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Transient Effect in High Intensity 
Proton Linear Accelerators 

Yu. Senichev 

Abstract 

We study the possible mechanism of the separatrix destruction during the transient in 

the linear accelerator. This effect is due to the parametric resonance of the beam in the 

longitudinal plane caused by the perturbations of electromagnetic field. The magnitude 

of time-space perturbations of the electromagnetic field depends on the disperse feature of 

resonator and the beam intensity. In the paper we discuss how to avoid this effect or to 

decrease its influence. 



1.0 INTRODUCTION 
Presently, the research of phenomena associated with high intensity proton linear accel­

erators requires new emphasis since many questions now need answers. One issue is the 

emittance growth due to the resonant features of the beam.1 The present proton linear 

accelerator development has made it possible to accelerate a beam current of some tens mA 

in pulse. Such effects as the beam pulse break due to excitation of the HEM wave and the 

beam loading on the fundamental mode now are design considerations. 

The new tendencies are in terms of the accelerating rate increasing and using a more 

powerful generator to drive more long resonators. These considerations help increase ac­

celerator efficiency. Since the efficiency is defined by the ratio of the beam power and the 

losses power, it is reasonable to increase this ratio. But on the other hand, when the beam 

loading is considered more strongly, feedback system complications result. So the next 

step is to raise the generator efficiency and power, and decrease the number of cavities, 

which automatically reduces the number of control systems as well. But a higher accel­

erating rate and a longer cavity results in a new effect-conservation violation of stable 

longitudinal motion which in turn can result in emittance growth. What is the substance 

of this effect? 

For compensation of the time-dependent perturbation of the electromagnetic field dur­

ing transients, the generator varies the power. However, this power has to excite all eigen 

waveguide modes, and spreads in both directions from the power input point which causes 

space-time-dependent perturbations. The magnitude of space perturbations of the elec­

tromagnetic field depends on the disperse features of the resonator and has the scale of 

the cavity length. At the same time, the longitudinal oscillation frequency depends on the 

electromagnetic field amplitude and grows with the rate acceleration. So for accelerators 

which have been constructed before with short resonators and low accelerating rates, the 

wavelength of perturbation is much less than the longitudinal oscillation wavelength. In­

creasing the accelerating rate and cavity length significantly increases the probability of 

parametric resonances in the longitudinal motion. These resonances even at a relatively 

small amplitude of perturbation rv 2 -T 5% can destroy the separatrix. When increasing the 

accelerating rate and decreasing resonator length, the order of synchrobetatron resonance 

falls, so the longitudinal oscillations can influence transverse motion and emittance growth. 

This paper considers the instability of the beam due to parametric resonances in the 

longitudinal plane caused by the input of power for beam loading compensation. Transients 

can be caused not only by the beam switching on or off but also by the feedback system 

that has a high coefficient of stabilization. The suppressing of any amplitude or phase 

random instability by the feedback system leads to the input of corrected power, which 



causes the space distortion of the electromagnetic field. 2 Concerning the beam instability, 

it is reasonable to start with the mechanism of instability. To emphasize the actuality of 

the problem and avoid abstraction, we begin with the reason for instability. 

2.0 ELECTROMAGNETIC FIELD PERTURBATION IN RESONATOR 

High energy proton linear accelerators mainly have two types of accelerating structures: 

Disk and Washer (DW) and Side Coupled (SC) cells. Both have many common features. So 

we consider this phenomenon in these structures. The perturbation of the electromagnetic 

field in the resonator can be described by a series of normal modes for the periodical chain 

of coupled cells (accelerating and coupling).3 Every cell is considered in a single mode 

approximation. So the field is represented as: 

E( x, y, z, t) = Re [~A,(t)Eo(X, y, z )eih
" e-iW

'] , 

H(x, y, z, t) = Re [~B,(t)HO(X' y, z)eih"e-iW
'] , 

(1) 

(2) 

where As(t), Bs(t) are electric and magnetic components time-dependent amplitudes of 

s-th mode which have distribution along cavity Es = Eo(x, y, z)eihsz , Hs = Ho(x, y, z)eihsz , 

W is the frequency of the outside source (beam or generator), Eo(x, y, z) and Ho(x, y, z) 

describe the field distribution in one cell, and hs is the wave number of s-th mode. The eigen 

functions Es and Hs are connected with each other by Maxwell's homogeneous equations: 

curiEs = j J-lowsHs, 

curlHs = -jeowsEs, 

(3) 

(4) 

where Ws is the eigen frequency of s-th mode. We primarily are interested in the elec­

tromagnetic field perturbation initiated by the beam switching on or off, although the 

following generalization is for the common case. We solve the problem of beam loading 

and compensation of the beam electromagnetic field perturbation by the generator. It is 

assumed that at the moment t = 0, the beam enters the cavity. Simultaneously, the gener­

ator gives the additional power required to compensate for beam loading. In the common 

form, the total electromagnetic field is described by Maxwell's unhomogeneous equations. 

