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Determination of Optimal Gains for 
Constrained Controllers 

C.-M. Kwan, K. Yeung and L.K. Mestha 

Abstract 

In this report, we consider the determination of optimal gains, with respect to a certain performance 
index, for state feedback controllers where some elements in the gain matrix are constrained to be 
zero. Two iterative schemes for systematically finding the constrained gain matrix are presented. An 
example is included to demonstrate the procedures. 



1.0 INTRODUCTION 

Consider the regulation of the following system (tracking can be treated similarly): 

x = Ax + Bu, (1) 

x is in Rn, U is in Rm, A is in Rnxn, and B is in RnXm. 

State feedback controller of the form 

u =-Kx (2) 

is used with the structure of K already fixed in some ways. For example, K may be in the form of diag {k} ,k2} 
for a 2-input 2-state system, i.e, some elements ofK are constrained to be zero. This is not uncommon in many 
industrial control systems. For example, in accelerator physics,} people have intuitively assumed that all 
loops are decoupled. The resulting controller is usually in a form where the gain matrix is almost diagonal.} 
Some fme tunings on the gains by the trial-and-error method are applied to further improve the response. 
Then the controller is implemented by hardware. Once the hardware is implemented and the system starts to 
work, people are highly reluctant to change the controller. Under this situation, can we improve the system 
performance even further with respect to some performance indices such as the one shown below? 

J -! I: xTQx + u'Rudt R> 0, Q ~ o. 

The answer is positive even though the optimal gains may not always exist. 

2.0 MAIN RESULT 

Substituting Eq. (2) into (1) yields 

where 

x(t) = <l>(t,O)x(O) 

<l>(t,O) = exp[(A - BK)t] 

and K is some unspecified constrained gain matrix. 

Using Eqs. (2) and (4) into Eq. (3) gives 

(3) 

(4) 

(5) 

To eliminate the dependence of optimal control on x(O), a simple way is by assuming that x(O) is a random 
variable uniformly distributed on the surface of the n-dimensional unit sphere,2-4 i.e, 

E{xoXo T} = lin. (6) 



Taking the expectation on Eq. (5) and using Eq. (6) yields 

(7) 

Remark 1: As pointed out by Levine et al., 2 the modified performance criterion in Eq. (7) has the following 
properties: 

• Retains many properties of linear systems which are optimal with respect to standard 
quadratic criterion 

• The design is optimal in an average sense (note the division by n in Eq. (7» 

• Obtains an upper bound on the worst case performance. 

For detailed explanations of these properties, see Reference 1. 

Now we present two algorithms for determining K. Both algorithms can be easily implemented with about 
10 lines of MATLAB commands. They can be readily applied to systematically optimize any practical 
systems with constrained controllers. 

Algorithm 1: (Riccati equation approach) 

1. Find ~O) such that (A - B~o» is asymptotically stable. 

2. Solve P(i) from 

P(i)(A - B~i» + (A - B~i»TP(i) + Q + ~i)T~i) = O. 

3. K(i) = -R-IBTP(i)' 

4. Set those elements of ~i) to zero in order to comply with the constraints imposed on K. If (A -
B~i» is asymptotically stable, then i = i + 1 and go to 2; else the algorithm fails. 

5. K = lim ~i)' Jm = lim {trace(p(i)/n} as i tends to infmity. 

Algorithm 2: (Gradient search approach) 

After some lengthy but quite straightforward derivations, it can be shown that the gradient of Jm in 
Eq. (7) is given by 

where P, M satisfy 

P(A - BK) + (A - BK) Tp + Q + KTRK = 0, 

M(A - BK) T + (A - BK)M + I = 0 • 
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(8) 



1. Find ~O) such that (A - B~o» is asymptotically stable. 

2. Adjust those nonzero elements of ~i) according to 

K K aJm 
(i) = (i-I)- I..L aK' 

I..L > 0 and ~i{ = (RK(i-I) - BTp(i_l) M i_I . 

P(i-I) and M(i-I) are the solutions of 

P(i_l)(A - BK(i_l) + (A - BK(i_l)Tp(i_I) + Q + Ka-l)RK(i-l) = 0, 

M(i_l)(A - BK(i_l)T + (A - BK(i_l) M(i-I) + I = 0 . 

3. If (A - B~i» is asymptotically stable then i = i +1 and go to 2; else the algorithm fails. 

4. K = lim ~i)' Jm = lim {trace(p(i»/n} as i tends to infinity. 

Remark 2: It is assumed in this report that there exists a K with constrained elements such that (A - BK) is 
asymptotically stable. Non-existence of K would imply 1m in Eq. (7) goes unbounded and hence the 
performance index is meaningless. 

Remark 3: Similar to the optimal output feedback control,I.2 there is no guarantee that the two procedures 
above will converge to the optimal solution. However, it is worth to try these systematic procedures because 
system performance may be improved significantly with a slight change of gains (possibly by changing some 
resistor and/or capacitor values). This is especially true for large scale systems where adjusting gains by 
trial-and-error is almost impossible. 

3.0 EXAMPLE 

Consider the system described in Eq. (1) with 

A=[~ ~~] B=[~~] 
o -1 -2 1 0 

We assumed the gain matrix in Eq. (2) is of the form 

[

kll 
K= 0 ] 

Q and R in Eq. (3) are selected to be 13x3 and ha. respectively. 

When there are no constraints on K, the optimal performance 1m can be calculated as 0.7541. The initial 
values ofkll' k22 and k13 are chosen to be 0.926, 1.0357 and 0.3161, respectively. By using Algorithm 1, 1m 
converges after 5 iterations and equals to 0.819; kll' k22 and k13 are 1, 1.1448 and 0.336, respectively. By 
choosing J.l = 0.5, Algorithm 2 converges after 10 iterations and yields aJm of 0.8179. The values ofkll , k22 
and k13 are 1.0522, 1.1759 and 0.3105, respectively. It appears that Algorithm 2 is slightly better than 
Algorithm 1 in this example in the sense that the value of 1m is closer to the optimal unconstrained 1m. 
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