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A Study of the HEB Longitudinal nynamics 

D.J. Larson 

Abstract 

A study of the High Energy Booster (HEB) longitudinal dynamics is presented. Full derivations of ramp 
dependent longitudinal variables are given. The formulas assume thalt the input magnetic field and beam 
longitudinal emittance are known as a function of time, and that either the rf voltage or the rf bucket area are 
known as a function of time. Once these three inputs are specified, the formulas can be used to calculate 
values for all other longitudinal dynamics variables. The formulas have been incorporated into a single 
computer code named ELVIRA: Evaluation of Longitudinal Variables in Relativistic Accelerators. The 
ELVIRA code is documented here in detail. The ELVIRA code is used under two initial longitudinal 
emittance assumptions to plot ramp functions for the longitudinal dynamics design of the HEB as of May 5, 
1992. 

Key Words: Longitudinal Dynamics, ELVIRA, Ramp Dependent Variables: Magnetic Field; RfVoltage; 
Longitudinal Emittance; Momentum; Energy; Rf Frequency; Rf Synchronous Phase; Synchrotron 
Frequency; Synchrotron Tune; Energy Spread; Momentum Spread; Bunch Length; Bucket Height; Bucket 
Width; Bucket Area; Moving Bucket Factor; Adiabaticity; Bunching Factor. 





FOREWORD 

PRESENT STATUS OF THE HEB DESIGN 

This note gives the best estimate for the longitudinal dynamics of the REB that is available at this time. 
The various longitudinal variable ramps presented in this work will soon be included as changes in the 3A and 
3B specifications. Unfortunately, it is almost certain that some values for some of the various parameters will 
change before construction of the REB, and when such changes occur a new version of this report will be 
prepared. 

As discussed more fully below, the driving inputs for all of the work contained herein are 1) the magnet 
ramp; 2) the longitudinal bunch emittance; and 3) the desired bucket area to beam area ratio. Since these three 
inputs cause all changes in the longitudinal dynamical design, a brief description of present status and future 
outlook of each input will now be given. 

• Magnet Ramp 
The present magnet ramp has been the working design for quite some time, and it is unchanged from the 

original 3A specification. 

Foreseen possible future changes in the ramp may include a faster ramp to allow a faster fill of the collider, 
changes in flat top and flat bottom duration, and changes in some of thc~ times devoted to joining parabolas. 

• LongitudinaJ Bunch Emittance Cycle 
The present longitudinal bunch emittance cycle was arbitrarily chos(m after a meeting which involved the 

MEB, HEB and Collider groups. The meeting was motivated by discussion with Jim Griffm, who suggested 
that earlier estimates oflongitudinal emittance were probably too low to be realistic. Dr. Griffm has extensive 
experience with proton synchrotrons, and the design discussed herein uses numbers he suggests are in line 
with experience. These numbers are slightly larger than the ones that appear in the 3A spec. No future 
changes in the longitudinal emittance cycle are foreseen at this time. 

• The Bucket to Beam Area Ratio 
The present bucket to beam area ratio is chosen to be six, except for manipulation of the bucket required for 

bunch rotation. This ratio is close to the operating value of the Tevatrol1 when the Tevatron operates in fixed 
target mode. It is felt that the Tevatron is a good experimental example for the HEB, since like the HEB it is a 
superconducting machine operating in the Te V energy range. The previous longitudinal dynamics design of 
the REB did not use bucket to beam area as an input, rather the original3A spec uses an arbitrary RF voltage 
cycle that led to a varying bucket to beam area ratio over the cycle, with the value ranging near 10. Thus, the 
ratio used here is somewhat less than that assumed in the original3A spc~c. No future changes in the bucket to 
beam area ratio are foreseen at this time. 



1.0 INTRODUCTION 
This purposes of this note are to: 1) present graphical representations of the longitudinal phase space 

properties of the High Energy Booster (HEB) as a function of time; 2) present derivations of the formulas 
used to produce the graphs; and 3) document the computer code used to produce the graphs. 

It would probably serve all three purposes better if a separate document were written for each of the above 
three tasks, and if time permits and demand warrants such an effort will be undertaken in the future. 

The approach of this note is to discuss all issues in the order they appear in the computer code used to 
generate the graphical data. The computer code has been named ELVIRA, and the source code is located in 
the file elvira.f on the Euclid Sun workstation in the Superconducting Super Collider (SSC) computing 
complex. The input for the code is discussed in Section 2, and the output is discussed in Section 3. For every 
formula used to produce output a detailed derivation is given, followed by a description of where the coding 
can be found in the source code, which is in turn followed by a graphical representation of the specific 
longitudinal variable cycle within the present HEB design, and lastly a discussion of the longitudinal variable 
is given that lists specific numerical values for extreme points of the data. 

ELVIRA uses formulas that are derived in MKSA units. However, some quantities are more readily (and 
traditionally) expressed in other units (such as nanoseconds or GeV). When other units are desired for the 
output, the formula derivation still uses the MKS units and conversion is done just prior to print out. 

Occasionally approximations are made in the contained derivations, and there are a few rare places where a 
derivation is omitted entirely. Whenever an approximation or omission occurs, a line indicating 

!APPROXIMATION! 

or 

!OMISSION! 

makes note of such fact. These markings are to remind the reader of the approximate or omitted nature of the 
derivation. The approximations can be verified for accuracy, and the omissions filled in, with other computer 
codes. (ESME is one such code.) 

2.0 INPUTS TO ELVIRA 

This section of the note will discuss where the inputs to ELVIRA are entered (and hence where they can be 
changed for a new run). This section will also state the specific inputs rellevant to the present HEB design. The 
output for the present HEB design is found in Section 3 of this document. 

2.1 Machine and Physical Constants 

The inputs to ELVIRA include physical constants, machine specific constants, arbitrary input cycles (such 
as the magnet ramp), calculational and plotting controls. In numeric expressions E is meant to be the usual 
FORTRAN meaning, lEW is equivalent to I x 1010. 

Physical constants used in ELVIRA are found on lines labeled 0001 to 0005 of the source code file, 
elvira.f: 

1. The charge of the proton, denoted by: 

Q = 1.60217733E-19 Coulombs. (1) 



2. The speed of light, denoted by: 

C = 2.99792458E8 meters per second. 

3. The rest mass of the proton, denoted by: 

MP = 1.6726231E-27 kg. 

4. The ratio of the circumference of a circle to its diameter, denoted by: 

PI = 3.141592653589793238. 

5. PI divided by 2 is coded into line 0005 

PI02 =PII2. 

6. An often used conversion factor is the conversion between Joules and GeV, this is 
accomplished within the code by multiplying by a conversion factor located on the line 
labeled 0006: 

CONY = 1.I(Q*1.E9). 

(2) 

(3) 

(4) 

(5) 

In addition to these physical constants written into the code itself, there are other constants that are entered 
through the fIle ELVIRA.IN. Some of the constants entered in ELVIRA.IN are machine specific constants 
that may change with design changes, or can be changed if the code is used for another machine, such as the 
Medium Energy Booster (MEB) or Collider. 

Machine constants entered in the fIrst line of the fIle ELVIRA.IN are: 

1. The bending radius of the machine dipoles, denoted by: 

RHO = 1001.32 meters. 

2. The energy at which the revolution frequency does not change with a small change in 
energy, known as the transition energy, denoted by: 

GAMMAT = 34.47499. 

3. The ratio of the rf frequency to the particle recirculation frequency, known as the 
harmonic number, denoted by: 

H=2160. 

4. The circumference of the machine, denoted by: 

CIRC = 10800 meters. 

2.2 Plotting and Calculational Controls 

The plotting and calculational controls are input through the fIle ELVIRA.IN. 

1. ELVIRA calculates the various parameters for specifIc times. T= 0 is defmed as the 
point in the rframp where the flat injection ramp begins. ELVIRA then outputs data 
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(6) 

(7) 

(8) 

(9) 



every time an interval DT passes (output occurs at T = 0, T = Dr, T = 2Dr, T = 3 Dr, 
etc.) here: 

DT= 0.1 seconds. 

2. ELVIRA is capable of specifying magnet ramps for either bipolar or monopolar 
machines. (A bipolar machine is one that has both a positive magnetic field ramp and a 
mirror image negative magnetic field ramp.) The switch is controlled by the variable 
MODE. MODE = 1 for monopolar and for the bipolar HEB: 

MODE = 2. 

3. ELVIRA is capable of using either the rf single pass effective peak voltage or the 
bucket area as an input. Which variable is treated as an input is controlled by the 
switch VFLAG. If the rfvoltage is to be treated as an input, VFLAG = 1, but if bucket 
area is to be treated as an input, as it is in the HEB design, 

VFLAG=-l. 

2.3 What Ramp Functions are Controllable, i.e., What Are the Other Inputs? 

(10) 

(11) 

(12) 

In dealing with the longitudinal variables, the quantities that are controllable are those of the rf system, 
namely the phase and amplitude of the rf, as well as the longitudinal emittance of the beam. Here the phase of 
the rf is defmed to be 4> = arcsin (llE/e V), where llE is the energy gained by the beam in a single pass, e is the 
charge on the particles, and Vis the single pass effective peak voltage of the rf cavities. (It is assumed here that 
the longitudinal emittance of the beam can be increased during the ramp cycle. More on this in Section 2.5 
below.) There are thus three independent variables that can serve as inputs for the remaining longitudinal 
variables. 

It may seem natural to use the rf voltage and phase, and the longitudinal emittance as code inputs. The 
longitudinal emittance is indeed used as one such input. But for the other two independent variables it is more 
desirable to specify the magnetic field ramp and the bucket area, and use those inputs to derive the voltage and 
phase required of the rf system. (The bucket area is the area in phase spac:e that is capable of stably containing 
particles.) The magnet ramp is usually determined by considerations other than the rf system, such as 
hysteresis losses, or power supply capabilities, and it is therefore a constraint on the system that the rf system 
must meet. The bucket area must be larger than the longitudinal emittance of the beam, or particles will be 
lost. If the bucket area is too large however, longitudinal emittance growth or instabilities may occur. 
Therefore it is desirable to control the bucket area, and thus it is best to us,e the bucket area as the final arbitrary 
input when defining system parameters. 

While in hindsight it is clear that it is best to use the bucket area as an input, this was not done in the first 
derivation of the ramp functions for the SSC complex done by Miguel Furmann, nor is this done in the 
Fermilab control codes that calculate longitudinal variables of the ramp" nor was this done in the first version 
of ELVIRA. It was only after Jim Griffm made the above arguments that bucket area was incorporated as an 
input into ELVIRA. This has led to the present situation where either the voltage or the bucket area can be 
used as inputs to ELVIRA. In this way ELVIRA can be checked versus existing codes for accuracy by using a 
voltage input, or it can be used to derive longitudinal variables the better way by using a bucket area input. 

The three independent inputs will now be discussed. 

2.4 Defining the Magnetic Cycle 

There are typically three regions of the magnetic ramp that contain beam: I) A flat section of constant 
magnetic field exists for beam injection; 2) A linearly increasing field is used during particle acceleration; 
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and 3) A flat section of constant magnetic field exists for beam manipulations needed just prior to extraction. 
The second constant magnetic field region is called the "flat top". 

In addition to the three regions of the magnetic ramp that contain beam, the magnetic ramp must be reset to 
its initial condition just prior to the next (half) cycle. And, since the HEB is a bipolar accelerator, there must 
be a symmetric ramp for the second half of the cycle. For the HEB, the magnetic field decreases linearly to 
zero after the flat top, pauses for a short time at zero, and [mally decreases to the value required for injection 
into the next half of the cycle. 

The constant (flat) regions of the field and the linear connections between the flat regions cannot be 
abruptly joined. An abrupt change in magnetic field would lead to an abrupt change in the required 
synchronous particle momentum, and this implies an abrupt change in the rf voltage and/or synchronous 
phase. Abrupt changes in rf voltage or synchronous phase can lead to unwanted longitudinal emittance 
increase, or, in the worst case, beam loss. For this reason, parabolas are specified to gradually join flat regions 
to linearly increasing regions. Parabolas are not required when there is no beam in the ring, but the code 
allows parabolic inputs at all joinings, and the ones that don't need parabolas can simply be set to zero. 

In general then, there are many input parameters that need to be specified in order to fully specify the 
magnetic ramp. The values of the field at injection and at extraction are required. The value of the field at the 
pause (zero for the bipolar HEB) is also needed. The amount of time the field is to remain at the pause, 
injection and extraction levels is required. The amount of time desired for the up (accelerating) ramp, down 
ramp, and pre-injection ramp is also required as inputs. Lastly, the amount of time needed for the joining 
parabolas must be put into the program as an input. The second half of the bipolar cycle need not be specified, 
as symmetry is used to arrive at the specifications. 

The inputs for the magnet ramp are found in the file ELVIRA.IN on lines 3,4, and 5. The magnetic field at 
any given time is calculated by the code ELVIRA at regular intervals, with the coding located in the lines 
between the labels 100 and 250 in the source code elvira.f. 