Substituting Eqs. (1)-(4) in Maxwell's unhomogeneous equations we get the expression for 

time-dependent coefficients As(t) and BsCt): 

a~s - jwAs + jWsBs = - ~s [!vjg E;dv - !vje E;dV] , (5) 
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8Bs . B . A 0 at - JW s + JWs s = , (6) 

Ns = c !v EsE;dv, (7) 

where jg and je are the generator and beam currents, and Ns is a norm. 

Eliminating As and Bs and taking into account the quality factor Qs in Ws = wos(1 -

jfQs) (below we omit index "0" in wos) we can receive the following equations: 

8As j(w;-w
2
)+w;/Qs A = __ 1_ [·gE*dv+~ ['eE*dv. 

8t + 2w s 2Ns Jv J s 2Nsw Jv J s 
(8) 

Symmetrically one can get the expression for Bs(t), but for the beam dynamic equation 

we need only to know As(t). Solving this differential equation, we have: 

where 
'2 2 2 

.w.-w -~t 1 - e-z 2w te 2wQ. 

as(t) = ---""'-2 ----:"2--

1 + i W
,-2

W Qs 
w. 

w; - w2 = ]{ f cos( hs ), 

(9) 

(10) 

(11) 

where K f is the coupling coefficient. The first integral describes the additional power of 

the generator and the second one is the electromagnetic field excitation by the beam. The 

coefficients outside the integrals are the same, so the beam loading compensation in the 

trivial case is when the integrals cancel. However, in practice it is possible to compensate 

only for one mode, since the character of the interaction of the beam and of the generator 

with the resonator is quite different. Actually, the beam and the generator currents can 

be written as 

je(z, t) = iI(z)e-i(CJ,It-hbZ ) , 

jg(z, t) = iI6(z - zo)e-iwt, 

(12) 

(13) 

where hb = W /Vb, Vb is the beam velocity, zo is the point of power input into the resonator, 

iI means the first harmonic, the frequency of the beam, and the generator all are equal to 

each other. Here the magnitude of the currents is taken as an average over the cross section 

of the beam and the loop (or hole), since we study the excitation of axial symmetrical modes 

only. It is obvious that the integral of the beam interaction for a constant first harmonic 

along the resonator doesn't equal zero except for the fundamental mode (s = sf) under 

the condition when hs = hv. At the same time, the integral for the generator doesn't equal 

3 



zero for any mode if the coupling coefficient Re[ eih •zo ] has a "nonzero" magnitude. In 

other words, in order to compensate for the beam perturbation of the fundamental mode, 

we have to input power that equals the beam power, but simultaneously this local input 

of power also excites all modes. Let's rewrite the expressions of Eqs. (1) and (9)-(11) for 

the field induced by the beam taking into account that only the fundamental mode will be 

excited. 

(14) 

where RP = PI:'b~~'S' r/J.' Qo is the loaded quality factor of the resonator for the fundamental 

mode, Pbeam = ! cos 4>s Iv if E; dv, and 4>s is the synchronous phase of the beam. Here we 

have taken Plos = fQ~' Now since we are interested in the effect of the interaction of the 

beam with the perturbed field by itself, let's represent the field of the generator in the view 

of the traveling harmonics El = O.5Eo with the phase velocity equal to the beam velocity: 

E(x, y, z, t) = Re [~B'(Z' t)2E,e-;(wt-h"H.) 1 RP, (15) 

where 

{ 

( -~t) 1 - e 2Qo 

",2 
X -~t e ~w'JlJ 

- l+i",;-;",2 Q. 
'" 

if s = sf 

otherwise. 
(16) 

The symmetry of s-th and -s-th modes relative to the fundamental mode is taken. This 

expression shows that the space-time distortion (front) of the electromagnetic field with 

the carrier resonant frequency w moves along the resonator with a velocity equal to average 

velocity for all modes: 

