
EPICS Performance Evaluation 

Superconducting Super Collider 
Laboratory 

SSCL-644 
September 1993 
Distribution Category: 400 

M. Botlo 
M. Jagielski 
A.Romero 





EPICS Performance Evaluation 

M. Botlo, M. Jagielski, and A. Romero 

Superconducting Super Collider Laboratory* 
2550 Beckleymeade Ave. 

Dallas, TX 75237 

September 1993 

SSCL-644 

·Operated by the Universities Research Association. Inc .• for the U.s. Department of Energy under Contract 
No. DE-AC35-89ER40486. 





EPICS Performance Evaluation 

M. Bodo, M. Jagielski, and A. Romero 

Abstract 

We report on the software architecture, some CPU and memory issues, and the performance of the 
Experimental Physics and Industrial Control System (EPICS). Specifically, we subject each EPICS software 
layer to a series of tests and extract quantitative results that should be useful to system architects planning to 
use EPICS for control applications. 



1.0 INTRODUCTION 
Consisting of six accelerators and several planned experiments, the Superconducting Super Collider 

(SSC)l has a wide variety of needs for control, monitoring, and data acquisition systems that collect 
information from different sources and present it to operators in comprehensive form. It is generally hoped 
that a single system can accommodate all requirements that the different applications might have. A prime 
candidate among several packages on the market is EPICS, the Experimental Physics and Industrial Control 
System.2 In this paper we measure the performance of the individual building blocks that make up EPICS as 
it exists today. The goal is to give aid in the design cycle of those SSC components that will use EPICS. 

EPICS can be characterized as a set of software development tools used to implement real-time distributed 
data acquisition systems. User interfaces, alarm handlers, and custom applications run on a Unix non-real 
time kernel (at present SunOS 4.1.2). The real-time single board computers (SBC) are known as the 
input-output channels (IOC). The SBC used in the study was the MVME167 (68040) from Motorola.3 As of 
June 1993, the real-time kernel supported by EPICS is VxWorks versions 5.0.2b and 5.1.4 EPICS versions 
3.7.1 and 3.10 are used for the evaluations presented in this paper. 

2.0 EPICS SOFTWARE ORGANIZATION 

Figure 1 displays the various software components used to configure and run EPICS applications. Central 
to the EPICS system is the notion of a database. The database consists of records called process variables 
(PV), and each process variable has many fields. During the development of a EPICS application, a database 
is created using a Unix software tool (Database Configuration Tool or OCT) on the workstation. Since the 
physical channels are distinguished by name, PV names must be unique across all IOCs that participate in a 
given application. During this step of readout description the developer links the logical records (PV) to the 
actual hardware devices that will be read during acquisition runs. A State Notation Language (SNL) can be 
used to describe sequential action to be executed during data acquisition within the framework of a run-time 
sequencer bundled with the EPICS distribution. 

EPICS also provides a Unix software tool called EDD that is used to create the operator interfaces. 
Programming through pictures, EDD allows one to construct user interfaces that monitor and change the 
database PV fields. Other Unix tools provided by EPICS include an Archiver (AR), Archive Retriever 
(ARR), and Alarm Handler (ALH). There is also an interface for commercially available packages such as 
Mathematica and Wmgz. 

EPICS control systems are set up so that the IOC software and the database are loaded at boot time. The 
IOC must be rebooted before reloading the IOC. Figure 2 shows how the EPICS IOC software is functionally 
organized into four layers: database access, record support, device support, and device driver layer. The 
mechanism used to communicate between IOCs and Unix applications (for instance, the Operator Interface 
(OPI) is called Channel Access (CA). 

The channel access mechanism provides a "virtual" point-to-point link between a PV and a client 
application running in either the real-time or the Unix kernel. This virtual point-to-point link allows the 
application to examine and modify all fields in the EPICS records (PVs). In addition, through CA the EPICS 
database is used as a point of interaction between client applications. If the ALH, for example, fmds an error 
condition, it will post a message in a PV of type string at the IOC. The operator console is programmed to 
monitor the string process variables and will display the change. 