The time specified for the magnetic field to remain flat for injection, TINI, the time specified for the 
parabolic joining of the injection flat and the up ramp, PI, and the value of the magnetic field at injection, BI, 
are the first three inputs on line 3 in ELVIRA.IN: 

TIN1 = 20. seconds, PI = 1.5 seconds, B1 = 0.666251189 Tesla. (13) 

The time specified for the up ramp, TIN2, and the time specified for the parabolic joining of the up ramp to 
the flat top, n, are the last two inputs on line 3: 

TIN2 = 100. seconds, n = 1.5 seconds. (14) 

The time specified for the magnetic field to remain flat for beam manipulation and ejection, TIN3, the time 
specified for the parabolic joining of the ejection flat and the down ramp, P3, and the value of the magnetic 
field at ejection, B3, are the first three inputs on line 4 in ELVIRA.IN: 

TIN3 = 6.5 seconds, P3 = 1.5 seconds, B3 = 6.66251189 Tesla. (15) 

The time specified for the down ramp, TIN4, and the time specified for the parabolic joining of the down 
ramp to the pause, P4, are the last two inputs on line 4: 

TIN4 = 112.5 seconds, P4 = 0.0 seconds. (16) 
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The time specified for the magnetic field to remain flat at the pause, TIN5, the time specified for the 
parabolic joining of the pause flat and the pre-injection ramp, P5, and the: value of the magnetic field at pause, 
B5, are the first three inputs on line 5 in ELVIRA.IN: 

TIN5 = 2.5 seconds, P5 = 0.0 seconds, B5 = 0.0 Tesla. (17) 

The time specified for the pre-injection ramp, TIN6, and the time specified for the parabolic joining of the 
pre-injection ramp to the injection flat, P6, are the last two inputs on Hne 5: 

TIN6 = 10.5 seconds, P6 = 1.5 seconds. (18) 

In addition to calculating the magnetic field as a function of time, some quantities of interest also require 
knowledge of the derivative of the magnetic field as a function of time. For flat regions, this is obviously zero, 
linearly increasing regions have a constant dB/dt, and regions of parabolic change in B have a linear change in 
dB/dt. The coding for calculating dB/dt is found between the lines labeled 0120 and 0250 in the source code 
elvira.f. 

2.S Defining the Longitudinal Emittance Cycle 

During the acceleration of the proton beam the relative energy sprl~ad IlE/E of the beam will naturally 
shrink. If IlE/E gets too small the beam will become unstable. In order to avoid beam instabilities the present 
sse design calls for a planned increase in the longitudinal phase space area over time. How this increase is to 
be provided is not specified at the moment, but it may be done by rf noise, periodically and abruptly varying 
the rf voltage, shaking the phase during acceleration or storage, or the use of barrier buckets at injection or 
ejection. The longitudinal emittance is thus another parameter of the longitudinal dynamics that is an 
arbitrary input into ELVIRA. 

The inputs for the longitudinal emittance cycle are found in the file EL VIRA.IN on line 9. The longitudinal 
emittance is calculated by ELVIRA at regular intervals, with the coding located in the lines between the labels 
120 and 200 in the source code elvira.f.1t is assumed that the emittancl~ will remain flat during the injection 
flat, increase linearly during the acceleration ramp, and remain flat during the flat top until ejection. 

The phase space area during injection, EP L1 and the phase space area during the flat top, EP L2 as found on 
line 9 in ELVIRA.IN are 

EPL1 = 0.33 eV-seconds and EPL2 = 0.66 eV-seconds. (19) 

(Note that in Miguel Furmann's work he used EPLI = 0.075 eV-seconds and EPL2 = 0.66 eV-seconds). 

Note that EPL1 and EPL2 are entered in non-MKS units, eV-seconds, rather than the MKS units 
Joule-seconds, in order to conform to the usual notation (also, the values are closer to unity when expressed in 
this way). A conversion of units is done prior to using the input within the code, so the code can do all 
calculations in MKS units. 

2.6 Defining the Rf Voltage Cycle or the Bucket Area 

As discussed above in Section 2.3, either the rf voltage or the bucket area cycle can be used as an arbitrary 
input. Also discussed in Section 2.3 is the flag that tells the code which input to use. Section 2.6.1 will first 
discuss the possibility of using rf voltage as an input, as was done by Miguel Furmann. Section 2.6.2 will 
discuss the possibility of using bucket area as an input, as was proposed by Jim Griffin. 
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2.6.1 Using the Rf Voltage Cycle as the Arbitrary Input 

If rf voltage is to be used as the last arbitrary input, the flag VFLAG should be set to 1 as discussed in 
Section 2.3. Miguel Furmann' s design for the HEB rf system used voltage inputs that will be explained in this 
subsection. 

The voltage related quantity of interest for the longitudinal particle dynamics is the amount of energy a 
particle will get during a single pass through the acceleration cavities. Therefore it is best to use a "single pass 
effective peak: voltage" (SPEPV) that is related to, but not the same as, the actual peak: voltage within an 
individual cavity. The SPEPV will be somewhat less than N times the peak: voltage within an individual 
cavity due to transit time effects. (N is the number of cavities employed in the ring. As the particles traverse an 
individual cavity, the voltage will not remain fIxed, and this alters the peak: effective voltage.) Even though 
the SPEPV will not be exactly the same as the sum of the voltages of the cavities employed, it is usual to refer 
to the SPEPV as the "rf voltage," and this nomenclature will be adopted from this point forward. 

For the ELVIRA computer code it is assumed that the rf voltage is constant during injection, increases 
linearly during the parabolic portion of the magnet ramp just prior to the linear momentum increase, and then 
remains constant at the new higher value until just before beam ejection. 

The present design for the Collider calls for an rf system within the Collider that operates with parameters 
necessitating a shorter proton bunch than what can be achieved in the HEB with a constant rf voltage. The 
plan for shortening the bunch is to use a "bunch rotation" by slowly decreasing the rf voltage, which has the 
effect of slowly increasing the bunch length. The rf voltage is planned to remain at the low level for a short 
time while timing is set for the transfer. Then, when the timing is correct, the rf voltage is to be suddenly 
increased. A sudden increase has the effect of starting an oscillation in the bunch length. When the oscillation 
reaches the point of shortest bunch length, the kickers will be energized to transfer the bunch into the Collider. 

Although the change in rf voltage from a constant to a linear ramp can not be done instantly in an actual 
physical device, it is assumed in ELVIRA that the change can be done over a time that is short with respect to 
the changing of the quantities of interest. (The time scale of interest for the longitudinal dynamics is the 
period of synchrotron oscillations. The synchrotron oscillations are discussed below in Section 3.9. The 
period of the synchrotron oscillations in the HEB is of the order of 100 milliseconds, and it should be possible 
to arrange a change in rf voltage orders of magnitude more quickly than this time scale.) 

The inputs for the rf voltage cycle are found in the fIle ELVIRA.IN on lines 6 and 7. The rf voltage is 
calculated by ELVIRA at regular intervals, with the coding located in the lines between the labels 120 
and 200 in the source code elvira.f. 

The timing of the rf voltage changes is entered in line 6, while the values of the various voltages are entered 
in line 7. Line 6 contains: 1) the amount of time the rf voltage remains at the acceleration level during the flat 
top, TVlNl; 2) the time interval used in the slow voltage decrease, TVlN2; 3) the time the rf voltage remains at 
the lowest level for the setting of the timing, TVlN3; and 4) the time associated with the fast rise of the 
rf voltage, TVlN4. To compare with Miguel Furmann's work the necessary inputs are: 

TVlNI = 3.0 secs., TVlN2 = 1.0 secs., TVlN3 = 0.5 secs., TVlN4 = 0.1 secs. (20) 

Line 7 contains the value of the rf voltage during injection, VI, the value of the rf voltage during the 
acceleration cycle and beginning of the flat top, V2, the value of the rf voltage at the end of the slow voltage 
decrease, V3, and the value of the rf voltage at ejection, V4. To compare with Miguel Furmann's work the 
necessary inputs are: 

VI = 400 000 Volts (V), V2 = 1600 000 V, V3 = 80000 V, V4 = 1 500 000 V. (21) 
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2.6.2 Using the Bucket Area Cycle as the Arbitrary Input 

If bucket area is to be used as the last arbitrary input, the flag VFLA G should be set to -1 as discussed in 
Section 2.3. The present design for the HEB rf system (described here) uses the bucket area inputs that will be 
explained in this subsection. 

The bucket area is calculated by ELVIRA at regular intervals, with th(~ coding located in the lines between 
the labels 120 and 200 in the source code elvira.f. It is assumed that the bucket area will remain flat during the 
injection flat, change linearly during the acceleration ramp, and remain flat during the flat top until the bunch 
rotation is to take place. ELVIRA allows the capability to calculate the required rf voltage and resulting 
adiabaticity of a bunch rotation by entering four timing changes of the bucket area during the flat top. 

The inputs for the bucket area cycle are found in the file ELVIRA.IN on lines 6 and 8. Line 6 enters the 
amount of times, TVINl, TVIN2, TVIN3 and TVIN4 that are allotted for various bucket area manipulations at 
the flat top. TVINt is the time that the bucket area remains at ABKn during the flat top. The amount of time 
reserved to slowly deerease the bucket area to ABK13 is entered as TVIN2. The time that the bucket area 
remains flat atABK13 is entered as TVIN3 and the time allotted for the increase of the bucket area to ABKT4 is 
entered as TVIN4. For the present design of the HEB used in this report: 

TVINt = 3.0 secs., TVIN2 = 1.0 sees., TVIN3 = 0.5 secs." TVIN4 = 0.1 secs. (22) 

Line 8 contains: 1) the value of the bucket area during injection, AB'KTl; 2) the value of the bucket area 
when the magnet ramp first reaches the flat top, ABK12; 3) the value~ of the bucket area just prior to the 
increase required for bunch rotation, ABK13; and 4) the bucket area which is increased for bunch rotation, 
ABKT4. For the present design of the HEB used in this report: 

ABKTI = 2 eV-s, ABK12 = 4 eV-s, ABK13 = 3.5 eV-s, ABKT4 = 16.5 eV-s. (23) 

As with the case of the longitudinal emittance, the bucket area is entered in the non-MKS units 
e V-seconds. A conversion of the bucket area into the units of Joule-seconds is done prior to the calculational 
portion of the code, so that the code can do all calculations in MKS. 

3.0 OUTPUTS OF THE CODE ELVIRA FOR THE PRESENT HEB DESIGN 

This section will present graphs of the various quantities of interest for the longitudinal dynamics of the 
present HEB design. Each subsection will also contain a brief derivation of the formula used in ELVIRA for 
the particular quantity of interest, mention where in the source code thf~ coding can be found, and end with a 
discussion of the plotted data. Approximations and omissions in the derivations are prominently labeled. 

3.1 The Magnetic Field Cycle 

Derivation of Formula 

No derivation is required for the output value, as the magnetic field ramp is an arbitrary input into 
ELVIRA. See Section 2.4 for the input discussion. 

Location of Coding in elviraj 

As discussed in Section 2.4, the magnetic field cycle is encoded between the lines labeled 0100 and 0250 in 
the source file elvira.f. Printing is coded into the line-labeled 0240. 
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Graphical Representation 

Figure 1 depicts the magnetic fip.ld cycle of the HEB. 

Discussion 

As seen in Figure 1, the magnetic field is constant, at 0.66625 Tesla for the first 20 seconds, has a parabolic 
match to the linear ramp for the next 1.5 seconds, linearly increases for the next 100 seconds, has a parabolic 
match to the flat top for the next 1.5 seconds, has a flat top magnetic field of 6.6625 Tesla for the next 
6.5 seconds, has a parabolic match to the down ramp for the next 1.5 seconds, decreases linearly for the next 
112.5 seconds, pauses at zero field for 2.5 seconds, has a linear ramp to the next injection flat of 10.5 seconds, 
and a parabolic match to the flat injection field over the next 1.5 seconds. The second (negative) half of the 
cycle is a symmetric reproduction of the first half of the cycle. 
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3.2 The Rf Voltage Cycle 

Derivation of Formula 
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Time (8) 
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Figure 1. The HEB magnetic field cycle. 

In the case where the voltage is an arbitrary input into ELVIRA no derivation is required for this output 
value. For this case, see Sections 2.3 and 2.6.1 for the input discussion. 

In the case where the voltage is derived from the input bucket area, which is the case considered here, a 
derivation is needed, but the derivation is postponed until Section 3.22, which discusses the bucket area cycle 
for the HEB. For this case, see Sections 2.3 and 2.6.2 for the input discussion, and Section 3.22 for the 
formula derivation. 
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Location of Coding in elvira.f 

If the rf voltage is entered as an input, the coding for the rf voltage cycle is found between the lines labeled 
0120 and 0200 in the source file elvira.f. The rfvoltage units are transformed from Volts to Megavolts in line 
0310 for printing purposes, and printing is coded into line 0320. 

If the bucket area is entered as input, the coding for the rf voltage is found between the lines labeled 0520 
and 0710 in the source file elvira.f. The rf voltage units are transformed from Volts to Megavolts in line 0690 
for printing purposes, and printing is coded into line 0700. 

Graphical Representation 

Figure 2 depicts the rf voltage cycle of the HEB. 

Discussion 

As seen in Figure 2, the rf voltage is constant at 123 300 Volts during the 20 second injection flat of the 
magnetic ramp, increases to 1.21 Megavolts during the first parabolic ramp, decreases to 1.02 Megavolts by 
the end of the acceleration ramp, decreases to 50 000 Volts during the: second parabolic ramp, remains at 
50 000 Volts until the beam is ready for bunch rotation, slowly decreases to 38 700 Volts during the adiabatic 
decrease in bucket area, and fmally increases to 861 500 Volts to accomplish the bunch rotation. The rf 
voltage then stays at 861 500 Volts until ejection. 
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Figure 2. The HEB rf voltage cycle. 

3.3 Longitudinal 95 % Phase Space Area Evolution in the HEB 

Derivation of Formula 
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No derivation is required for this output value, as the longitudinal 95% phase space area evolution is an 
arbitrary input into ELVIRA. See Section 2.5 for the input discussion. 
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Location of Coding in elvira.f 

As discussed in Section 2.5, the coding for the longitudinal phase space cycle is found between the lines 
labeled 0120 and 0200 in the source file elvira.f. Printing is coded in line 0340. As discussed in Section 2.5, a 
conversion to MKS is done on line 0345. 