(17) 

Since 

(18) 

then it means that the front of perturbation that the beam "sees" moves with the group 

velocity. It is obvious that each mode has its own group velocity and moreover, each 

mode damps slightly differently. Thus, the front will change shape as it moves along the 

resonator. Bs(z, t) for s = sf is the average of the electromagnetic field over the length of 

the resonator at any moment in time. It is exactly equal to the field induced by the beam 

when Pbeam = Pgener. So if this term is subtracted from Eq. (1), then we shall get the 

field that the beam sees. Knowing the dispersion function of the structure, it is possible 
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to calculate what the distribution of the electromagnetic field will be during the transient. 

Figure 1 shows the field of the generator at the moment t = 0.4 f-ts. This illustrates what 

will happen in the cavity during injection of the beam and the simultaneous input of power. 

The origin of coordinates corresponds to the point of the power input. In the case of the 

Superconducting Super Collider (SSC), this is the middle of the resonator. Physically, 

it means that the beam moves with the phase velocity and fills the resonator 1/ K f as 

fast as the wavefront from the generator. So after the first tens of ns the beam interacts 

with the whole resonator and the average level of the field will decrease in accordance 

with the exponential law I'V (1 - e-wt/2QO). The generator creates a wave that radiates in 

both directions from the middle and divides the resonator into three parts with alternative 

drops of field. The overall change in time goes as I'V e-wt/2Qo. The main contribution to 

the distortion of the field in the resonator is caused by harmonics which are reflected with 

coefficients / p/ = 1. The incident and reflected waves give a standing wave: 

(19) 

which means that the distribution is described by cos in, where N is the total number of 

cells in a module and n is the number of the cell. Figures 2 and 3 show the typical dispersion 

curve of a side coupled structure and distribution of electromagnetic field amplitude in 

accelerating cells for some modes. Figure 4 shows the absolute value of electromagnetic 

field distribution of first (a) and second (b) modes experimentally measured on low level of 

the power for the second tanks of the SSC Linac second module (the measurements have 

been done by Chu Rui Chang). The character is absolutely identical to the theoretically 

taken one. Besides, one can say that the integral over module of the total distortion (except 

the fundamental mode) equals zero. However, the front of the wave can have significant 

impact. For the simplest case when we use linear dispersion, Ws - W = ~ wjP, it is possible 

to get an analytical expression for the height of the wave: 3 

bEl = 2EI RP Lcav ~e-wt/2Qo 
Vgroup 2Qo ' 

(20) 

or using Pbeam = ~IIEI cos <Ps, one gets the expression by taking Rshunt = El Lcavity/ Plosses: 

CE - I R Tgr -t/Tt v I - I shunt-e , 
Tt 

(21) 

where Tgr = Lcav/vgr and Tt = 2Qo/w. The value KT = ~ defines the ratio between Tt 

the front of the wave at the initial time and the final magnitude of the electromagnetic 

field obtained when we excite the resonator by a generator with the vector IIRshunt-for 

the SSC case KT = 0.35. This means inputting a generator power into the resonator 
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with a shunt impedance R8 hunt = 50 Mn to compensate the beam loading with first a 

harmonic II = 2Io = 2 * 0.02 rnA, then a wave is excited with a front amplitude that 

equals 0.7 MV 1m. This is '" 10% of the accelerating harmonic. In the next section we 

shall need the Fourier representation of perturbation. Using the common expression for 

perturbation, Eqs. (1) and (9)-(11), we can rewrite it as: 

N/2 27rkz 
bEl(Z, t) = EIRPe-t/r L ek cos 4' 

8=1 

(22) 

Lr is the resonator length and ek ~ ~SintkwQ ' where D..kw = (w - wl)k, which coincides 
kW w •• 

with one of W - Ws. 
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Figure 1. The perturbed electromagnetic field in resonator. 
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Figure 4. The experimental measurement of: (a) first mode electromagnetic field distribution and 
(b) second mode electromagnetic field distribution. 

3.0 PARAMETRIC RESONANCE AND LONGITUDINAL MOTION 
INSTABILITY 

3.1 In Structure with Constant Phase Velocity 

Thus, during the transient the beam sees practically the rectangular wave that radiates 

from the point of power input and damps simultaneously (see Figure 1). In this section 

we shall analyze the beam dynamics in this perturbed field. 