UNIX (Sparc) 
Non-Real Time Kernel 

TOOLS -
Oatllba .. Conflg Tool (OCT) 
GUI Development (EOO) 

CLIENT APPLICATIONS 

ArchlY .. (AR) 
AR Retrieval (ARR) 
GUI 
Alarm Handle,. 

I CA Client : 

VxWorks (MVME 167/68040) 
Real Time Kernel 

Input Output Channel (IOC) 

Epics Databa .. 

Database support 

Record support 

Device support 

Device Drivers 

I CA Server .1 
Figure 1. EPICS software architecture. 

ThskName Priority Service 

timeStamp 32 timestamp 

callback 40 async 10 drivers 

scanEvent 41 record processing queue (event) 

scanPeriod 53 record processing queue (0.1 s) 

scanPeriod 54 record processing queue (0.2 s) 

scanPeriod 55 record processing queue (0.5 s) 

scanPeriod 56 record processing queue (1 s) 

callback 57 async 10 drivers 

scanPeriod 57 record processing queue (2 s) 

scanPeriod 58 record processing queue (5 s) 

scanPeriod 59 record processing queue (10 s) 

callback 65 async 10 drivers 

CATCP 181 channel access client 

CAUDP 182 channel access server 

CAonline 183 channel access 

taskwd 200 watchdog timer 

Figure 2. Default IOC tasks and respective priorities. The smaller number Indicates higher priority. 

3.0 IOC MEMORY REQUIREMENTS AND PERFORMANCE 
Table 1 shows memory requirements for the EPICS IOC layered software architecture. Enough memory 

must be available for the VxWorks kernel (280 kB in our setup), the four IOC software modules (462 kB in 
our setup), and the database. The database size will vary with the type and number ofPVs; the first 256 bytes 
of all PV types have the same fields. Table 2 lists the 26 process variable types along with their respective 
size. 

2 



Table 1. Memory utilization for the IOC (does not Include the database). 

EPICS Size (kB) Comments 

EPICS (R.3.7.1) 462 iocCore, drvCore, recSup, devSup 

iocCare 48 Database support and channel access 

recSup 47 Record support 

devSup 40 Device support 

drvCore 144 Can be reduced by excluding drivers 

VxWorks S.0.2b 280 Varies based on kernel configuration 

Table 2. Memory utlllzation for each record (PV) type In the IOC database. 

EPICS Record Size (bytes) EPICS Record Size (bytes) 
(R.3.7.1) (R.3.7.1) 

aiRecord 576 permissive Record 288 

aoRecord 656 pid Reco rd 496 

boRecord 544 pulseCourterRecord 392 

biRecord 480 pulseOelayRecord 488 

calcRecord 1360 pulseTrainRecord 440 

compressRecord 400 selRecord 1184 

eventRecord 424 state Record 296 

fanoutRecord 600 steppermotorRecord 584 

histogram Record 480 stringinRecord 528 

longinRecord 496 stringoutRecord 584 

longoutRecord 552 subRecord 1176 

mbbiRecord 800 timerRecord 552 

mbboRecord 856 waveformRecord 456 

The IOC database layer handles the scheduling of each Process Variable. Each PV may be queued by one 
of four mechanisms: 

1. Periodic: Seven predefmed queues are provided with an execution interval of 0.1, 0.2, 
0.5, 1,2,5, and 10 s, respectively. The database developer may specify other time 
intervals as long as they exceed the system clock. The system clock is by default 
60Hz. 

2. Event: 256 "soft" events are provided to schedule PV s in software-controlled 
asynchronous mode. When a task that takes part in a run posts an event number (range 
1-255), all PVs that have "Event" as the scheduling mechanism and the matching 
number on the EVTN field will be scheduled once. 

3. 10 Interrupt: This scheduling mechanism is asynchronous. It involves an auxiliary 
device driver task that either polls for new data or is triggered by VME interrupts. 

4. Passive: PV s are not scheduled if the scan mechanism is set to passive. Passive PV s 
can be scheduled indirectly through input or forward links. A link is a field on the PV 
that points to another process variable. 