Graphical Representation 

Figure 3 depicts the longitudinal 95% phase space area evolution in the HEB. 

Discussion 

As seen in Figure 3, the longitudinal emittance is constant at 0.33 e V-seconds for the first 21.5 seconds, 
linearly increases during the 100 second acceleration ramp to 0.66 eV-seconds, and then remains constant at 
0.66 e V seconds until ejection. 

&f 0.8,---,.---,----:r------,r------,----r-----, 

~ 0.7 
~ 
~ 0.6 

~ 0.5 

~ 0.4 
a; 
~ 0.3 
:::I :e, 0.2 
c: 
oS 0.1 
#. 
l£ 0

0 20 40 60 80 100 120 140 
Time (8) 

TIP-05131 

Figure 3. The HEB 95% longitudinal emittance cycle. 

3.4 The Momentum Cycle 

Derivation of Formula 

It is an empirical observation that F = yma for perpendicularly applied forces, where F is the force, m the 
(rest) mass of the particles, a the acceleration of the particles and ythe Larmor-Lorentz factor, y = (1 - ~2)-112, 
~ = vic where c is the velocity of light and v is the velocity of the particles. Another empirical observation is 
that F = QvB for magnetic fields of strength B imposed upon particles containing a charge Q, if those particles 
move with a velocity v in the frame where B is measured, and if the direction of v is perpendicular to the 
direction of B, as is the case here. The acceleration of a particle moving in a circular path is readily derived to 
be a = v2/r, where ris the bend radius. Thus, ymv2/r= QvB, or ~ymc = p = QBr. The momentum is thus a simple 
constant times the magnetic field, when the bending radius is assumed constant. (It is assumed the particles 
will lie in the center of the dipole chambers for acceleration. This will be experimentally arranged by using 
beam position monitors in a dispersive section along with feedback to keep the beam in the center of the 
pipes.) Thus, the code uses: 

p=QBr (24) 

where Q is a physical constant, r is a machine specific constant, and B is an arbitrary input discussed in 
Section 2.4. 
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Location of Coding in elvira.j 

The coding for the momentum cycle is found on the line labeled 0350 in the source file elvira.f, a 
conversion of units is done on the line labeled 0360 so as to print out th(: momentum in units of Ge VIc, and 
printing is coded into the line 0370. 

Graphical Representation 

Figure 4 depicts the HEB momentum cycle. 

Discussion 

As seen in Figure 4, the momentum cycle in the HEB is flat for the first 20 seconds at the injection level of 
200 Ge VIc, joins to the ramp with a 1.5 second parabola, linearly increasc~s over the next 100 seconds, joins to 
the flat top with a 1.5 second parabola, and remains at the flat top level of 2000 GeV/c until ejection. 

2500~---r----~---r----~--~--'--T----' 

2000 -.Q 
> 
~ 1500 -E .a 
~ 1000 
o 
2 

500 

20 40 60 80 100 120 140 
Time (5) 

TIP'()5132 

Figure 4. The HEB momentum cyc:le. 

3.5 The Energy Cycle 

Derivation of Formula 

It is an empirical observation that E = (P2C2 + m2c4)112, where E is the particle energy, p the particle 
momentum, m the (rest) mass of the particle and c the velocity of light. Thus, the code uses 

(25) 

where m and c are physical constants, and p is derived in Section 3.4. 
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Location of Coding in elvira.j 

The coding for the energy cycle is found on the line labeled 0380 in the source file elviraJ, a conversion of 
units is done on the line labeled 0390 so as to print out the energy in units of Ge V, and printing is coded into 
the line 0400. 

Graphical Representation 

Figure 5 depicts the HEB synchronous energy cycle. 

Discussion 

As seen in Figure 5, the energy cycle in the HEB is flat for the first 20 seconds at the injection level of 
200 Ge V, joins to the ramp with a 1.5 second parabola, linearly increases over the next 100 seconds, joins to 
the flat top with a 1.5 second parabola, and remains at the flat top level of 2000 Ge V until ejection. 
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3.6 The Rf Frequency Cycle 

Derivation of Formula 

Time (s) 
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Figure 5. The HEB energy cycle. 

The frequency of revolution for particles stored in the HEB will be the speed of the particles divided by the 
circumference of the particle trajectory,fo = vIC, where fo is the revolution frequency, C is the circumference 
of the particle trajectory and v is the particle speed. The particle speed is determined by the energy through the 
relation vIc = ~ = (1_1Iy2)1f2, where yis the ratio of the total particle energy to the rest energy of the particle, 
y = Elmc2, where E is the particle energy, m the (rest) mass of the particle, and c the speed of light. 

The rf frequency is an integer, called the machine harmonic number, multiplied by the revolution 
frequency, fRF = hfo, where fRF is the rf frequency and h is the harmonic number. Thus, the code uses 

1 

h X v (m2c4)2 fRF = ---c- where v =; c X 1 - & (Note that ~ = vIc.) (26) 

where C and h are machine specific inputs, c and m are physical constants and E is derived in Section 3.5. 
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Location of Coding in elvira.f 

The coding for the rf frequency cycle in the HEB is found on the lines labeled 0410 through 0470 in the 
source me elvira.f. Line 0410 codes for y, Line 0420 codes for~, line 0440 codes forfo, and line 0450 codes 
forfRF . Since the rf frequency varies only slightly during the HEB cycle, the relevant quantity of interest is the 
deviation of the rf frequency from 59.957 MHz during the cycle, and it is desired that the units of this 
difference be kHz for the printout. The line labeled 0460 prepares the data in such a form for printing, and the 
line labeled 0470 codes for the printing. 

Graphical Representation 

Figure 6 depicts the HEB rf frequency cycle. 

Discussion 

As seen in Figure 6, the rf frequency cycle in the HEB is flat for the first 20 seconds at 831.8 Hz greater than 
59.957 MHz, and then rises during the acceleration cycle to a level of 1485 Hz greater than 59.957 MHz at the 
flat top. 
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3.7 The VsinC/>s Cycle 

Derivation of Formula 
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Figure 6. The HEB rf frequency cycle. 

A defmition of the voltage between two points is V = tlEIQ, where /).J1, is the energy gained by a particle of 
charge Q during its passage between the two points. The rf voltage is €~ither an arbitrary input into the code 
ELVIRA, as is described in Section 2.6.1 above, or it is derived from altl input bucket area, as is discussed in 
Section 3.22 below. Since the voltage within the cavities oscillates in time, the energy change experienced by 
a particle during a single pass will depend on the phase of the rf voltage during the transit. VsinC/>s is defmed 
here to be the energy increment given to the particles in a single pass 1through the rf cavities divided by the 
charge on the particles. 
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The energy increment required on any given pass through the rf cavities is determined by the energy cycle. 
As discussed in Section 3.5, the energy, E, is related to the momentum, p, by 

E = (p2c2 + m2c4)112 • (27) 

Here m is the (rest) mass of the particle and c is the speed of light. Both the energy and the momentum are 
functions of time. Differentiating with respect to time leaves 

dEldt = (pc2/E)(dpldt). (28) 

Noting that the energy is defmed as E = ymc2 and that the momentum is defmed as p = /3ymc, where /3 = vic, v is 
the velocity of the particles and y = (1 - /32)-112, leaves 

dEldt = (/3c)(dpldt). (29) 

It is derived above in Section 3.4 that p = QBr, or dp/dt = (Qr)(dBldt), so 

dEldt = (/3cQr)(dBldt). (30) 

Now Vsin<l>s is defined through !1E = QVsin<l>s , where !1E is the energy increment in one pass through the rf 
cavities and Q is the charge of the particles. The time required for the beam particles to make one revolution is 
the inverse of the frequency of particle revolution, & = lifo, where fo is derived above in Section 3.6. 
Therefore tlElllt = foQVsin<l>s, and by setting /lEI& = dEldt, and rearranging 

Vsin<l>s = (dEldt)/(Qfo) , where dEldt = (/3cQr)(dBldt), (31) 

where Q and c are physical constants, ris a machine specific constant, /3 andfo are calculated in the program as 
discussed in Section 3.6, and dBldt is calculated in the program during the input of the magnetic field data, as 
discussed in Section 2.4. 

Location of Coding in elvira.f 

The coding for calculating dEldt is found on the line labeled 0430 in the source code elvira.f, while the 
coding for Vsin<l>s is found on line 0480, the output is converted from V to MV on line 0490, and the printing is 
coded into line 0500. 

Graphical Representation 

Figure 7 depicts the HEB Vsin<l>s cycle. 

Discussion 

As seen in Figure 7, Vsin<l>s is zero during injection (as the beam must remain at the constant injection 
energy) increases during the parabolic ramp of the magnets to 638 900 Volts, remains flat at a level of 
638 900 Volts during the acceleration cycle, and then returns to zero during the parabolic magnetic ramp just 
prior to flat top. Vsin<l>s remains at zero during the flat top except for any acceleration required by cogging. 
(The cogging acceleration can not be determined in advance.) 
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3.8 The C/>S Cycle 
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Derivation of Formula 
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Figure 7. The HEB Vslncp. cycle. 

Once VsinC/>s is determined. as discussed in Section 3.7, with the input of V, as discussed in Section 2.6.1, or 
the derivation of V, as discussed in Section 3.22, C/>S is determined simply as the arcsine of VsinC/>JV: 

C/>s = arcsine(VsinC/>s IV) (for machines below transition) (32) 

where VsinC/>s is computed in the program as derived in Section 3.7, and V is either an arbitrary input into the 
program as discussed in Section 2.6.1, or V is derived from an input bucket area as discussed in Section 3.22. 
However, the arcsine has two roots, and the correct root must be specifi,ed. If the machine is below transition, 
the above formula is appropriate, for machines above transition the re:lation is: 

C/>s = 1t - arcsine(VsinC/>s IV) (for machines above transition). (33) 

Location of Coding in elvira.f 

ELVIRA uses the variable g = sinC/>s. The coding for sinC/>s is found on the lines labeled 0530 through 0640 
in the source file elviraJ for the case where the voltage is determined from an input bucket area (see 
Section 3.22 for a detailed discussion of this portion of the code). The coding for sinC/>s is found on line 0720 
for the case where the rf voltage is treated as an arbitrary input. The coding for the 4>8 cycle is found on the lines 
labeled 0820-0860 in the source file elviraJ, a conversion to degre:es is done on the line labeled 0870, 
printing is coded into the line 0880. 
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Graphical Representation 

Figure 8 depicts the REB <1>5 cycle. 

Discussion 

As seen in Figure 8, <1>5 is 180 degrees during injection (as the beam must remain at the constant injection 
energy) decreases during the parabolic ramp of the magnets, ranges between 148.1 and 140.9 degrees during 
the acceleration cycle, and then returns to 180 degrees during the parabolic magnetic ramp just prior to flat 
top. <1>5 remains at 180 degrees during the flat top except for any acceleration required by cogging. (The 
cogging acceleration can not be determined in advance.) 

3.9 The Is Cycle 
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Figure 8. The HEB <P. cycle. 

Derivation of Formula 

Up to this point the discussion has proceeded as if all particles in the beam will have the same energy upon 
entry into the rf cavity, and that the phase of the rfupon entry will be the same for all particles in the beam. The 
presentation has been concerned with what is known as the synchronous energy and phase. In actuality the 
beam particles will have a spread of energies, and they will enter the rf cavity over a range of times 
corresponding to a spread in phase. In order to assure that the entire bunch of particles is accelerated and 
remains in the ring, it is necessary that small deviations from the central energy and phase exhibit stable 
oscillations about the central (synchronous) energy and phase. This section is concerned with a calculation of 
the frequency of those oscillations, called synchrotron oscillations. 

Due to the discontinuous nature of the rf acceleration, the literature usually calculates the frequency of 
synchrotron oscillations with respect to the number of such oscillations per tum, and then it is usual to convert 
to the number of oscillations per second. Here, the derivation will find the number of oscillations per second 
directly. But the discontinuous nature of rf acceler~tion in a synchrotron must come into the derivations. 
Here, the derivation will proceed by investigating the energy change per single orbit period, /lEI Ms and the 
phase change per single orbit period, 1l<l>I Ms. The discontinuous change in energy will then be equated to a 
continuous energy change for the analysis. 
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As discussed above in Section 3.7, the energy gained by a particle on the synchronous orbit is determined 
by ~J&s =/oQVsincps, where ~s is the synchronous energy gain in a single pass, &s = lifo is the time 
required for the synchronous particle to make one orbit,jo is the synchronous revolution frequency, Q is the 
charge on the particle, V is the rf voltage and CPs is the synchronous phase derived in Section 3.8. The 
derivation used in Section 3.7 can be generalized for non-synchronous particles to yield 

~/&s =/oQVsincp, (34) 

where ~ is the single pass energy change for an arbitrary particle allld cp is the phase of the rf when the 
arbitrary particle passes. Subtracting the equation for the synchronous orbit from the equation for the 
arbitrary particle leaves 

(35) 

The difference between the arbitrary particle's energy change and the synchronous energy change is equal 
to the change in the difference between the arbitrary particle's energy and the synchronous energy, (~­
~s) = (Eo+1- Eo) - (E50+1- Eso) = (Eo+1 - Eso+1) - (En - Esn) = t::.(E - Es). Defmingthe difference between the 
arbitrary particle's energy and the synchronous energy to be dE = E - Es, and approximating the finite 
discontinuous energy change to a continuous energy change leaves 

!APPROXIMATION! 

d(dE)/dt = /oQV(sincp - sincps). (36) 

The phase is determined by the time the particle enters the rf cavity. Thc~ voltage in the rf cavity has the form 

Vet) = Vsin(21tjRFt) = Vsin(21tt/&RF) = Vsinl;, (37) 

so a phase, 1;, has been defined, 

(38) 

Equations (37) and (38) define t = 0 as one moment when Vet) = 0, and dV(t)/dt > O./RF is the frequency of the 
rf, and &RF is the period of the rf, &RF = 11fRf. 