The DW or SC structures have many features. One of them is a constant cell size in 

each tank which implies a constant phase velocity along the tank. For simplification let's 

assume the distribution of the electromagnetic field in each accelerating cell doesn't depend 
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on transverse coordinates. Although for the synchrobeta:tron resonance the inverse couple 

is important. It is presented as: 

E(z, t) = E(z) sin wt(z), (23) 

where 

(24) 

t(z) is the current time in the coordinate z for the particle, ~hich moves with velocity /3part 

in accordance with equation: 
dp(z, t) _ E( t) 

dt - e z, , (25) 

p = mO'Y/3partC is a momentum of particle. Let's represent the distribution of the electro­

magnetic field in the accelerating cell by the Fourier series: 

00 27J"m 
E(z) = L AmcosLz, (26) 

m=l 

where L is the period length (for SC and DW, L is double the length of the accelerating 

cell). Then substituting Eq. (26) in (23) we get: 

E(z, t) = t Am cos 2~m z sin wt(z) 
m=l 

(27) 

1 ~ . [ 27J"m 1 = 2 ~ Am sm wt(z) - L Z , 

m=-oo 

(28) 

here 27rLm z can be considered as the wave number and is written as km = .1£.., where Vm is 
Vm 

the phase velocity of the m-th harmonic. Then the motion equation is represented as: 

~~ = ~ L Am sin [wt(z) - kmz]. (29) 
m 

If the particle moves in synchronism with one of the harmonics we can use the method 

"slow phase"-<jJ (in Russian literature this method is called "method of averaging over 

phase"): 

(30) 

where c/3w = if;;; is the phase velocity of m-th resonant harmonic. Below we shall down in­

dex "part" and understand /3 as the relative velocity ofthe particle. Uniting the expression 

of Eq. (30) with Eq. (29) we get the following equation system: 

dp _ eAm . A. 

dt - 2 sm 'f" 

d<jJ = w [1 _ /3w] 
dt /3 ' 

9 
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where 0.5Am is amplitude of the m-th harmonic, which maintains the acceleration of 

particles. In the discussion that follows, the resonant harmonic, which is responsible for 

the fundamental resonance, will be noted as EoT, where T is time flight factor. 

At first let's consider the case when j3w is constant. Differentiating the second equation 

of the system, Eq. (31) and substituting ¥t from the first equation: 

dj3 eEoT .. ,I.. 
- = SIn ¥" 
dt mOCl'3 

(32) 

in the second equation, we receive the equation: 

d2¢> eEoTj3w>'. 
d 2 + 2 2 3132 sm ¢> = 0, 

T 7rmoC l' 
(33) 

where T is a new more convenient variable T = wt, or T = 7rn, where n is the number of 

the cell. This equation describes the oscillation of a particle in the resonator with constant 

phase velocity and it coincides with the equation of pendulum. It has the exact decision 

through elliptical integrals: 

8yfq 8q3/2 

¢>(a,'l/;) = 1 + q cos'l/; - 3(1 + q3) cos3'l/; + ... , 

n 7r 

no = 2K' 

r = sin ¢>max/2, (34) 
, 

here r is a module of K, which is the elliptical integral of the first kind, q = e-1r~ and 

K' (r) = K(r'), where r' = VI - r2 and n2
0 = 2 eE°l'1j3 ,n is the frequency, which depends 7rmoc 'Y w 

on the amplitude of oscillation. Using these formulas, one can calculate the motion of one 

particle together with constant phase velocity and the oscillation frequency. Figure 5 shows 

how the average synchronous frequency depends on the amplitude. The central particles 

oscillate with the maximum frequency equal to no, the boundary ones have zero frequency. 

Obviously any perturbation with diapason 0 + no will be in the first order resonance with 

some particle. Although in the common case for multi-order resonance this is always so for 

I and k when In+kv = O. We are interested in the motion in the perturbed electromagnetic 

field, which can give the resonant condition when instead of constant Eo, we shall have 

the variation of electromagnetic field along the resonator: 

(35) 
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where v = 27r/Tr • Some harmonic with number k can be a reason for the parametric 

resonance on the length of resonator Tr = 7'1 N, where N is the number cells in the resonator. 