3 



During initialization, the EPICS IOC spawns a total of 16 tasks that support the EPICS services: 

1. Seven "scanPeriod" tasks to service the periodic queues. 

2. One "scanEvent" task for the soft event queue. 

3. Three tasks to support channel access services (CA TCP, CA UDP, and on-line). 

4. Three callback tasks (low, medium, and high priority). 

5. One timestamp task. 

6. One watchdog task. 

TOTAL IOC TASKS = (16 default tasks) + (user defmed scan periodic tasks) + 

(2 * number of CA clients) + (number of asynchronous drivers) 

All asynchronous device drivers are implemented as tasks. In addition, for each channel access client the 
IOC will start two tasks: a channel access message task (camsgtask) to service incoming requests, and a task 
to send packets back to the client. 

As described earlier, channel access is the mechanism by which information is delivered and extracted out 
of the IOC. All fields in the EPICS records may be viewed or modified through CA. The clients running on 
remote Unix workstations, such as OPls and the AR, are compiled and linked with a series of CA functions or 
a library. The interface to in-house or third-party products is accomplished using the same CA library. At the 
IOC, the CA mechanism uses the client-server model known as the concurrent server. A concurrent server 
spawns a child task to service each client application. The CA concurrent server name is COCA TCP", and the 
child task (one for each client) is "camsgtask". For each client a second task is started at the IOC, the 
"evenCtask". The evenctask will send data and control information back to the client by consuming a buffer 
known as the client's "event queue" buffer. Figure 3 shows the steps involved in establishing the 
communication links between the IOC and a client application. The one-time setup time was measured in our 
lab to be in the order of 90 ms. 

Client broadcasts searching 
for a given PV 

Client establishes reliable 
connection 

Client Application 
Client Application 

CA UDP task responds 

CA TCP task spawns a message 
task for this client 

camsgtask to process requests 
evenLtask sends data ~nd control 
information stored in the clients 
-event- buffer 

Figure 3. IOC task needed to set up services for a CA client application. 

Figure 4 shows how the client's application buffer at the IOC is produced and consumed. Once the 
communication links are established, the client's buffer at the IOC is filled with control data (by the 
camsgtask) and PV data (by the task that schedules the PV). 

Task processing PV Client Task Sending Data 
(i.e.,scanPeriodic) --+- Event --. (event_task) 

Queue 
Figure 4. IOC tasks needed to service a CA client application request. 

4 



For each PV scheduling mechanism there is a list of PV s and a task to service it. For a 10-Hz PV list, for 
example, a "scanPeriodic" task is created. Every 100 ms, the periodic task processes the PVs in its list. 
Processing a PV involves four software layers: database access, record layer, device support layer, and 
device driver. In order to understand how the various software components interact, we put together a 
case-study application: One analog input (ai) process variable retrieves data at 10 Hz from a XYCOM-566 
DAC VME board.5 Figure 5 displays how the time is spent in the four software layers during record 
processing. 

A B C 0 E F G 
TIME 

database 
A G 

record B F 

device e E 

driver 0 -
Figure 5. Time segments on various software layers during record processing. 

Segment A is the time spent preprocessing in the database layer. It starts when the PV is scheduled for 
processing, and it ends when the record layer is called. Factors in A that will prevent further processing of the 
record include: if the record (PV) has been marked active (processing underway but not fmished), if the value 
in the disable flag field (DIS A) matches the disable value field (DISV), or if a record support routine (record 
layer) cannot be found for this process variable type. The presence of an input link on the PV will increase the 
duration of A. The time spent on A depends on the record type. In our test application time spent on A is: 

Segment A(ai); 9.2 Ils. 

Segment G ends processing in the database layer. The time in G is record-type-dependent. For the ai 
records we did not fmd any factors that influence G. 

Segment G(ai): 0.6 Ils. 

The database layer calls the record support layer. The record support layer is organized as a vector table. 
The vector table is known as the record support entry table (RSET). For each record type supported, a 
function pointer to an initialization routine, a read routine, and a write routine is kept in the vector table. In 
general, input record types (ai, bi, mbbi, etc.) have initialization and read routines, and output record types 
(ao, bo, mbbo, etc.) have initialization and write routines. One field in all PV types is the RECORD TYPE 
field. This information is used by the database layer to call the appropriate function in the record layer. 
Figure 6 is the vector table organization of the record layer. 