With the phase as defmed here, I; = 21tt/&RF' the phase will increase linearly with time. Yet the physics 
only depends on that part of the phase that is different from 2n1t, since the energy kick depends only on Vsinl;, 
and Vsinl; = Vsin(1; + 2n1t), and it is therefore possible to discard 2n1t from the phase with no change in the 
physics. It is the discarding of the 2n1t that allows a definition of a fixed, synchronous phase. The 
synchronous phase is defined as that phase which causes the synchronous particle to always return to the rf 
cavity at the same, synchronous phase. This clearly can not be the case if the phase monotonically increases as 
defined in Equation (38). However, if a new phase, cp, is introduced such that the phase increase in one turn, 
t::.cp, is defined as 

(39) 

where &s is the orbit time for the synchronous particle, then, for the synchronous particle, t::.cp = 0, since for the 
synchronous particle & = &s. The subtraction of 21t&J &RF from t::.1; is the same as a subtraction of 21tn, only 
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if the ratio IltJ IltRF = h is an integer. (This is the requirement for a synchronous phase, since when IltJ IltRF = h 
is an integer, ~~ = 21tIltJ IltRF = 21th, and thus Vsin~ remains the same on each successive turn only if 
IltJIltRF = h is an integer.) The requirement IltJIltRF = h is built into the design ofthe accelerator or storage 
ring, and h is known as the harmonic number of the device. 

Equation (39) states that the change in phase occurring in one turn is a function of the particle orbit time. 
The time required for a particle of arbitrary energy to make one orbit is Ilt = Clv, where C is the circumference 
of the particle trajectory and v is the velocity of the particle. The time for the synchronous particle to make one 
orbit is Ilts = CJvs, where the s subscripts denote quantities related to the synchronous particle. The difference 
in orbit time between a particle of arbitrary energy and that of a particle with synchronous energy is 

~t -Ilts = Clv - CJvs. (40) 

Substituting Eq. (40) into (39) leaves an expression for the single turn phase change for a particle of 
arbitrary energy, 

(41) 

C and v can be rewritten as C = Cs + dC, v = Vs + dv. Thus, 

which, to first order in the quantities dC/Cs and dvlvs is 

!APPROXIMATION! 

(43) 

The transition energy divided by the (rest) mass of the particles, 'Yb is defmed through the relations 

(44) 

where dE is the energy difference between the synchronous energy and the particle with orbit circumference 
C + de. The transition energy is largely determined by the transverse focusing properties of a machine, and it 
is left as an input into the code ELVIRA, so no further derivation of it will be given here. 

Turning to the remaining term in (43), dvlvs, note that differentiating the experimentally determined 
relation between energy and velocity, E = (1-v2/c2)-1I2mc2, where m is the particle rest mass and c is the speed 
of light, leads to dE = dv(vlc2)(1 - v2/c2)-3I2mc2 = dv(~/c)'Y3mc2, where ~ = vIc and 'Y = (1 - v2/c2)-112. Thus, 
dElE = ~2y2dvlv, or 

dvlv = ~-2y-2{)EIE, (45) 

to first order in the small quantities dvlv and dElE. 
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!APPROXIMATION! 

Substituting in the relation (45) for bv/vs and (44) for bC/Cs leaves (43) as 

(46) 

where 

(47) 

and, by approximating that there is no change in the synchronous phase during the orbit, L\cj>s = 0, 

!APPROXIMATION! 

(48) 

Equation (48) makes use of the definition bcj> = cj> - cj>s, as well as (L\IP - L\cj>s) = (cj>0+1- cj>o) - (cj>so+l- cj>so) = 
(cI>n+1 - cj>80+1) - (cj>o - cj>80) = L\(cj> - cj>8). Equation (48) is an expression felr the change in the phase difference 
between an arbitrary particle and the synchronous phase over one orbit. Thus, the time rate of change of bcj> is 

(49) 

(Note that a non-obvious approximation goes into Eq. (49). In the derivation of (48) the evaluation of the 
phase advance of an arbitrary particle is calculated for one tum of the arbitrary particle; while the phase 
advance of the synchronous particle is calculated for one tum of the synchronous particle. Thus, to state that 
the change in phase difference, L\( bcj», occurs over the time L\ts is not exactly correct. The correct time rate of 
change for cj> is determined by dividing the expression for L\cj> given in Eq. (39) by L\t 

(50) 

By now defming L\t = L\ts + bL\t, (50) can be re-expressed as 

(51) 

Expression (51) is the same as dcj>/dt= L\cj>/L\t = 2rWL\t/L\tsL\tRF to first order in the small quantity bL\t/L\ts• This 
first order expression is used to arrive at Eq. (49).) 

!APPROXIMATION! 

At this point there are now two coupled first order differential equations, (36) and (49). 

d(bE)/dt = JoQV(sincj> - sincj>8). (52) 

(53) 
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Differentiating the expression for d(o'P)ldt with respect to time leaves 

(54) 

It is assumed that the fIrst term is negligible (and this should be checked by a longitudinal particle tracking 
code). Substituting Eq. (36) into (54) leaves 

(55) 

!APPROXIMATION! 

sin'P can be re-expressed as, 

(56) 

The last step in Eq. (56) uses the approximations cos(o'P) = 1 and sin(o'P) = (O'P) for small values of (o'P). 

!APPROXIMATION! 

Substituting Eq. (56) into (55) results in a linear second order differential equation for (o'P): 

(57) 

Thus, provided all the approximations used in the derivation are sound, the time evolution second order 
differential equation for o'P is that of a simple harmonic oscillator. The solution is well known, and can be 
verifIed by substituting the solution back into the differential equation. The solution is: 

(58) 

A and", are constants determined by the initial phase and energy of the individual particle. (Note that a minus 
sign appears within the square root. For bounded motion it is thus required that l1cos'Ps be less than zero. This 
is the well known condition that requires cos'Ps to be less than zero above transition, where 1> 11 and 11 > 0, and 
cos'Ps to be greater than zero below transition, where 1 < 11 and 11 < 0.) Thus, the equation used to calculate Is is 

(59) 

Q and 1t are physical constants, h and 11 are machine specifIc constants,fo, ~ and 1 are derived in Section 3.6, 
Es is derived in Section 3.5, Vis either an input discussed in Section 2.6.1 or else Vis derived from an input 
bucket area as discussed in Section 3.22, and 'Ps is derived in Section 3.8. 

Location of Coding in elvira.f 

The coding 11 for is found on the line labeled 0510 in the source code elvira.f, the coding for the Is cycle is 
found on line 0890 and printing is coded into line 0900. 

20 



Graphical Representation 

Figure 9 depicts the HEB Is cycle. 

Discussion 

As can be seen from Figure 9, the synchrotron frequency is flat during injection at 11.6 Hz, rises sharply 
during the ftrst parabolic ramp of the magnetic fteld to 32.4 Hz, th~m decreases to 9.42 Hz during the 
acceleration ramp, decreases during the second parabolic ramp of the magnetic fteld to 2.38 Hz, pauses at 
2.38 Hz to set the timing for transfer, decreases to 2.08 Hz during the adiabatic decrease of the bucket area, 
and suddenly increases to 9.80 Hz to accomplish the bunch rotation. 

35r----r----r----r----~--~·----~--~ 

3.10 The Vs Cycle 

_ 30 
N 
~ 

;: 25 
g 
~ 20 c:r 
~ -c: 15 e -e 

.J: 10 g 
~ 5 

Derivation of Formula 

100 120 140 

TIP-05137 

Figure 9. The HEB synchrotron frequenCl( cycle. 

In addition to knowing the number of synchrotron oscillations per unit time, it is often desirable to know 
the number of synchrotron oscillations per orbit. This is simply determined by dividing the synchrotron 
frequency by the revolution frequency, . 

Vs =fs/fo. (60) 

fo is derived in Section 3.6 andls is derived in Section 3.9. 

Location of Coding in elvira.f 

The coding for the v s cycle is found on the line labeled 0910 in the source fIle elvira.f, line 0915 multiplies 
Vs by 1000 for clarity in plotting and printing is coded into the line 0920. 
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Graphical Representation 

Figure 10 depicts the HEB synchrotron tune cycle. 

Discussion 

As can be seen from Figure 10, the synchrotron tune is flat during injection at 4.17 x 10-4, rises sharply 
during the first parabolic ramp of the magnetic field to 1.17 x 10-3, then decreases to 3.39 x 10-4 during the 
acceleration ramp, decreases during the second parabolic ramp of the magnetic field to 8.56 x 10-5, pauses 
at 8.56 x 10-5 to set the timing for transfer, decreases to 7.49 X 10-5 during the adiabatic decrease in the 
bucket area, and suddenly increases to 3.53 x 10-4 to accomplish the bunch rotation. 
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Figure 10. The HEB synchrotron tune cycle. 

3.11 The Energy Spread (dEIEs) Cycle 

Derivation of Formula 

Section 3.9 gives the derivation ofEq. (58) for the phase evolution for an arbitrary particle, repeated here 
as Eq. (61) 

(61) 

Section 3.9 also gives the derivation for the fmite difference equation for dC\>, Eq. (49), repeated here as 
Eq. (62) 

(62) 

Equation (62) can be rearranged to yield an expression for dE, 

(63) 
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Since IDs = (fol13)(-21thllQVcoscj>JEs)112, oE can be rewritten as 

(64) 

It is desirable at this point to switch variables from energy and phase Ito energy and time. Recalling that an 
advance in ocj> of 21t radians is equivalent to a time advance of one rf period, Ot = dt~cj>/21t = dtsocj>/21th = 
0cj>/21th/o = Asin(IDst + W)/21thfo , or 

Ot = Asin(IDst + W)/21thjo , with IDs = (fol13)(-21thllQVcoscj>JEs)112 . (65) 

If the energy deviation is plotted versus the time deviation, the partic:1e will trace out an ellipse over time. 
The area within the ellipse is the longitudinal emittance of the particle, ELp' The area within the ellipse 
described by Eqs. (64) and (65) is 

(66) 

where oEmax and Otmax are the maximum values of Ot and oE, respective:ly, obtained by the particle during its 
trajectory. 

Each particle will trace out its own ellipse, and have its own longitudinal emittance. For some value of the 
emittance, EL95, 95% of the individual emittances will be less than EVIS, and the trajectories of 95% of the 
particles will lie within the EL95 ellipse. Here the "beam energy spread," OE95, and "beam temporal spread," 
Ot95, are defmed to be the maximum energy deviation and the maximum time deviation of the EL95 ellipse, 
respectively. For the 95% ellipse: 

(67) 

(68) 

The area of the 95% ellipse is xaE9SOt'95 , 

(69) 

Expression (69) can be rearranged to yield an expression for A95: 

(70) 

Equation (70) can now be substituted into (71): 

(71) 

It is usual to express the quantity of interest as OE9SIEs: 

(72) 
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The quantity of interest for such items as calculation of instabilities is not dE9S, but rather one standard 
deviation of the distribution, O'E. The area of the ellipse of the particle that has a maximum energy 
displacement O'E and a maximum time displacement O't is 1tO'EO'b yet for some ungodly reason the quantity EL 

associated with this ellipse has been defmed in the sse literature to be 

(73) 

Thus, the emittance of the beam associated with the one sigma quantities is not the area of the phase space 
defined by an ellipse of axes O'E and 0'10 but rather that area divided by 1t. Since the 1t has already been divided 
out, the formula for O'pjEs becomes 

(74) 

Nonetheless, the 95% emittance is defmed here and in the sse literature as the area of the ellipse that 
surrounds 95% of the particle phase space trajectories, and both this document and the sse literature assume, 
for now, that the beam will have a gaussian distribution in longitudinal phase space, hence 

(75) 

and since the program ELVIRA uses EL9S, it is desirable to express (74) in terms of EL9S, 

(76) 

Q and 1t are physical constants, h is a machine specific constant, to and ~ are derived in Section 3.6, 11 is 
derived in Section 3.9, Es is derived in Section 3.5, V is either an input discussed in Section 2.6.1 or it is 
derived from an input bucket area as discussed in Section 3.22, EL9S is an input discussed in Section 2.5 and <l>s 

is derived in Section 3.8. 

Location of Coding in elvira.f 

The coding for O'pjEs is found on the lines labeled 0930 and 0940 in the source code elvira.f, O'EIEs is 
multiplied by 1000 for plotting purposes in line 0950 and the printing is coded into line 0960. 

Graphical Representation 

Figure 11 depicts the HEBO'pjEs cycle. 

Discussion 

As can be seen from Figure 11 O'pjEs starts out at 8.81 x 10-5, then rises during the first parabolic magnetic 
ramp to 1.43 x 10-4, decreases to 3.52 x 10-5 just before the magnetic flat top, decreases to 1.76 x 10-5 

during the second parabolic magnet ramp, remains at this level during the fmal setting of the timing for 
transfer, decreases to 1.65 x 10-5 during the adiabatic decrease in bucket area, and finally increases to 
3.58 x 10-5 just before extraction. 
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Figure 11. The HEB oE/E. cycle. 

