaryl,1994

" Auihtn's

" " " " (C) Copyright
" SSC Labtn'4tory

: NiJcolay Malilslcy (maUJslcy@ivory.ssc.go.,)
Alemnder Reshetoll(reshetot@vemon.ssc.gov)

" 2550 Beckleymetule Ave.
" Dalltu, TX, 75237

"

ZSeries& operator/(double c, ZSeries& V)
{
ZSeries El;
ZSeries sum;

El=V;
Int tN = El.prepareTmpZSeriesO;

.u (fabs(El[l]) < ZTlNY)
{

}

cerr« "Error::ZSenes:Bulary operatorclV: fabs(V[l]) = It;
cerr« fabs(El[1])« I' < "« ZTlNY « ''\nit;
exlt(1);

double linearInv = 1/E1[1];
sum = linearInv;

El-= El[1];
El *= -1;

lnt now = ZSeriesOrder(El);
~ (Int i=1; i <= now; i++)
{

}

sum *= EI(i, i);
sum += 1;
sum *= linearInv;

sum *= c;

*sum.tmpZSeries[tN] = sum;

return (*sum. tmpZSeries[tN]);
}

/I File
1/ Description
/I
/I Created
/I Author!
/I
/I
/I
/I (C) Copyright
/I SSC lAboratory

APPENDIX C

: ZMap.hh
: This file contains tile dejixiliDn 0/ ZMap c/a.ss

(one-tuna Map,)
: February 1, 1994
: NiJcolay MlIliblcy (malihky@ivory.ssc.gov)

Alemnder Resheto1l(reshetoV@Vemon.ssc.gov)

/I 2550 Beckley_ade Ave.
/I Dallas, TX, 75237
II

#ifnde/ ZMAP _H
#dejixe ZMAP _ H

#include "ZSeries.hh"
#include "Partick.hh"

class ZMap: public ZSeries
{
public:

ZMapO;
ZMap(ZMap& M);

ZMap& operatorO(int in!);
ZMap& operatorO(int in!, int in2);
ZSeries& operator[](lnt number);

/I Assignment operators

void operator= (double c);
void operator= (ZMap& M);
void operator+=(ZMap& M);
void operatoH=(double c);
void operator-=(ZMap& M);
void operator-=(double c);
void operator*=(ZMap& M);
void operator*=(double c);
void operator/=(ZMap& M);
void operator/=(double c);

/I Additive & MullipUcative Operators

ZMap& operator+(ZMap& M);
ZMap& operator-(ZMap& M);
ZMap& operator*(ZMap& M);
ZMap& operator/(ZMap& M);

/I Fri6rul opertIJors &/unction

/I Traclcing

/I Function.

private:

};

#erulif

friend ZMap& operator-(ZMap& M);
friend ZMap& operator+(ZMap& M, double c);
friend ZMap& operator+(double c, ZMap& M);
friend ZMap& operator-(ZMap& M, double c);
friend ZMap& operator-(double c, ZMap& M);
friend ZMap& operator*(ZMap& M, double c);
friend ZMap& operator*(double c, ZMap& M);
friend ZMap& operator/(ZMap& M, double c);
friend ZMap& operator/(double c, ZMap& M);
friend Int ZMapSlze(ZMap& M);
friend ostream& operator«(ostream& out, ZMap& M);

Particle& operator*(Particle& P);

friend ZMap& polsson(ZSeries& V, ZMap& M);

-ZMap();

APPENDIX D

1/ File : ZMap.cc
1/ De:rcrlptiDII
1/ C,ea.d

: ThUfile COlltainS impiemellltJtioll o/ZMop Cllull
: February 1,1994

1/ Authors : NUcoIDy Malibky (JIIfllitsky@illory.ssc.goll)

Alemllder Reshelot(reshelo!l@!1enu11I.ssc.goll) /I

1/
1/
/I (C) Copyright
1/ SSC LaboraJory
1/ 2550 Beckley_ade A lie.
/I Dalltu, TX, 75237
/I

ZMap& operator/(double C, ZMap& M)
{
ZMap El;
ZMap sum;

EI=M;
int tN = El.prepareTmpZMapO;

~ (lnt i=1; i <= IUB_DIM; i++)
{
U (fabs(El[i] [1]) > ZTlNY)
{

}
}

cerr « "Error: Z\1ap:Binary operator elM : ";
cerr« "fabs(M.z[" « i « "][11 = ";
cerr« fabs(M.z[i][1])« "> " « ZTlNY« "'\nil;
exit(1);

ZMap linearInv;
linear Inv.llneal1nverslon(EI);
sum = linearInv;

El-= EI(1);
El *= -1;

Int now = ZMapOrder(El);
~ (i=2; i <= now; i++)
{

sum *= EI(i i)' , '.
sum += 1;
sum *= linearInv;

}

sum *= c;

*sum.trnpZMap[tN] = sum;
return (*sum.tmpZMap[tN]);

}

/I Fik
/I D.scriptioll
/I
/I Cr.aUd
/I Authors
/I
/I
1/
1/ (C) Copyright
1/ SSC lAboratory

APPENDIX E

: Partil:le.hh
: Thtr file COJllaiM the d.finlJioll of Particle clan

(ZLIB _DIM-dim.lInollal particle coordinat.,.)
: F.bruary 1, 1994
: Ni1colay Malibky (7ft4lUlky@i .. ory.,sc.go ..)

Ale:mllder R.sh.tov(r.sh.toJ@vernoll.ssc.go ..)

1/ 2550 B.ckley_tJd. A
1/ DallJu, TX, 75237

1/

#iftul.f PARTICLE_H
#defin. PARTlCLE_H

#includ. "Zdefhh"

class Particle
{
public:

private:

};

Partlcle();
Partlcle(Partic1e& P);

double& operatorO(lnt number);

void operator= (partic1e& P);

friend ostream& operator«(ostream& out, Particle& P);

NParticle();

double* z;