Inlt Read Write 

ai aUnitO aLreadO NULL 

ao ao_initO NULL ao_writeO 

bi bUnitO bUeadO NULL 

bo bo_initO NULL bo_writeO 

Figure 6. Record Support Entry Table (RSET). 

5 



Segment B in Figure 5 denotes preprocessing in the record layer. It starts after arrival in the processO 
routine for the particular record type, and it ends just before the device support layer is called. A factor that 
will affect the duration of B is the use of the simulation fields. 

Segment B(ai): 8.8 f.ls. 

Segment F is the post-processing in the record layer. Factors that affect the time in F include the presence of 
alarm conditions and the number of client applications requesting data from the fields in that record. The time 
stamp is set in F. Segment F is record-type-dependent. The results of our test for segment Fare: 

Segment F(ai), 0 CA client: (32.4 ± 2.5) f.ls 

Segment F(ai), 1 CA client: (91.1 ± 7.3) f.ls 

Segment F(ai), 2 CA clients: (134.2 ± 13.7) f.ls. 

Note that the execution times ofF are non-deterministic. The number after a "±" symbol is the one standard 
deviation fluctuation around the mean time value. 

Multiple devices may be supported for a given record (PV) type. The device support layer is also organized 
as a vector table or device support entry table (DSET). For each device supported-for instance, a VME 
board-a pointer to an initialization, to a read, and to a write function is kept. One field in all PV types is the 
DEVICE TYPE field. This information is used by the record layer to call the appropriate function in the 
device support layer. Figure 7 gives the vector table organization of the device support layer. 

Inlt Read Write 

dev1 dev1_init() dev1_read() NULL 

dev2 dev2_init() NULL dev2_write() 

dev3 dev3_init() dev3_readO NULL 

dev4 dev4_init() NULL dev4_writeO 

Figure 7. Device Support Entry Table (DSET). 

Segment C is the preprocessing in the device support layer. For the device type tested we fmd no time 
variations in C. The duration of C depends on the record type and device type. For our case-study application 
it is: 

Segment C(ai,XY566DI): 0.3 f.ls. 

Segment E contains the post-processing in the device driver layer. A driver failure would prolong the time 
spent here (i.e., raising alarms). The duration of E depends on the record type and device type. For our test 
example it is: 

Segment E(ai, XY566DI): 1.9 f.ls. 

The actual work ofreadlwrite to front-end acquisition boards is performed by the driver layer. The driver 
layer contains regular device drivers adapted to the EPICS style. VME address assignment of Control and 
Status Registers (CSR), VME data buffers, and backplane interrupt lines are fixed and controlled by Central 
Authority. This arrangement limits hardware configurability at the front-end boards in exchange for ease of 
development at the back-end or user level (uI. archiver. alarm handler. database. etc.). The device driver used 
in the test application was a simple memory-mapped driver that reads one word (16 bits) from VME when a 
read request arrives. Segment D is the device driver. The device driver used (XY566DI) fetches a word from 
VME A24 space. During segment D, the data is gathered from the hardware device and is placed in the record 
field. Segment D depends on the device type. For the case-study application: 

6 



Segment D(XY566DI): 8.6 J,1s. 

Segments A through G represent the actual time of record processing. Additional time is needed to traverse 
and manage the list ofPVs on a given scheduling list. 

3.1 Time Stamp Latency 

We defme the time stamp latency as the time period that starts with the arrival of data from the hardware 
device (in segment D) and stops as soon as a time stamp is acquired for the PV (in segment F). The time stamp 
latency is not affected by the number of CA clients. The time stamp latency will vary with record type and 
device driver. In the case study we fmd it to be: 

Time stamp latency (ai, XY566DI): 11.9 Ils. 

3.2 Data Send Latency (DSL) 

We define data send latency as the time starting at the arrival of data from the hardware device (in segment 
D) until the time the event_task returns from the sendtoO routine. The sendtoO routine copies the data packet 
(32 bytes for one ai value field) to the kernel TCPIIP driver, which in tum ships it via ethernet to Unix 
applications. Numerous factors affect the data send latency: 

1. Number ofPVs being processed in the same list or scheduling mechanism. The data 
send latency for the first ai increased as more PV s were processed in the same list: 

DSL (1 ai PV):(604 ± 60) J,1s DSL (4 ai PV):(121O ± 51) J,1s 

DSL (2 ai PV):(847 ± 80) J,1s 

DSL (3 ai PV):(970 ± 115) J,1s 

DSL (5 ai PV):(1380 ± 183) J,1s. 