3.12 The Momentum Spread (op/Ps) Cycle 

Derivation of Formula 

It is an empirical observation that E = (P2C2 + m2c4) 112 , where E is the particle energy, E = ymc2, p the particle 
momentum,p = Pymc, m the (rest) mass of the particle and c the velocity oflight. Since m and c are constants, 
differentiating each side of this relation leaves 

dE = pc2dplE, (77) 

and thus 

dElE = (pc/E)2(dplp) = (Pymc2/ymc2)2(dp/p) :: P2(dplp). (78) 

Thus, dp/p = P-2(dE/E). Since aE/Es and ap/ps are small numbers a vallid approximation is 

(79) 

!APPROXIMATION! 

Pis defmed in Section 3.6 and apjEs is defined in Section 3.11. 

Location of Coding in elvira.f 

The coding for ap/ps is found on the line labeled 0970 in the source code elvira.f, ap/ps is multiplied by 
1000 for plotting purposes in line 0980 and the printing is coded into line 0990. 
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Graphical Representation 

Figure 12 depicts the HEB ar/ps cycle. 

Discussion 

As can be seen from Figure 12 ar/ps starts out at 8.81 x 10-5, then rises during the fIrst parabolic magnetic 
ramp to 1.43 x 10-4, decreases to 3.52 x 10-5 just before the magnetic flat top, decreases to 1.76 x 10-5 

during the second parabolic magnet ramp, remains at this level during the fmal setting of the timing for 
transfer, decreases to 1.65 x 10-5 during the adiabatic decrease in bucket area, and finally increases to 
3.58 X 10-5 just before extraction. 
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Figure 12. The HEB oplp. cycle. 

3.13 The Temporal Bunch Spread (at) Cycle 

Derivation of Formula 

eL95 is defIned above in Eq. (75), repeated here as (80), 

Rearranging Eq. (80) leaves 

(80) 

(81) 

EL95 is an input discussed in Section 2.5, 1t is a physical constant, Es is defmed in Section 3.5 and aPlEs is 
defIned in Section 3.11. 
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Location of Coding in elvira.f 

The coding for at is found on the line labeled 1000 in the source code elvira.f, at is multiplied by I.E9 for 
plotting purposes in line 1010 and the printing is coded into line 1020. 

Graphical Representation 

Figure 13 depicts the REB at cycle. 

Discussion 

As can be seen from Figure 13 at starts out at 0.993 ns, then decreases during the fIrst parabolic magnetic 
ramp to 0.576 ns, decreases to 0.500 ns by the end of the acceleration, increases to 0.993 ns during the second 
parabolic ramp, remains at this level during the fmal setting of the timing for transfer, increases to 1.06 ns 
during the adiabatic decrease in the bucket area, and fInally decreases to 0.489 ns just before extraction. 

1.S I I T I I I 

1.4 - --' 

_ 1.2 - -
fJ) 
'0 
L:: 1.0 8 ..I -
Q) 
fJ) 

0 0.8 L:: 
I- -

CIS 
L:: 
~O.S - -
\::) 

0.4 - -

0.2 I- -

0 I I I I I I 

0 20 40 SO 80 100 120 140 
Time (8) 

TIP'()S141 

Figure 13. The HEB temporal bunch length (aT) cycle. 

3.14 The Spatial Bunch Spread (az) Cycle 

Derivation of Formula 

The velocity of the particles, pc, is defIned as the distance traveled by the particles per unit time. Therefore, 
if the fIrst particle in the bunch passes a given point at a time at earli~~r than a second particle, it will have 
travelled a distance 

(82) 

in that time. If at is the one sigma temporal separation of particles within the bunch, then az = pcat is the one 
sigma spatial separation of particles within the bunch. 

c is a physical constant, P is defIned in Section 3.6, and at is defm~~d in Section 3.13. 
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Location of Coding in elvira.j 

The coding for az is found on the line labeled 1030 in the source code e1vira.f, as is multiplied by 1000 for 
plotting purposes in line 1040 and the printing is coded into line 1050. 

Graphical Representation 

Figure 14 depicts the HEB az cycle. 

Discussion 

As can be seen from Figure 14 az starts out at 298 mm, then decreases during the first parabolic magnetic 
ramp to 173 mm, decreases to 150 mm by the end of the acceleration, increases to 298 mm during the second 
parabolic ramp, remains at this level during the fmal setting of the timing for transfer, increases to 318 mm 
during the adiabatic decrease in the bucket area, and finally decreases to 147 mmjust before extraction. 
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Figure 14. The HEB spatial bunch length (Oz) cycle. 

3.1S The Relative Energy Half Bucket Height (MalEs) Cycle 

Derivation of Formula 

Up to this point the concern has been with small oscillations about the synchronous energy and phase. 
Another important concern is the limit of stability of the oscillations. When the energy and phase are too far 
from the synchronous values, particles will no longer oscillate about the synchronous values, and they will be 
lost. This section will calculate the maximum relative energy spread that can be contained in an oscillatory 
motion. 

Section 3.9 derives Eq. (36), which is the differential equation relating the change in dE to the phase of the 
particle, repeated here as Eq. (83). 

d(6E)ldt = foQV(sincj> - sincj>s). (83) 
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Section 3.9 also derives Eq. (49), which is the formula for d(dq,)ldt, repeated here as (84), but with a 
simplification of notation. Section 3.9 defines q, = q,s + dq" and sinct~ dq,s/dt = 0, d(d$)ldt = d$ldt and 
tf2(d$)ldt2 = tf2$ldt2. 

d$ldt = 21thllJ3-2JO(dE)IEs ' (84) 

Note that dq,s/dt = 0 is not always exact, so this is an approximation. 

!APPROXIMATION! 

The coupled differential equations (83) and (84) can lead to stable: oscillations about the synchronous 
energy and phase only if the initial energy and phase are sufficiently dose to the synchronous values. The 
region of sufficiently close initial values is an area in phase space, and that area is called the bucket area. 
Calculation of the bucket area will require an evaluation of tf2$ldt2. Section 3.9 derives (55), which is the 
formula for tf2(dq,)ldt2, repeated here as Eq. (85), 

tf2<PJdt2 = (21thrifo2IEsJ32)QV(sinq, - sinq,s). (85) 

Now mUltiply both sides of (85) by dq,ldt and rearrange it to yield, 

[tf2$ldt2 - (21th1lfo2IEsJ32)QV(sin$ - sin$s)]d$ldt = O. (86) 

Integrating (86) with respect to time leaves 

(87) 

where K is a constant of the motion (since its derivative with respect to time is zero). The constant K can be 
evaluated at a single point in the trajectory. Since the interest is a determination of where motion is stable, and 
since stable oscillations must pass through the synchronous energy, it is desirable to pick a point for 
evaluation of K that has the synchronous energy, dq,ldt = dE = O. 

EVALUATION OF THE SEPARATRIX 

The boundary in phase space between the region where stable oscillations take place and the region where 
motion is unstable is called the separatrix. The equation for the separatrix can be determined by rmding the 
maximum or minimum angle $2 for which motion is stable. Substituting the extreme value into (87) will then 
allow a determination of K for the separatrix, 

(88) 

and this in tum allows a determination of the equation of the separatrix. The evolution of $ on the separatrix is 
thus governed by 

In general the synchronous phase angle, q,s, can take on any value from -1t to 1t. But the above expression 
possesses sufficient symmetry so that once the separatrix is known for synchronous angles having values 

29 



between 0 and 1CI2, a simple variable substitution can be made to determine the equation of the separatrix for 
the remaining cases. Since both the bucket area and the bucket width must be determined numerically, use of 
these substitutions allows a reduction in the amount of tabular data and a simplification of the formulas used 
to fit the data. The relations relating the various regions are: 

9 = <I> + 7t (or <I> = 9 - 7t) for -7t < <I> < -7tl2 . (90) 

9 = -<I> (or <I> = -9) for -1CI2 < <I> < 0 . (91) 

9 = <I> (or <I> = 9) for 0 < <I> < 7t/2 . (92) 

9 = 7t - <I> (or <I> = 9 + 7t) for 7tl2 < <I> < 7t . (93) 

By substituting 92, 9s, and 9, for <1>2, <l>s, and <1>, respectively into Eq. (89) leaves 

(94) 

The substitution also confines 9s to takes on values only from 0 to 7tl2. 

It is not obvious, at least to this author, that the transformations given in Eqs. (90) through (93) transform 
(89) into (94). Each of the four cases will now be considered. 

For -7t < <I> < -7tl2: 

Substitution (90) leaves cos<1>2 = COS(92 - 7t) = cos(9z)cos( -7t) - sin(9z)sin( -7t) = -cos(92); <l>2sin<l>s = 
(92 - 7t)sin(9s - 7t) = (92 - 7t)[sin(9s)cos(-7t) + cos(9s)sin(-7t)] = -(92 - 7t)sin(9s); cos<l> = cos(9 - 7t) = 
cos(9)cos(-7t) - sin(9)sin(-7t) = -cos(9); and <l>sin<l>s = (9 - 7t)sin(9s - 7t) = (9 - 7t)[sin(9s)cos(-7t) + 
cos(9s)sin(-7t)] = -(9 -7t)sin(9s). Therefore, what is left to evaluate is [(cos<l>z+ <l>2sin<l>s) - (cos<l> + <l>sin<l>s)] = 
[-cos(92) - (9z-7t)sin(9s) + cos(9) + (9 -7t)sin(9s)] = [-cos9z - 9zsin9s + cos9 + 9sin9s]. For this range of <I> a 
machine is above transition and 11 is positive, so (94) results from substituting (90) into (89). 

For -1CI2 < <I> < 0: 

Substitution (91) leaves cos<1>2 = cos( -92) = cos92; <l>2Sin<l>s = (-92)sin( -9s) = 92sin9s; cos<l> = cos( -9) = cos9; 
and <l>sin<l>s = (-9)sin( -9s) = 9sin9s. Therefore, [( cos<1>2 + <l>2sin<l>s) - (cos<l> + <l>sin<l>s)] = [cos92 + 92sin9s - cosa-
9sin9s]. For this range of <I> a machine is below transition and 11 is negative, so forming the absolute value of 11 
requires multiplication by -1, and if this -1 is multiplied by the trig functions (94) clearly results from 
substituting (91) into (89). 

For 0 < <I> < 7t/2: 

Substitution (92) leaves cos<1>2 = cos92; <l>zsin<l>s = 9zsinas; cos<l> = cos9; and <l>sin<l>s = asinas' Therefore, 
[( COS<l>2 + <l>zsin<l>s) - (cos<l> + <l>sin<l>s)] = [COSa2 + 92sin9s - cos9 - 9sin9s]. For this range of <I> a machine is below 
transition and 11 is negative, so forming the absolute value of 11 requires multiplication by -1, and if this -1 is 
multiplied by the trig functions (94) clearly results from substituting (92) into (89). 

For 1CI2 < <I> < 7t: 

Substitution (93) leaves COS<l>2 = cos(7t + 92) = cos(7t)cos(az) - sin(7t)sin(9z) = -COS(92); <l>2Sin<l>s = 
(7t + a2)sin(7t + as) = (7t + 92)[sin(7t)cos(9s) + cos(7t)sin(9s)] = -(7t + az)sin(9s); cos<l> = cos(7t + 9) = 
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cos(x)cos(9) - sin(x)sin(9) = -cos(9); and cpsincps = (x + 9)sin(x + 9s) = (x + 9)[sin(x)cos(9s) + 
cos(x)sin(9s)] = -(x + 9)sin(9s). Therefore, [(COSCP2 + CP2sincps) - (coscp + cpsincps)] = [~OS(92) - (x + 92)sin(9s) + 
cos(9) + (x + 9)sin(9s)] = [~OS92 - 92sin9s + cos9 + 9sin9s]. For this range of cp a machine is above transition 
and 11 is positive, so (94) results from substituting (93) into (89). 

Now that it has been shown that (94) is equivalent to (89) when the substitutions (90) through (93) are 
applied, the problem of rmding the equation for the separatrix requires finding the maximum angle, 92, for 
which the motion is stable. The evolution of 9 is governed by Eq. (94) .. A maximum for 9(t) is found at the 
point where d91dt = 0, dermed here as 9 = 92. The requirement for stability is that the second derivative, 
d29Idt2, evaluated at 92, be less than zero, (2xhl11!fo2IEs/32)QV(sin9s - sin92) < O. When this condition is met 9 
will return toward 9s and therefore the motion will be stable. For 92 = x - 9s - 0, sin92 = sin(x - 9s - 0) = 
sin(x)cos( -9s- 0) + cos(x)sin( -9s - 0) = sin(9s + 0) = sinC9s)cos(0) + cosC9s)sin(0), and for small 0 this leaves 
sin(x- CPs- 0) = sin(9s) + &os(9s). It has been arranged that 0 < 9s < xl2" and thus cos(9s) is greater than zero. 
Therefore the quantity (sin9s - sin92) will be less than zero for positive O. A positive 0 therefore leads to 
d291dt2 < 0, and stable motion. Negative 0 leads to d291dt2 > 0, and unstable motion. Thus, the maximum 
value of 9 for which motion is stable is 

(95) 

(Note that while the sign of d291dt2 indicates stability since 9 immediately begins to return toward 9s, it is 
possible that the other sign of d291dt2 could also be on a stable orbit., if later on in the orbit 9 eventually 
reverses direction, and returns toward 9s. The proof that this does not happen will not be presented at this 
time. Thus it has been shown here that the function 9 exhibits a local maximum, but the global properties of 
the function have not been investigated.) 

!OMISSION! 