Then Eq. (33) has view: 

d2 ¢> 
dr2 + n5(1 + ek cos kvr) sin ¢> = o. (36) 

The Hamiltonian of the unperturbed motion has the standard form, which is used in the 

literature:4,5 
p2 

H(p, ¢» = 2 + n5 cos ¢>, (37) 

or in a more convenient form for solution by the perturbation method: 

(38) 

Taking the standard exchange of the variables on the action integral I and phase 1> 

J21/no cosB, where B = nr, we get: 

H(I, B) = no [I - ~~ cos
4 B + ... J . (39) 

For the perturbed motion, when n5 = (1 + ek cosr), we have: 

(40) 

After averaging over phase: 

[ 
ek ]2 J H (], B, r) = no ] + 4] cos 'ljJ - 16 + . .. , (41) 

where 'ljJ = 2B - r is again a slow resonant phase. So for any kv = 2n we shall have the 

parametric resonance. As distinct from the linear resonance, the nonlinear term exists 

here and this term rv ]2 plays the stabilizing role for the nonlinear parametric resonance. 

From last equation one can show that the maximum amplitude will be proportional to ek 

and restricted by final value 8ek. However, we see from here that the threshold for ek is 

absent when the resonance starts. This means that any small perturbation has to cause 

the distortion of the separatrix in a case of constant phase velocity. This is true, but we 

are more interested the stepped phase velocity case. 
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Figure 5. The average synchronous frequency vs. the oscillation amplitude. 

3.2 Stepped Phase Velocity Structure 
In reality, the phase velocity in structures such as DW and SC is changed step-by­

step, remaining constant along each section. Figure 6 shows the periodical depending f3w 

versus To At the boundary of every section f3w changes on 8f3. Ts is a period equal to 

the section length. At the constant acceleration rate 8j3 practically doesn't depend on the 

beam energy ("-' ~). Now let's return to the equation system (31), only now assuming a 

variation of the phase velocity f3w and make the transformation in the reference system of 

"equivalent synchronous wave": 

d?- <P 1 df3w f3w df3 -=---+--dr2 f3 dr j32 dr 

1 df3w f3w dj3 f3w df3w f3w df3w 
= --- + -- + --- - ---

f3 dr f32 dr f32 dr j32 dr 

= _.!. (1 _ f3w) df3w + f3w .:1:...( a _ a ) 
f3 f3 dr f32 dr P Pw' (42) 

Substituting the second equation of system (31) in this equation, we get: 

(43) 
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The phase velocity function can be represented as the sum of constantly growing function 

/3w and alternating component r3w: 

- - L:oo 
1 /3w = /3w + f3w = aT + 8f3- sin 27r Vf3 nT, 

7rn 
(44) 

n=l 

where vf3 is the frequency of phase velocity changing. We used here the Fourier expansion 

of slow-wise f3w-function. Then: 

d:Tw = a + 28f3vf3 f= sin 27rvf3nT. 
n=l 

(45) 

The particular solution of Eq. (43), taking into account Eq. (44) is: 

eEoT>. .-
a = 2 3 sm <Ps. 

27rmoc 'Y 
(46) 

Thus finally we have the motion equation of a particle in an ideal accelerator with stepped 

phase velocity structure: 

~:~ + 05 sin <Ps ~: + 05(sin <p - sin <Ps) = 2vf38f3 f= cos 27rvf3nT (47) 
n 

From this equation we can see that all particles, even in the ideal structure without pertur­

bation of the field, will do coherent oscillations. It is possible to show that the amplitude 

of this oscillation equals: 
6.<p = 8/3 ~ cot q, 1 - cos q, /2, 

/3w 0 0 2 cos q, /2 
(48) 

q, is advanced phase per Ts. In the case of a stepped phase velocity structure, when 

synchronous phase is not equal to zero, any perturbation of the electromagnetic field 

leads to not only a variation of synchronous frequency but to creation of external force 

as well. Actually, if we have the condition E sin <Ps = const, then in the right side of the 

equation we shall have the additional term 05 sin <Ps§.}. Then in the common case, when 

the electromagnetic field is perturbed, the equation of longitudinal motion has the form: 

d
2

<p ,,2, yd<p ,,2 (1 8E ~ k) (. A. • y) 
dT2 + HO sm 'fIs dT + HO + E Y ek cos VT sm'fl - sm 'fIs 

= 2vf38f3 Leos 27rVf3nT + 8: 05 sin <Ps L ek cos kVT. 
n k 

(49) 

This is an unhomogeneous nonlinear equation with time-dependent coefficients. We shall 

solve this equation by an asymptotic method. 6 For this one let's expand sin <p around <Ps: 

.. - - 1'-21 -3 
sm <p = sm <Ps + cos <Ps'lj; - - sm <Ps'lj; - I" cos <Ps'lj; + ... 