2. The number of CA clients requesting data. The data send latency for successive clients 
has the previous clients' evenctask latencies added in. 

DSL (1 client, I ai PV): (628 ± 45) J,1s 

DSL (2 client, I ai PV): (658 ± 52) J,1s (1st client) 

(1153 ± 49) J,1s (2nd client). 

3. The number of scheduling mechanisms being used in the database. All tasks that 
process PV s run at a higher priority than the CA tasks in charge of sending data 
packets (event task). 

4. Any factor that prolongs the execution of segments E, F, or G during PV processing. 
The reason is that PV processing tasks run at higher priority than any evenctask 
sending data back to a client task. 

3.3 Asynchronous Scheduling 

A second record type (waveform) was evaluated using the Comet Card,6 EPICS 3.10, and VxWorks 5.1. 
The Comet waveform driver is asynchronous. The readout of data in asynchronous drivers is triggered 
externally. The process variables (PV) scheduling field (SCAN) is set to IO-INT. The device driver is notified 
of the arrival of new data via IRQ or by polling the status of the card. The Comet driver uses the latter 
mechanism. 

7 



Figure 8 shows the execution flow for EPICS asynchronous drivers. 

Trigger 

Figure 8. Execution flow for EPICS asynchronous drivers. 

The execution flow for EPICS asynchronous drivers is as follows: 

1. External trigger arrives, card digitizes. 

2. IOC is notified via IRQ !NT or polling. The polling resolution is 32 ms. 

3. Driver Layer: 

4. Device Layer: 

5. Record Layer: 

6. Device Layer: 

7. Driver Layer: 

8. Device Layer: 

9. Record Layer: 

10. Device Layer: 

11. Driver Layer: 

DoneTask wakes up and calls the device layer. 

Callback routine transfers data to PV, followed by a call to the 
record layer. 

Prepare the PV for next processing, followed by a call to the device 
layer. 

Calls driver layer 

Arms hardware (clear and set registers). Exits to 6. 

Exits to 5. 

Places the data into "Event Queues" for CA clients (Segment F). 
If scan mechanism is IO-INT, schedules PV for next trigger, 
exits to 4. 

Exits to 3. 

Exits Done task. 

The following times were recorded in each software layer of EPICS: 

Database Layer: 

Segment A(wt): 9.0 Ils 

Segment G(wt): 1.1 Ils 

A and G are not called when the PV scan is INT-IO. 

Record Layer: 

Segment B(wt): 8.6 Ils 

Segment B(wt): 2.4 Ils, when PV scan is IO-INT 

8 



Segment F(wf), 10 elements, 0 CA client: (45.8 ± 1.3) J.Ls 

Segment F(wf), 10 elements, 1 CA client: (69.7 ± 2.6) J.Ls 

Segment F(wf), 10 elements, 2 CA clients: (90.5 ± 1.7) J.Ls 

Segment F(wf), 100 elements, 0 CA client: (45.8 ± 1.4) J.Ls 

Segment F(wf), 100 elements, 1 CA client: (66.7 ± 2.3) J.Ls 

Segment F(wf), 100 elements, 2 CA clients: (89.8 ± 1.8) J.LS. 

Device Layer: 

Segment Callback(wf,Comet): 11.6 J.Ls 

Data Transfer(wf,Comet): (1.1 * nelements) J.Ls 

Segment C(wf, Comet): (14.9 ± 1.6) J.Ls 

Segment E(wf, Comet): 3.7 J.Ls. 

Driver: 

Segment D (Comet): 9.1 J.Ls. 

Tune Stamp: 

TIme Stamp Latency(wf,Comet): 39.5 J.Ls. 