The equation for the separatrix is determined by substituting (95) into (94) 

The maximum value of d91dt (as a function of 9) will be found where ill's derivative with respect to 9 is zero, 
and this occurs when 9 = 9s. Therefore, the maximum value of d91dt is 

(97) 

Substituting (97) into (8.4) and rearranging leaves an expression for the maximum value of (AEB)/Es , 

(98) 

Q and x are physical constants, h is a machine specific constant, /3 is derived in Section 3.6, 11 is derived in 
Section 3.9, Es is derived in Section 3.5, V is either an input discussed in Section 2.6.1 or it is derived from an 
input bucket area as is discussed in Section 3.22, and CPs is derived in Section 3.8. 
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Location of Coding in elvira.J 

The coding to convert 1'\ into 11'\1 is found on the line labeled 0515 in the source code elvira.f, the coding for 
as is found on lies 1070 through 1100, and the coding for (llEB)/Es is found on the lines 1110 and 1120, 
(llEB)/Es is multiplied by 1000 for plotting pUlposes in line 1130 and the printing is coded into line 1140. 

Graphical Representation 

Figure 15 depicts the HEB (llEB)IEs cycle. 

Discussion 

As can be seen from Figure 15 (MB)/Es starts out at 4.71 x 10-4, then increases during the fIrst parabolic 
magnetic ramp to 7.99 x 10-4, slowly decreases to 1.98 x 10-4 until just before the magnetic flat top, 
decreases to 9.42 x 10-5 during the second parabolic ramp, remains at this level during the fmal setting of the 
timing for transfer, decreases to 8.24 x 10-5 during the adiabatic decrease of the bucket area, and fInally 
increases to 3.89 x 10-4 just before extraction. 
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Figure 15. The HEB relative half bucket height !:1EelEs cycle. 

3.16 The Relative Momentum Half Bucket Height (!J.ps/Ps) Cycle 

Derivation of Formula 

Section 3.12 derives the relation dplp = 13-2(dEIE). Since AEalEs and /:lpslps are small numbers a valid 
approximation is 

(99) 

!APPROXIMATION! 

13 is defIned in Section 3.6, and MalEs is defIned in Section 3.15. 
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Location of Coding in elvira.f 

The coding for !lppjPs is found on the line labeled 1150 in the source code elvira.f, (!lpB)lps is multiplied by 
1000 for plotting purposes in line 1160 and the printing is coded into line 1170. 

Graphical Representation 

Figure 16 depicts the HEB (!lpB)lps cycle. 

Discussion 

As can be seen from Figure 16 (!lpB)lps starts out ~t 4.71 x 10-4, then increases during the first parabolic 
magnetic ramp to 7.99 x 10-4, slowly decreases to 1.98 x 10-4 until just before the magnetic flat top, 
decreases to 9.42 x 10-5 during the second parabolic ramp, remains at this level during the fmal setting of the 
timing for transfer, decreases to 8.24 x 10-5 during the adiabatic decrease of the bucket area, and finally 
increases to 3.89 x 10-4 just before extraction. 

1.0 r--...,------,,--..,-----r--...,.--.--,.----, 

0.8 

s 
8 0.6 .... 
~ 
a.fJ) 
..... 0.4 
a.r1l 

<I 

0.2 

o~--~----~--~~--~----~--.~----~ o 60 80 100 120 140 
Time (s) 

TIP-oS144 

Figure 16. The HEB relative half bucket height l1Pp/Ps cycle. 

3.17 The Absolute Energy Half Bucket Height (MB) Cycle 

Derivation of Formula 

Simple rearrangement leaves 

Es is defined in Section 3.5, and /).EB/Es is defmed in Section 3.15. 
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Location of Coding in elvira.j 

The coding for IlEB is found on the line labeled 1180 in the source code elvira.f, IlEB is converted to Ge V 
for plotting purposes in line 1190 and the printing is coded into line 1200. 

Graphical Representation 

Figure 17 depicts the HEB IlEB cycle. 

Discussion 

As can be seen from Figure 17 IlEB starts out at 0.094 Ge V, then increases during the fIrst parabolic 
magnetic ramp to 0.170 Ge V, slowly increases to 0.393 Ge V until just before the magnetic flat top, decreases 
to 0.188 Ge V during the second parabolic ramp, remains at this level during the fmal setting of the timing for 
transfer, decreases to 0.165 Ge V during the adiabatic decrease of the bucket area, and fmally increases to 
0.777 GeV just before extraction. 
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Figure 17. The HEB half bucket energy height (aEB) cycle. 

3.18 The Absolute Momentum Half Bucket Height (ApB) Cycle 

Derivation of Formula 

Simple rearrangement leaves 

(101) 

Ps is defmed in Section 3.4, and !!PJJps is defmed in Section 3.16. 
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Location of Coding in elvira.f 

The coding for /lpB is found on the line labeled 1210 in the source code elvira.f, /lpB is converted to Ge V Ic 
for plotting purposes in line 1220 and the printing is coded into line 1230. 

Graphical Representation 

Figure 18 depicts the HEB ~ cycle. 

Discussion 

As can be seen from Figure 18 /lpB starts out at 0.094 Ge VIc, then increases during the ftrst parabolic 
magnetic ramp to 0.170 Ge VIc, slowly increases to 0.393 Ge VIc until just before the magnetic flat top, 
decreases to 0.188 GeV/c during the second parabolic ramp, remains at: this level during the fmal setting of 
the timing for transfer, decreases to 0.165 Ge VIc during the adiabatic decrease of the bucket area, and ftnally 
increases to 0.777 GeV/c just before extraction. 
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Figure 18. The HEB half bucket momentum height (aPe) cycle. 

3.19 The Full Bucket Phase Width (~9B) Cycle 

Derivation of Formula 

Section 3.15 derives the equation for the separatrix, Eq. (96) repeated here as Eq. (102), 

As discussed in Section 3.15, the separatrix is the boundary between stable and unstable longitudinal 
oscillations. The area of stable oscillations is called the bucket. The bucket phase width is thus equal to the 
phase separation between the two phases where d91dt = 0 on the separutrix. One of the zeros of d91dt on the 
separatrix is derived in Section 3.15 to be 

(103) 
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The other phase where d61dt = 0 is found by solving 

(104) 

Equation (104) has been solved numerically, and S. Ohnuma has published formulas that fit the data.} For 
6s and 61 in degrees these formulas are: 

61 = (6s)I12[25.809 - 3.351sin6s + 7.050sin26s1 -180 for 0 < sin6s < 0.45, (105) 

61 = (6s)I12[25.761 -1.784sin6s + 3.717sin26s1 -180 for 0.45 < sin6s < 0.9, (106) 

61 = 26s[1- 0.0657sin6s + 0.0677sin26s1 - 90 for 0.9 < sin6s < 1.0. (107) 

!APPROXIMATION! 

(The formulas just stated are not derived here. ELVIRA does not have a routine dedicated to finding 61• 

Another code would be needed to generate 61, and then a fitting of the numerical data to the curves would be 
required if one wants a complete derivation.) 

!OMISSION! 

The bucket width is then 

(108) 

Location of Coding in elvira.f 

The coding for ~6B is found on the lines labeled 1240 through 1340 in the source code elvira.f. Printing is 
coded into line 1350. 

Graphical Representation 

Figure 19 depicts the HEB ~6B cycle. 

Discussion 

As can be seen from Figure 19 ~6B starts out at 21t = 6.28, then decreases during the first parabolic 
magnetic ramp to 3.18, decreases to 2.76 just before the magnetic flat top, increases to 6.28 at the start of the 
flat top and remains there until extraction. 
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Figure 19. The HEB full bucket phase width (Age) cycle. 

3.20 The Full Bucket Temporal Width (MB) Cycle 

Derivation of Formula 

The rf v.oltage will undergo a full cycle during one rf period. Hence:, for one period of a non-accelerating 
bucket, MB = I/fRF and deB = 21t. In general, the phase width of the rfbucket varies linearly with time width so 
the expression relating the two is: 

(109) 

1t is a physical constant,JRF is derived in Section 3.6, and deB is derived in Section 3.19. 

Location of Coding in elvira.f 

The coding for MB is found on the line labeled 1360 in the source code elvira.f, MB is multiplied by 1.E9 for 
plotting purposes in line 1370 and the printing is coded into line 1380. 

Graphical Representation 

Figure 20 depicts the REB MB cycle. 

Discussion 

As can be seen from Figure 20 MB starts out at 16.7 ns, then decreases during the first parabolic magnetic 
ramp to 8.44 ns, decreases to 7.33 ns just before the magnetic flat top, increases to 16.7 ns at the start of the flat 
top and remains there until extraction. 
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Figure 20. The HEB full bucket temporal width (atB) cycle. 

3.21 The Full Bucket Spatial Width (&:B) Cycle 

Derivation of Formula 

The velocity of the particles, ~c, is defmed as the distance traveled by the particles per unit time. Therefore, 
if an imaginary fIrst particle passes a given point at a time iltB earlier than an imaginary second particle, it will 
have travelled a distance 

(110) 

in that time, and since iltB corresponds to the full bucket temporal width, &:B corresponds to the full bucket 
spatial width. 

c is a physical constant, ~ is defIned in Section 3.6, and iltB is defmed in Section 3.20. 

Location of Coding in elvira.f 

The coding for &:B is found on the line labeled 1390 in the source code elvira.f and the printing is coded 
into line 1410. 

Graphical Representation 

Figure 21 depicts the HEB &:B cycle. 

Discussion 

As can be seen from Figure 21 &:B starts out at 5.0 meters, then decreases during the fIrst parabolic 
magnetic ramp to 2.53 meters, decreases to 2.20 meters just before the magnetic flat top, increases to 
5.0 meters at the start of the flat top and remains there until extraction. 
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Figure 21. The HEB full bucket spatial length (~ZB) cycle. 

3.22 The Bucket Area Cycle 

Derivation of Formula 

The equation for the separatrix is derived above in Section 3.15, Eq. (96) repeated here as (111). 

daldt = ± 1{(41thI1l!fo2IEs~2)QV[(cosa + asinas) - (COS(1t - as) + (1t - as)sinas)]} 112. (111) 

The angle a is defmed in Section 3.15, Eqs. (90) through (93), repeated here as Eqs. (112) through (115). 

a = «I> + 1t (or «I> = a -1t) for -1t < «I> < -1tI2. (112) 

a = -<l> (or «I> = -9) for -1tI2 < «I> < O. (113) 

a = «I> (or «I> = a) for 0 < «I> < 1t/2. (114) 

a = 1t - «I> (or «I> = a + 1t) for 1t/2 < «I> < 1t. (115) 

With these definitions it is clear that daldt = ± 1d«l>ldt. Section 3.9 derives Eq. (49), re-expressed in 
Section 3.15 as (84) and repeated here as (116). 

d«l>ldt = 21thTlj3-2Jo(cSE)IEs ' (116) 

Hence, 

cSE = (EJ21thllj3-2fo)(d«l>ldt) = ± 1(EJ21thTJl3-2fo)(daldt) 
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Plotted in c}E-9 phase space, the above relation will fonn two curves, one for the + 1 of the ± 1, one for the 
-1 of the ± 1. As discussed above in Section 3.19, these two curves join each other at the angles 91 and 92, 
where 92 is derived in Section 3.15 as 92 =1t- 95, and 91 is determined numerically. The area bounded by the 
two curves will be twice the integral of the upper curve, integrated over 9 from 9 = 91 to 9 = 92: 

81 

A = 2 f (d9){ (Es~2/111I1th)QV[(cos9 + 9sin9s) - (cos(1t - 95) + (1t - 9s)sin9s)] }l12. (118) 

82 

It is usual to express the bucket area in tenns of a "moving bucket parameter" multiplied by the area of a 
bucket for which there is no acceleration, 

A = a(r)Ao , where r = sin9s • (119) 

The non-accelerating bucket thus corresponds to the case where 9s = 0, or, 

81 

Ao = 2(QVEs~2/111I1th)112 I (d9)[cos9 + 1]112. (120) 

82 

For9s =0,92 =1t-9s =1t. Section 3.19 derives (104), an expression which defines 91t repeated here as (121). 

(121) 

For 9s = 0, this reduces to cos91 = COS1t, which is satisfied for 91 = (2n + 1)1t, where n is any integer. Since c}E is 
maximum at 9s = 0, and c}E has one zero at 92 = 1t, the next time c}E passes through ° as 9 decreases from 1t is at 
91 = -1t. By noting that the integrand is an even function, 

" 
Ao = 4(QVEs~2/111I1th)112 f (d9)[cos9 + 1]112. (122) 

o 

Now (by checking the integral tables) 

" f (d8) [cos8 + 1]112 = 2312, (123) 

o 

so, 

Ao = 8~(2QVEJllll1th)112 (in units of Joule-radians). (124) 

Realizing that an advance of 21t radians is equal to an advance of lIfRF seconds, 

Ao = (~/1tfRF){32EsQVlllll1th}l12 (in units of Joule-seconds). (125) 
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And so in general, 

A = aCDAo = aCDC~htfRF){32EsQVII1'\I1thpl2 Cin units of Joule-seconds) . (126) 

It is now possible to defme aCD, 

aCD = AIAo, where r = sines' (127) 

In the above expression, A is determined from C11S) and Ao is determined in Eq. (124) Cso that both 
expressions use Joule-radians). It is clear that Eq. (11S) is a complicated integral, and for that matter, its lower 
limit has not been analytically determined here. The integral, along with its lower limit, is usually evaluated 
numerically, and this document will not derive aCD any further, but rather note that the numerical solution of 
aCD was done by F. T. Cole and P. L. Morton,2 and that it appears in tables. The tabular data has been 
approximated by formulas. 

!OMISSION! 

A fit to a seventh order polynomial was completed at Fermilab,3 and Jim Griffin4 has shown that aCD is 
closely approximated by 

aCD - (1 - ro·79)1.27, cr = sines). C12S) 

!APPROXIMATION! 