2 3. 
(50) 
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Retaining the square nonlinearity only and reducing into a linear view with the perturba­

tion in the right side, we write: 

(51) 

where 

( 
8E ) 8E. -

1 + E L ek cos kvr '1/;2 + E n5 sm </>8 L ek cos kvr + 2vj38f3 L cos 27rvj3nr. 
k k n 

(52) 

The first term of the right side describes the damping, the second term describes the 

linear parametric excitation, the third one inputs the nonlinear feature in parametric and 

external resonances, the fourth term is the external force, and the last one is oscillation of 

the average synchronous phase. 

It is obvious to find the solution in form: 

'I/; = a cos fJ, 

fJ = wr + fJ, 

1/2-
w = no cos </>8' 

(53) 

The first approach of this equation can be for the case when the right side equals zero: 

'I/; = acosB, 

d'l/; . II 
dr = -awsmu. 

Then for an unhomogeneous equation we have: 

d'l/; da II dB. II . II 

dr = dr cos u - a dr SIn u - aw sIn u, 

~~ = -aw sin B. 

From here one follows 

14 
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Figure 6. The phase velocity vs. the section number. 

Differentiating the second equation of system (5.5), we have: 

2 -d 'IjJ da. dB 2 -- = --w sm B - aw- cos B - aw cos B. 
dT2 dT dT 

(57) 

Substituting both of these expressions in the initial equation and averaging over phase, we 

have: 

da 1 1211' ( d'IjJ ) . -d = --- :F 'IjJ'-d ,T smBdB, 
T 27rw 0 T 

dB 1 1211' ( d'IjJ ) -d = W - -- :F 'IjJ, -d ,T cos BdB. 
T 27raw 0 T 

(58) 

Let's substitute the right side of Eq. (52) in these equations in order to get the first 

approach of the solution to Eq. (49). Since we are interested in the condition, under which 

the instability arises, it is possible to formulate so the threshold of instability originates 

when the derivative * in average becomes positive. 

The first term, which describes the damping, gives contribution in dajdT: 

da1 1 1211' 2 - 1/2 - 2 
-d = - 1/2 no sin cPsano cos cPs sin BdB 

T 27rno cos cPs 0 

2 -no sin cPs = - 2 a. (59) 
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It is obvious that the coefficient responsible for the damping IS proportional to 

"" e-~n~ sin rP. T
, or -!nfi sin 4>sT, since nfi is a small value. 

The second term, which is responsible for the parametric resonance gives the contribution 

in da/dT: 

da2 1 1211" 2 - . 
-d = 1/2 EknO cos 4>s cos kVT cos 8 sm 8d8 

T 27l"no cos 4>s 0 

no cos1/2 4>s -= 4 Ek sin(28 - kVT + 8), (60) 

where Ek = ¥ek is the relative harmonic of perturbation and 8 is slow phase. In the 
n coS1/

2T f 1 d ·11 case of the parametric resonance v = 0 k " maximum growth 0 amp itu e WI 

be no cos1/ 2 4>sEk/4. Consequently the threshold of resonance will equal: 

E 
2no sin¢;; 

k-
- cos1/ 2 4>s . 

The fourth term, which is responsible for the external resonance, has value: 

no sin 4>s E . (Ll k 2i) = k SIn u - VT + u 
2 cos 4>s 

The resonance arises at kv = no cos1/ 2 4>s and the threshold will be: 

1/2-Ek = no cos 4>s. 

(61) 

(62) 

(63) 

The external resonance has a threshold lower and it is more significant. In practice, 

for instance, this threshold has order"" 1 + 2%. The third term gives the nonlinear 

stabilization, which raises slightly the threshold for both resonances. The last term causes 

the coherent motion of all particles in the separatrix that is equivalent to the oscillation 

of the instantaneous synchronous phase. Figure 7 shows the synchronous frequency as a 

function of the cell number. 
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Figure 7. The synchronous frequency as a function of the cell number. 