Data Send Latency: 

DSL(1 client, 1 wf PV): (541 ± 65) J.Ls 

DSL(2 client, 1 wf PV): (584 ± 56) J.Ls 

(1198 ± 68) J.Ls 

(1st client) 

(2nd client). 

The factors that affect the performance of an asynchronously scheduled PV include: 

1. Tune spent in the database layer. 

2. The fact that the frequency of the scheduling is externally triggered. 

3. Execution of the Done Task (interrupt or polling task), one per card. 

4. Number of elements to transfer across VME. 

5. Time spent arming the card for next trigger. 

6. Other factors, previously discussed, that affect segments B, C, D, E, and F. 

4.0 EPICS RECORD PROCESSING OVERHEAD (RPO) AND 
CHANNEL ACCESS (CA) 

We defme the record processing overhead as the time needed to process a record, excluding the device 
driver layer. The technique used to measure record processing overhead was indirect. In each test a single PV 
type was chosen, and a single scan mechanism was used The DEVICE TYPE field in each PV was "Soft 
Channel". The soft channel device type exercises the EPICS software layers without talking to a real device 
driver. The first and last record in the queue was a subroutine record that generated VME activity. A VME 
tracer measured the time elapsed between processing of the first and last record in a given queue. The process 
variables have a PHASE field that allows one to prioritize (highest 0, lowest 100) the order in which PV s are 
scheduled within a given queue. 

9 



Figure 9 illustrates the database configuration used in the RPO measurements. The SCAN field was used 
to prioritize the order in which the PV s were scheduled: first a subroutine record to start timing; next, one or 
more ai records; finally, the subroutine to stop timing. The two subroutine records added 140 /.18 to each 
measurement. Consequently, the results reported were corrected accordingly. 

Record (Field, •••• J Comment 
sub_tstart(SCAN-1s,PHASE-O) Start timing with VME tracer 

ai1(SCAN-1 s,PHASE-SO,DTYPE=Soft,RTYPEzai) 
ai2(SCAN-1 s, PHASE-SO,DTYPE-Soft,RTYPE_ai) 
ai3(SCAN-1 s,PHAS~=SO,DTYPE=Soft,RTYPE-ai) 

aiN(SCAN-1s,PHASE-SO,DTYPE-Soft,RTYPE_ai) 

sub_tend(SCAN-1 s,PHASE-100) Stop timing with VME tracer 

Figure 9. Database configuration to measure record processing overhead. 

The test was first executed using analog input (ai) process variables. As described earlier, there are 
numerous record types (PVs), so the test was done with bi (binary input), multibinary input (mbbi), and the 
waveform record. Most record types have a single value field, with the exception of waveforms. The number 
of elements in a waveform record is specified in the NELEM field of the PV. Increasing this number does not 
increase the record processing overhead. However, in the device driver layer the total record processing time 
will increase with the number of elements in the waveform record to account for the buffer copy. Table 3 lists 
the record processing overhead in /.1s, for various record types as a function of the number of records. The 
average record processing overhead per PV scales well with the number ofPVs: 

RPO(ai): 61 /.1s 

RPO(bi): 51 /.1s 

RPO(mbbi): 52 /.1s 

RPO(wt): 52 /.1s. 

Table 3. EPICS racord processing overhead for various record types. Time in J.1S, scan queue 
running at 1 Hz, no channel access. 

Number PV al bl mbbl waveform (dlff NELEM) CPU Idle 

10 100 500 1000 

10 762 660 670 668 668 668 * 99.0 

50 3174 2693 2728 2750 2750 2750 * 98.5 

500 30576 25333 25989 27500 27500 27500 * 96.0 

900 55480 46305 46960 46960 46960 46960 * 93.0 
1000 * * * * * * * ----

The next test was to develop an application with one operator interface (channel access client) and one 
IOC. The database contained 100 ai records on a queue at 10 Hz. The first and last records were subroutine 
records that accessed VME for timing purposes. An additional subroutine record was added at the end of the 
queue to change the value field in all PVs. The last subroutine record provided a "fake" device driver by 
changing the value field in alII 00 PV s, forcing the Channel Access mechanism to execute at 10Hz. Channel 
access clients receive data only when the PV value changes. The last subroutine record was implemented 
using two calls provided by EPICS: 

dbNameToAddrO Find the address of a process variable in memory 

dbPutFieldO Change the value field of the process variable. 