IF THE BUCKET AREA IS USED AS AN INPUT 

As discussed in Section 2.6, ELVIRA can accept either the rf voltag,e cycle or the bucket area cycle as an 
arbitrary input. For the case where the bucket area is used as an arbitrary input, V is a variable that must be 
solved for, but Vsines = vr is known, since this is the energy gain per tum which is determined by the magnet 
cycle as discussed in Section 3.7. Substituting (12S) into (126) and multiplying by rtr within the radical 
leaves 

(129) 

which can be rearranged as 

(130) 

An approximate value of r can be obtained from the above expression by calculating the left hand side, 
initializing a trial value of r to a small incremental value, and iteratively incrementing r by the small 
incremental amount until the left hand side just exceeds the right hand side. When this happens, a close 
approximation to r has been found. 
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!APPROXIMATION! 

Once r is known V is determined by simply dividing vr by r. 

V= vrlr. (131) 

This procedure only works if r is non-zero. For a non-accelerating situation, the voltage can be obtained 
simply by rearranging (125), 

(132) 

IF THE VOLTAGE IS USED AS AN INPUT 

Finally if the voltage is used as an input, (126) is used to find A, 

A = a(r)Ao = a(r)(~htfRF){32EsQVII11I1th}112 (in units of Joule-seconds). (133) 

Q and 1t are physical constants, h is a machine specific constant, ~ is derived in Section 3.6, 11 is derived in 
Section 3.9, Es is derived in Section 3.5,fRF is derived in Section 3.6, either V or A is an input discussed in 
Section 2.6, r = sinas, as is related to <l>s as discussed in Section 3.15, and <l>s is derived in Section 3.8. 

Location of Coding in elvira.f 

The voltage and bucket area calculations are found on the lines labeled 0520 through 0810 in the source 
code elvira.f. 

For the case where the bucket area is used as an arbitrary input. For a negligible (or zero) accelerating (or 
decelerating) voltage, the coding for the voltage is found on lines 0540 through 0570. For a non-negligible 
accelerating (or decelerating) voltage, the coding for the voltage is found on lines 0580 through 0660. a(r) is 
calculated on line 0555 for the case of negligible acceleration (or deceleration) or it is calculated on line 0670 
for finite values of acceleration. Printing of a(r) is coded into line 0680. The voltage is changed to mega volts 
for printing purposes on line 0690 and printing of the voltage is coded into line 0700. 

For the case where the rfvoltage is used as an arbitrary input the bucket area is calculated on lines 0720 
through 0770. Lines 0720 through 0760 calculate a(r), the bucket area is calculated on line 0770, the bucket 
area is converted into e V-seconds for printing purposes on line 0780, the printing of the bucket area is coded 
into line 0790, and the printing of a(r) is coded into line 0800. 

Graphical Representation 

Figure 22 depicts the HEB bucket area cycle. 

Discussion 

As ~an be seen from Figure 22 the bucket area starts out at 2.0 e V-seconds, then increases during the 
magnetic ramp to 4.0 eV-seconds, remains at 4.0 eV-seconds until the bunch rotation is to take place, 
decreases adiabatically to 3.5 eV-seconds to enable bunch rotation, remains at 3.5 eV-seconds for a final 
setting of timing for transfer, then suddenly increases to 16.5 e V-seconds to begin the bunch rotation and 
remains there until extraction. 
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Figure 22. The HEB bucket area cycle. 

3.23 The <xeD Cycle 

Derivation of Formula 

Since <xeD is closely tied to the bucket area, the derivation of the formula for <xeD is discussed above in 
Section 3.22. 

Location of Coding in elvira.f 

Since <xer) is closely tied to the bucket area, the discussion of the coding for <xer) is discussed above in 
Section 3.22. 

Graphical Representation 

Figure 23 depicts the REB <xeD cycle. 

Discussion 

As can be seen from Figure 23 <xeD starts out at 1, decreases to 0.31 during the fIrst parabolic magnet ramp, 
decreases to 0.22 during the linear potion of the magnet ramp, increases back to 1 during the second parabolic 
magnet ramp, and remains at 1 until ejection. 
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Figure 23. The HEB a(r) cycle. 

3.24 The Bucket Area Adiabaticity Cycle 

Derivation of Formula 

The adiabaticity is defmed here as the time rate of change of the bucket area multiplied by the synchrotron 
period and divided by the bucket area, 

Adiabaticity = (dAldt)(1/fsA), (134) 

dA is determined as the difference in A during one step through the program, dt is an input to the program, A is 
defined in Section 3.22 andis is defined in Section 3.9. 

Location of Coding in elvira.f 

The coding for the adiabaticity cycle is found on the lines labeled 1420 through 1490 in the source code 
elvira.f, with printing coded into line 1480. 

Graphical Representation 

Figure 24 depicts the HEB adiabaticity cycle. 

Discussion 

As can be seen from Figure 24 the adiabaticity is essentially zero except for the where the voltage is 
manipulated to enable the bunch rotation. During the adiabatic decrease in bucket area required to enable 
bunch rotation the adiabaticity never exceeds 0.07. The sudden increase in voltage required to begin the 
bunch rotation is, of course, highly non-adiabatic, as shown. 
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Figure 24. The HEB adlabatlclty cycle. 

3.24.1 The Bunching Factor Cycle 

Derivation of Formula 

The bunching factor is defined here as the peak current within the bunch divided by the average current 
within one bucket-to-bucket spacing. 

Bunching Factor = IpEAK/hVEBKT • (135) 

The average current in the bucket is equal to the number of particles in the bunch, N, times the charge per 
particle, Q, times the velocity of the particles, ~c, divided by the bucket to bucket separation, ~c/fRFt and since 
the factors of ~c cancel out, 

IAVEBKT = NQfRF . (136) 

(Note that the average current within the bucket to bucket spacing is equal to the average current in the storage 
ring multiplied by the total number of buckets in the ring [the harmonic number] divided by the number of 
occupied buckets.) 

The peak current in the bunch is equal to the peak value of the line density (dNldz)PEAK times the charge per 
particle, Q, times the velocity of the particles ~c, 

IpEAK = (dNldz)PEAKQ~C . (137) 

The work here, as well as the present state of sse literature, assumes a gaussian distribution for the line 
charge, 

dNldz = Aexp(-z2/2crz2). (138) 

45 



Therefore the total number of particles in the bunch is 

.. 
N = 2 J (dz) Aexp( -z2/2oz2) = A(21t)112oz , (139) 

o 

where the last equality is obtained by looking up the integral in a table. By inspection ofEq. (138) it is clear 
that the maximum value of dNldz is A, and using (139) 

(dNldz)PEAK = A = NI(21t) 112oz' (140) 

Combining (140), (135), (136), and (137) 

Bunching Factor = IpEAK/hvEBKT = (dNldz)PEAKQ~C/NQfRF = ~c/fRF(21t)1120:z:. (141) 

c and 1t are physical constants, ~ andfRF are derived in Section 3.6 and Oz is derived in Section 3.14. 

Location of Coding in elvira.f 

The coding for the bunching factor cycle is found on the line labeled 1500 with printing coded into line 
1510. 

Graphical Representation 

Figure 25 depicts the HEB bunching factor cycle. 

Discussion 

As can be seen from Figure 25 the bunching factor starts out at 6.70, increases to 11.6 during the ftrst 
parabolic magnet ramp, increases to 13.3 during the acceleration cycle, decreases to 6.70 during the second 
parabolic ramp, decreases to 6.27 during the adiabatic decrease in bucket area, and fmally increases to 13.6 
during the voltage step used to initiate bunch rotation, and remains at 13.6 until ejection. 
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Figure 25. The HEB bunching factor (IPEAK"AVEBKT) cycle. 
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APPENDIX A 

In a meeting held on April 30, 1992 between the MEB, HEB and Collider rf and group leaders it was agreed 
that the HEB should design around an assumption that the MEB will deliver a beam with longitudinal 
emittance in the range between 0.1 and 0.33 e V-seconds, and that the: HEB should deliver a beam to the 
collider with a longitudinal emittance of 0.66 e V-seconds. 

This main body of this work has presented the case where the HEB longitudinal emittance cycle varies 
between 0.33 and 0.66 e V-seconds. 

This appendix will present the graphs (Figures A-I through A-25) f(]lr all of the longitudinal variables for 
the case where the HEB longitudinal emittance varies between 0.1 and 0.66 eV-seconds. 
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Figure A·24. The HEB adlabatlclty cycle. 
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C 
C 
C 

APPENDIX B - SOURCE CODE FOR ELVIRA 

PROGRAM RFHEB 
This version of ELVIRA is the version referred to in the May 5,1992 
writeup, PMTN#OO63H. 

INTEGER I,IF1,IFL2,MODE,N, VFLAG 

DIMENSION AA(8) 
DATA AA 11.,-2.423,6.098,-17.53,32.07 ,-33.6, 18.43,~.051 ! 7th order fit 

DOUBLE PRECISION ABKT,ABKTO,ABKTl ,ABKTI,ABKT3,ABKT4,ABSETA,ABSVSIN 
DOUBLE PRECISION ADIABAT,ALPHA,B,B I,B3,B5,BETA,BF,BKTK,C,CIRC,CONV 
DOUBLE PRECISION DBDT,DEBKT,DEDT,DELTHETA,DENOM,DEOEBNCH,DEOEBKT 
DOUBLE PRECISION DPBKT,DPOPBKT,DPOPBNCH,DT,ENRG,EPL,EPL1,EPL2,ETA 
DOUBLE PRECISION FO,FRF,FS,G,GAMMA,GAMMAT,GFUN,H,MP,NUS,P,Pl,P2 
DOUBLE PRECISION P3,P4,P5,P6,PDUM,PHIS,PI,PI02,Q,QUARTIC,Rl,R2 
DOUBLE PRECISION R3,RHO,ROOT,T,Tl,TI,T3,T4,T5,T6,TI,T8,T9,TlO,TlI 
DOUBLE PRECISION Tl2,TBKT,TBNCH,TCYC,THET Al,THETA2,THETAD,THETAS 
DOUBLE PRECISION TlNI,TlN2,TIN3,TlN4,TlN5,TlN6,TV1,TV2,TV3,TV4 
DOUBLE PRECISION TVINI,TVIN2,TVIN3,TVIN4,V,VI,V2,V3,V4 
DOUBLE PRECISION VSINPHIS,ZBKT,ZBNCH 

0001 Q=1.60217733E-19 
0002 C=2.99792458E8 
0003 MP=1.6726231E-27 
0004 PI=3.141592653589793238 
0005 PI02=PII2 

0006 CONV=l./(Q*1.E9) 

0010 OPEN (UNIT=lO,STATUS='OLD',FILE='ELVIRA.IN') 
READ (10, *) RHO,GAMMAT,H,CIRC 
READ (10,*) DT,MODE,VFLAG 
READ (10,*) TlNI,PI,BI,TIN2,P2 
READ (10,*) TlN3,P3,B3,TlN4,P4 
READ (10,*) TlN5,P5,B5, TlN6,P6 
READ (10,*) TVIN1,TVIN2,TVIN3,TVIN4 
READ (10,*) Vl,V2,V3,V4 
READ (10,*) ABKTl,ABKT2,ABKT3,ABKT4 
READ (10,*) EPLl,EPL2 
CLOSE (10) 

0030 OPEN (UNIT=30,STATUS='NEW' ,FILE='b.dat') 
OPEN (UNIT=31,STA TUS='NEW' ,FILE='v .dat') 
OPEN (UNIT=32,STA TUS='NEW' ,FILE=' epl.dat') 
OPEN (UNIT=33,STATUS='NEW' ,FILE='p.dat') 
OPEN (UNIT=34,STATUS='NEW' ,FILE=' e.dat') 

0035 OPEN (UNIT=35,STA TUS='NEW' ,FILE='rf.dat') 
OPEN (UNIT=36,STATUS='NEW' ,FILE='vsinphis.dat') 



OPEN (UNIT=37,STATUS='NEW',FILE='phis.dat') 
OPEN (UNIT=38,STA TUS='NEW' ,FILE='fs.dat') 
OPEN (UNIT=39,STA TUS='NEW' ,Fll..E='nus.dat') 

0040 OPEN (UNIT=40,STA TUS='NEW' ,FILE=' deoebnch.dat') 
OPEN (UNIT=41,STATUS='NEW',FILE='dpopbnch.dat') 
OPEN (UNIT=42,STATUS='NEW' ,FILE='tbnch.dat') 
OPEN (UNIT=43,STATUS='NEW',Fll..E='zbnch.dat') 
OPEN (UNIT=44,STATUS='NEW',FILE='deoebkt.dat') 

0045 OPEN (UNIT=45,sTATUS='NEW' ,Fll..E='dpopbkt.dat') 
OPEN (UNIT=46,STATUS='NEW',Fll..E='debkt.dat') 
OPEN (UNIT=47,STATUS='NEW' ,FILE='dpbkt.dat') 
OPEN (UNIT=48,STA TUS='NEW' ,FILE='radbkt.dat') 
OPEN (UNIT=49,STA TUS='NEW' ,FILE='tbkt.dat') 

0050 OPEN (UNIT=50,STATUS='NEW' ,Fll..E='zbkt.dat') 
OPEN (UNIT=SI,STA TUS='NEW' ,Fll..E=' abkt.dat') 
OPEN (UNIT=S2,STA TUS='NEW' ,Fll..E=' alpha.dat') 
OPEN (UNIT=S3,STA TUS='NEW' ,FILE=' adiabat.dat') 
OPEN (UNIT=S4,STATUS='NEW' ,FILE='bf.dat') 
OPEN (UNIT=SS,STATUS='NEW' ,FILE='zon.dat') 
OPEN (UNIT=S6,STATUS='NEW' ,Fll..E='zperp.dat') 