4.0 NUMERICAL RESULTS AND DISCUSSION 

As an example we consider the Coupled Cavity Linac of the SSC. Figure 7 shows behavior 

of the quasi-synchronous frequency along the eCL accelerator. The vertical lines show the 

possible resonance frequency. Oscillation of the frequency is because the constant phase 

velocity of the tank. It increases the effective time of passing through resonance. Figures 8-

13 show the numerical simulation of the resonance passing particles. Each illustration 

shows "a" and "b" options for comparison. The option "a" is for the case of the ideal 

accelerator without perturbation and "b" is with perturbation. At the entrance to the 

accelerator we took "beam" with the distribution as five lines, each of which has a different 

velocity. That initial distribution is convenient for the resonance observation. Particles are 

connected each with other by lines. This representation has a small disadvantage. During 

the resonance the extreme particles are stretched so strongly that we lose some information. 

Otherwise this method gives a good representation of what happens in resonance. 

In an ideal accelerator the action of fundamental resonance in longitudinal motion, which 

gives the acceleration, creates S-shaped lines. But already at Module 1 in Tank 6 we begin 

to feel the influence of external resonance. Since the frequency of perturbation is very 

near to the frequency of fundamental resonance, we observe slightly stronger modulation 

of the S-shaped figure at first. But then this modulation changes shape (see Figure 10). 

The creation of the tails is explained by the degeneration of the fundamental and external 
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resonances. After some turns we can observe many tails. We can see in Figure 11 two 

tails and three tails in Figure 12. Figure 13 demonstrates the junction of all tails in the 

losses tail. It means passing many times through resonance with simultaneous sliding of 

frequency. The question is what to do? It is obvious we should go from the resonance. 

In other words, if the reason for the perturbation is the power input, let's change the 

wavelength of this perturbation. One solution is to input power at two symmetrical points 

at 1/4 and 3/4 of the module length. Then the amplitude of the wave will decrease two 

times and the frequency of the perturbation will increase two times giving the possibility 

of avoiding the resonant condition. Figure 12(c) shows the phase portrait of beam in the 

same module and tank when we input the power at two points. It is obvious that the 

picture becomes more similar to the ideal case (see Figure 12a). 

Figure 8. 

(a) 0.430 .---r---r-----,-----,----,---,-----,----,----, 

~ g 0.428 

~ 
Q) 

~ 0.426 ..c 
0. 

.~ 
Cij 0.424 
Q) 
a: 

0.422 

(b) 0.430 

>-
:t: 
0 0.428 
0 

~ 
Q) 
en 

0.426 ('\j 
..c 
0-
Q) 

.~ -('\j 0.424 CD 
a: 

0.422 

n~1 Module 1, tank61 

~~ 
-2.4 -2.0 -1.6 -1.2 -0.8 

Phase (rad) 

I Module 1, tank 6 1 

-2.4 -2.0 -1.6 -1.2 -0.8 
Phase (rad) TIP-<l4889 

In the sse eeL Module 1, Tank 6: (a) phase portrait for ideal field and (b) phase portrait for 
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Figure 9. Module 1, Tank 7: (a) phase portrait for ideal field and (b) perturbed field. 
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Figure 10. Module 2, Tank 1: (a) phase portrait for ideal field and (b) perturbed field. 
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Figure 11. Module 2, Tank 3: (a) phase portrait for ideal field and (b) perturbed field. 
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Figure 13. Module 2, Tank 7: (a) phase portrait for ideal field and (b) perturbed field. 

5.0 CONCLUSION 

In conclusion I would like to discuss recommendations for accelerator design, taking into 

account the transient effect studied in this paper. In any case, we have to accept the integer 

resonance passing since it gives the most restriction for the perturbation and consequently 

for the control system. The exclusion condition of the resonance passing can be written 

as: 

(64) 

where ~ W" is the energy gain per one accelerating cell, N is the number of cells in the 

resonator and Co is the rest mass of a proton. One can see from here that the most 

effective method to avoid the passing resonance is the changing of the number of cells in 

the resonator. If the number of cells is fixed due to some reason (for instance due to radial 

periodicity), then the maximum acceleration rate is defined by the requirements for the 

low energy resonators: 

(65) 
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where the index "0" means the initial parameters of the beam. If the generator power is 

fixed, that is ~ W>.N = const, then N has to be less than: 

(66) 

where ~ W is the energy gain per one resonator. Since all requirements are defined at 

low energy, the most effective method is to use the multi-point input of power in the first 

resonators. 
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