10 



The last subroutine record had a loop over 100 elements to change all the PVs. It executed in 13.7 ms. It 
should be noted that this record was at the end of the 10-Hz queue and did not affect the RPO measurement. 
However, the CPU idle time was reduced by 14%. 

Figure 10 shows the database configuration used in the test. Table 4 lists the RPO and CPU idle time 
measured. The numbers in the "corrected" column are the CPU idle times corrected by 14%. RPO and CA 
CPU utilization increase with the number of clients. 

Using a network scope, we observed that the network (Ethernet) load was 40 kB per client when 100 ai PV s 
were changing values at 10 Hz. If we assume that 4 bytes of application data are required to represent the 
12-bit values being read from the ai devices, the network overhead is (36/40)*100 = 90%. 

To observe the effect of CPU overload at the IOC, seven CA clients were started on three Sun workstations. 
Data was archived for 500 000 data points. We observed a 0.25% data loss with error messages at the IOC, but 
the channel access clients were not notified (i.e., operator interface). In addition, it appears that the new data 
packets are discarded in favor of the ones already queued. When an eighth client was added to the application, 
the Archiver (one-channel access client) lost connection with the IOC. 

In another test to study the behavior of CPU usage by channel access, we used one client (operator 
interface) monitoring the ai PV queued with 10Hz. Again, the values of all variables were forced to change in 
each cycle. Table 5 gives the results of CPU utilization as the number of variables increased. 

Record (Field ••• J Comment 
sub_tstart(SCAN=O.ls,PHASE=O) 

ail (SCAN=O.1 s,PHASE=50,DTYPE=Soft,RTYPE=ai) 
ai2(SCAN=O.1s,PHASE=50,DTYPE=Soft,RTYPE=ai) 
ai3(SCAN=o.ls,PHA~E=50,DTYPE=Soft,RTYPE=ai) 

Bil OO(SCAN= 1 s,PHASE=50,DTYPE=Soft,RTYPE=ai) 

sub_lend(SCAN=O.fs,PHASE=fOO) 

sub_tillai(SCAN=O.f ,PHASE= fOO) 

Start timing with VME tracer 

Stop timing with VME tracer 

Fill all ai values (214ms) 

Figure 10. Database configuration, single periodic queue at 10 Hz, 100 el PV plus a single subroutine 
record that fakes the device driver, changing the values of all 100 variables at 10Hz. 

Table 4. EPICS Record Processing Overhead (PRO) and CPU utilization for 100 al PV at 10Hz. 
The third column Is corrected to account for a subroutine used to change the value field 
on every Iteration (approx.14 ms). 

RPO Corrected Observed 
(0.1 s) CPU Idle(%) CPU Idle(%) 

No CA Request 6.615 ms 92.3 78.3 

One CA Client 100 PV 8.786ms 82.0 68.0 

Two CA Client 100 PV 10.342 ms 72.5 58.5 

Three CA Client 100 PV 11.857 ms 62.0 48.0 

Four CA Client 100 PV 13.101 ms 53.0 39.0 

11 



Table 5. Application with 100 al PVs at 10Hz In the IOC, and 
one operator Interface monitoring N variables. 

Number of Process Variables CPU Idle(%) 

10 79 

20 78 

30 77 

40 76 

50 75 

100 68 

5.0 DATA OVERHEAD 

We briefly looked at the EPICS Data Presentation Overhead. We ran the AR (Archiver) connected to an 
IOC that processes 100 analog input records at a frequency of 10Hz with the VAL fields changing 
synchronously. No other record fields were touched. The AR logged the data in a file, and we measured an 
increase in file size of 999 kB in 109 s, or9.17 kB/s. Next, we compressed the file with the Unix compression 
utility (compress(1}) and found that the data set was reduced to 9% of its original size. From that we conclude 
that a different data representation in EPICS could, in certain cases, reduce storage requirements by a factor 
of 10. 