0060 IFl=-l 
IFL2=-1 

Tl=TINI 
T2=Tl+Pl 
T3=T2+TIN2 
T4=T3+P2 
TS=T4+TIN3 
T6=TS+P3 
T7=T6+TIN4 
T8=T7+P4 
T9=T8+TINS 
TlO=T9+PS 
Tll=TlO+TIN6 
Tl2=Tll+P6 
T=O. 
TCYC=TS 

TVl=T4+TVINl 
TV2=T4+TVINl+TVIN2 
TV3=T4+ TVINI + TVIN2+ TVIN3 
TV4=T4+TVIN1 +TVIN2+TVIN3+TVIN4 

0100 CONTINUE 

Rl=(B3-B 1)/(TIN2+(P1I2)+(P2/2» 
R2=(BS-B3)/(TIN4+(P3/2)+(P4/2» 
R3=(-B I-BS)/(TIN6+(PS/2)+(P6/2» 



0120 CONTINUE 

IF (T.LT.Tl) THEN 
B=Bl 
EPL=EPLI 
ABKT=ABKTl 
V=Vl 
DBDT=O. 
ENDIF 

IF (T.GE.Tl.AND.T.LT.TI) THEN 
B=B 1 +(RlI(2*(T2-Tl»)*(T - Tl)**2 
DBDT=(Rl/(T2-Tl»*(T-Tl) 
EPL=EPLI 
ABKT=ABKTl 
V=Vl+«V2-Vl)/(TI-Tl»*(T-Tl) 
ENDIF 

IF (T.GE.TI.AND.T.LT.T3) THEN 
B=B 1 +Rl *(T -(.5*Tl)-(.5*TI» 
EPL=EPLl+«EPL2-EPLl)/(T3-TI»*(T-TI) 
ABKT=ABKTl +«ABKTI-ABKTI )/(T3-TI) )*(T - TI) 
V=V2 
DBDT=Rl 
ENDIF 

IF (T.GE.T3.AND.T.LT.T4) THEN 
B=B3+(RI/(2*(T3-T4»)*(T-T4)**2 
EPL=EPL2 
DBDT=(RlI(T3-T4»*(T-T4) 
ABKT=ABKTI 
V=V2 
ENDIF 

IF (T.GE.T4.AND.T.LT.T5) THEN 
B=B3 
EPL=EPL2 
ABKT=ABKTI 
V=V2 
DBDT=O. 
IF (T.LT.TV1) THEN 
ABKT=ABKT2 
V=V2 
ENDIF 

IF (T.LT.TV2.AND.T.GE.TVl) THEN 
ABKT=ABKTI+«ABKT3-ABKTI)/(TV2-TVl»*(T - TVl) 
V=V2+«V3-V2)/(TV2-TV1»*(T-TV1) 
ENDIF 
IF (T.LT.TV3.AND.T.GE.TV2) THEN 
ABKT=ABKT3 
V=V3 
ENDIF 
IF (T.LT.TV4.AND.T.GE.TV3) THEN 
ABKT=ABKT3+«ABKT4-ABKT3)/(TV4-TV3»*(T-TV3) 



ENDIF 

0200 CONTINUE 

V=V3+«V4-V3)/(TV4-TV3»*(T-TV3) 
ENDIF 
IF (T.GE.TV4) THEN 
ABKT=ABKT4 
V=V4 
ENDIF 

IF (T.GE.T5.AND.T.LT.T6) THEN 
B=B3+(R2I(2 *(T6-T5)))*(T - T5)**2 
DBDT=R2*(T - T5)/(T6-T5) 
ENDIF 

IF (T.GE.T6.AND.T.LT.T7) THEN 
B=B3+R2*(T -.5*T5-.5*T6) 
DBDT=R2 
ENDIF 

IF (T.GE.T7.AND.T.LT.T8) THEN 
B=B5+(R2/(2*(T7-T8»)*(T-T8)**2 
DBDT=R2*(T - T8)/(T7-T8) 
ENDIF 

IF (T.GE.T8.AND.T.LT.T9) THEN 
B=B5 
DBDT=O. 
ENDIF 

IF (T.GE.T9.AND.T.LT.T10) THEN 
B=B5+(R3/(2*(TIO-T9»)*(T-T9)**2 
DBDT=R2*(T-T9)/(TIO-T9) 
ENDIF 

IF (T.GE.TlO.AND.T.LT.T11) THEN 
B=B5+R3*(T -.5*T9-.5*T1 0) 
DBDT=R3 
ENDIF 

IF (T.GE.Tl1.AND.T.LT.TI2) THEN 
B=-Bl+(R3/(2*(Tll-T12)))*(T-T12)**2 
DBDT=R3*(T-T12)/(T11-T12) 
ENDIF 

0240 WRITE (30,*) B,T 

0250 CONTINUE 

0260 IF (T.LT.TCYC) THEN 

0270 IF (VFLAG.LT.O) THEN 
0280 WRITE (51, *) ABKT,T 
0290 ABKT=Q* ABKT 



0300 ELSE 
0310 PDUM=V/IE6 
0320 WRI1E (31,*) PDUM,T 
0330 ENDIF 

0340 WRI1E (32, *) EPL,T 
0345 EPL=EPL*Q 

0350 P=Q*B*RHO 
0360 PDUM=P*C*CONV 
0370 WRI1E (33,*) PDUM,T 

0380 ENRG=«P*C)**2+(MP**2)*(C**4»**0.5 
0390 PDUM=ENRG*CONV 
0400 WRI1E (34, *) PDUM,T 

0410 GAMMA=ENRG/(MP*C**2) 
0420 BETA=(I-{I/GAMMA**2»**0.5 
0430 DEDT=BETA *C*Q*RHO*DBDT 

0440 FO=BETA*ClCIRC 
0450 FRF=H*FO 
0460 PDUM=(FRF-59957ooo. )/1000. 
0470 WRI1E (35,*) PDUM,T 

0480 VSINPHIS=DEDT/(Q*FO) 
0490 PDUM=VSINPHIS/IE6 
0500 WRI1E (36,*) PDUM,T 

0510 ETA=GAMMAT* *-2-GAMMA* *-2 
0515 ABSETA=(ETA*ETA)**0.5 

0520 IF (VFLAG.LT.O) THEN 

0530 G=O.O 

0535 ABSVSIN=(VSINPHIS*VSINPHIS)**O.5 
0540 IF (ABSVSIN.LT.l.) THEN 
0550 V=«(ABKT*PI*FRF)/(BET A»**2)*«ABSETA *H*PI)/(32*Q*ENRG» 
0555 ALPHA=1. 
0560 GOTO 0680 
0570 ENDIF 

0580 ROOT=«PI*H*ABSETA)/(32*Q*VSINPHIS*ENRG»**0.5 
0590 BKTK=«ABKT*PI*FRF)/(BETA»*ROOT 

0600 DO 0640 N=l,looo 
0610 G=G+O.ool 
0620 GFUN=« 1-G**0. 79)** 1.27)/(G**0.5) 
0630 IF (GFUN.LT.BKTK) GOTO 0650 
0640 CONTINUE 
0650 V=VSINPHIS/G 



0660 CONTINUE 

0670 ALPHA=GFUN*G**0.5 
0680 WRITE (52,*) ALPHA,T 

0690 PDUM=VIlE6 
0700 WRITE (31,*) PDUM,T 

0710 ELSE 

0720 G=VSINPHISN 
0730 ALPHA=AA(1) 
0740 DO 0760 1=2,8 
0750 ALPHA=ALPHA+AA(I)*G**(I-1) 
0760 CONTINUE 
0770 ABKT=«BET A * ALPHA)/(PI*FRF»*« (32*ENRG*Q*V)/(H*PI* ABSETA»**0.5) 
0780 PDUM=ABKT/Q 
0790 WRITE (51,*) PDUM,T 
0800 WRI1E (52,*) ALPHA,T 

0810 ENDIF 

0820 IF (GAMMA.GT.GAMMAT) THEN 
0830 PHIS=PI-ASIN(G) 
0840 ELSE 
0850 PHIS=ASIN(G) 
0860 ENDIF 
0870 PDUM=PHIS*180.IPI 
0880 WRITE (37,*) PDUM,T 

0890 FS=(F0IBETA)*«(-1.*H*ETA*Q*V*COS(PHIS»/(2*PI*ENRG»**0.5) 
0900 WRI1E (38,*) FS,T 

0910 ~S=FSIFO 

0915 PDUM=1000*~S 

0920 WRI1E (39,*) PDUM,T 

0930 QUARTIC=«-2.*PI*H*Q*V*COS(pHIS»/(ENRG*ETA»**0.25 
0940 DEOEBNCH=«(F0*BETA*EPL)/(6.*PI*ENRG»**0.5)*QUARTIC 
0950 PDUM=1000. *DEOEBNCH 
0960 WRITE (40,*) PDUM,T 

0970 DPOPBNCH=(BETA * *-2) *DEOEBNCH 
0980 PDUM=1 OOO.*DPOPBNCH 
0990 WRITE (41,*) PDUM,T 

1000 TBNCH=EPU(6*PI*(ENRG)*DEOEBNCH) 
1010 PDUM=l.E9*TBNCH 
1020 WRI1E (42,*) PDUM,T 

1030 ZBNCH=BETA *C*TBNCH 
1040 PDUM=1000*ZBNCH 
1050 WRI1E (43,*) PDUM,T 



1070 IF (PHIS.LT.O) THETAS=-PHIS 
1080 IF (PHIS.LT.PI02.AND.PHIS.GE.0) THETAS=PHIS 
1090 IF (PHIS.LT.PI.AND.PHIS.GE.PI02) THETAS=PI-PHIS 
1100 IF (PHIS.GE.PI) THETAS=PHIS-PI 

1110 DENOM=(PI*H* ABSETA *ENRG)/(Q*V*BETA **2) 
1120 DEOEBKT=( (2 *COS(THETAS)+(2*THETAS-PI)*SIN(THETAS) )IDENOM) * *0.5 
1130 PDUM=1 OOO*DEOEBKT 
1140 WRITE (44.*) PDUM.T 

1150 DPOPBKT=DEOEBKT/(BETA **2) 
1160 PDUM=1 OOO*DPOPBKT 
1170 WRITE (45. *) PDUM,T 

1180 DEBKT=DEOEBKT*ENRG 
1190 PDUM=CONV*DEBKT 
1200 WRITE (46,*) PDUM,T 

1210 DPBKT=DPOPBKT*P 
1220 PDUM=CONV*DPBKT*C 
1230 WRITE (47,*) PDUM,T 

1240 THETA2=PI-THETAS 
1250 TIIETAD=180.*THETASIPI 
1260 TIIETA1=«THETAD**0.5)*(25.809-3.351 *G+ 7.050*G*G»-180. 
1270 IF (G.GT.0,45) THEN 
1280 TIIETA1=«THETAD**0.5)*(25.761-1.784*G+3.717*G*G»-180. 
1290 ENDIF 
1300 IF (G.GT.0.9) TIIEN 
1310 TIIETA1=(2*THETAD*(1.-O.0657*G+0.0677*G*G»-90. 
1320 ENDIF 
1330 TIIETA 1 =THETAI *PI/180. 
1340 DELTIIETA=THETA2-THETAI 
1350 WRITE (48,*) DELTHETA,T 

1360 TBKT=DELTHETAI(2*PI*FRF) 
1370 PDUM=lE9*TBKT 
1380 WRITE (49, *) PDUM,T 

1390 ZBKT=BETA*C*TBKT 
1410 WRITE (50,*) ZBKT,T 

1420 IF (IFL2.LT.0) THEN 
1430 IFL2=1 
1440 ABKTO=ABKT 
1450 ELSE 
1460 ADIABAT=(ABKT -ABKTO)/(0.5*(ABKT +ABKTO)*DT*FS) 
1470 ABKTO=ABKT 
1480 WRITE (53,*) ADIABAT,T 
1490 ENDIF 

1500 BF=(BETA *C)/(FRF*ZBNCH*«2*PI)**O.5» 



1510 WRITE (54,*) BF,T 

ENDIF 

T=T+DT 
IF (MODE.EQ.1.AND.T.GT.T8) GOTO 9999 
IF (MODE.EQ.2.AND.T.GT.TI2) THEN 

1700 ENDIF 
2000 GOTO 0120 
9999 CONTINUE 

CLOSE (30) 
CLOSE (30) 
CLOSE (31) 
CLOSE (32) 
CLOSE (33) 
CLOSE (34) 
CLOSE (35) 
CLOSE (36) 
CLOSE (37) 
CLOSE (38) 
CLOSE (39) 
CLOSE (40) 
CLOSE (40) 
CLOSE (41) 
CLOSE (42) 
CLOSE (43) 
CLOSE (44) 
CLOSE (45) 
CLOSE (46) 
CLOSE (47) 
CLOSE (48) 
CLOSE (49) 
CLOSE (50) 

IF (IF1.LT.O) THEN 
IFl=1 
Tl=Tl +Tl 2 
T2=T2+Tl2 
T3=T3+Tl2 
T4=T4+Tl2 
T5=T5+Tl2 
T6=T6+Tl2 
T7=T7+Tl2 
T8=T8+Tl2 
T9=T9+Tl2 
TlO=TlO+Tl2 
Tll=Tll+Tl2 
Tl2=Tl2+Tl2 
Bl=-Bl 
B3=-B3 
B5=-B5 
GOTOOloo 
ENDIF 
GOT09999 



CLOSE (51) 
CLOSE (52) 
CLOSE (53) 
CLOSE (54) 
CLOSE (55) 
CLOSE (56) 
STOP 
END 