6.0 EPICS IOC RESOURCE UTILIZATION 

The total CPU usage by the EPICS IOC is: 

where 

CPU = TRP + TCA + tKernel, 

TRP is the sum of the time spent processing all the records in the database; 

TCA is the sum of the time spent by all the tasks that service clients' event queues, which include . 
all the "camsgtasks" and "evenCtasks"; and 

tKernel is the time spent by the VxWorks kernel during task management. 

The Total Record Processing time is the sum of the Record Processing (RP) time spent in each individual 
process variable. Based on our observations, the RP for each PV can be estimated: 

where 

RP = [tDb(recType) + tRec(recType, caReq) + tDev(recType, devType} + 

tDriv(devType, nElem} + tFetch] * schFreq, 

tDb 

tRee 

tDev 

is the time used by the database layer (segments A and G). It depends on the record 
type. Another factor that increases tDb is the presence of input links. 

is the time used by the record layer (segments B and F). This time is a function of the 
record type and number of pending channel access requests for fields in the process 
variable. Other factors that increase tRec are the presence of alarm conditions and 
the size of the data being copied to the evencqueue buffers (i.e., number of elements 
in waveform). 

is the time used by the device support layer (segments C and E); it depends on the 
record type and device type. 

tDriv is the time spent by the device driver layer (segment D); it depends on the device 
type and number of elements (typically one) to be read or written. 

12 



tFetch is the time spent by the EPICS task fetching or traversing the list of process 
variables to get the next record (in the order of 10-18 ~s). 

schFreq is the frequency at which the process variable is scheduled for processing. 

The Total Channel Access (TCA) time is the time used by the "CA UDP," "CA TCP," "CA online", and the 
two tasks necessary per client application, which include one "camsgtask" and an "evenctask." 

The TCA tends to fluctuate during a run, depending on the number of client tasks, number of outstanding 
requests for fields of the PV, the frequency with which the value fields change, the number of requests for 
control data, and the size of the data and control packets being sent to each client application. 

The tKernel is the time spent by the operating system switching between tasks and is determined by the 
number of active tasks and the scheduling frequency during the interval being measured'? 

7.0 CONCLUSIONS 
EPICS allows prototyping and development of distributed monitoring and control applications that use 

VxWorks for the front-end processors and Unix (Sun OS) for storage and operator interfaces. The amount of 
front-end processors needed is application-specific and can be predicted. 

The time stamp latency varies with the record type, a fact that should be considered if the time stamp is to 
be used for algorithms other than ordering and sequencing of data packets. 

The Data Send Latency is non-deterministic with a mean in the millisecond range. It depends mainly on 
the number of PV s and clients. This latency is independent of the carrier. 

The current carrier, TCPIIP over Ethernet, is affected by network load. 

The network overhead, defmed as the ratio of useful data (timestamp and data value) to total data on the 
carrier, is 20%. The ratio is better (increases) with the use of array data (waveform). Under overload 
conditions the channel access mechanism discards newer packets first, with no notification to the client 
application. The data is sent to client applications only when they change above certain programmable 
thresholds. 

The data compression rate achieved on archived data is 90%. 

The data packet send mechanism runs at the lowest priority and may halt under overload conditions. 
Therefore, mission-critical corrective algorithms should run on the IOC. 

The EPICS application layer has no mechanism to pass configuration data to device drivers. Every desired 
hardware functionality has to have its own device support software. 

13 



ACKNOWLEDGEMENTS 

We used a CPU utilization program developed by Carl Kalbfleisch, and poned to VxWorks by Lee Miller, 
who also helped in preparing this document. Database developments were done by James Hayes. Device 
Driver utilization work was carried out by Adrian Stipe and Huan Nguyen. 



REFERENCES 

1. SSC Site Specific Conceptual Design, SSCL-SR-1056. 

2. Los Alamos National Laboratory, EPICS Users Manual. 

3. Motorola Inc., MVME1661MVME1671MVME187 Single Board Computers Programmers 
Reference Guide, October 1992. 

4. Wind River Systems, VxWorks Programmers Guide. 

5. XYCOM, XVME-566 Manual, May 1987. 

6. OMNIBYTE Corp., COMET Reference Manual, April 1992. 

7. M. Botlo et al., "V x Works 5.1 Benchmark Tests," SSCL-627, June 1993. 


