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1.0 INTRODUCTION 

A distributed data acquisition system (DAQ) should not restrict the number or type of processors used in a 
given application. For any software applications that must operate on a multi-vendor distributed system, 
three serious problems have to be addressed regarding data handling: data representation, memory 
organization, and address alignment. 

The severity of the problem can be illustrated with a simple example. Table 1 is a listing of a "writer" and 
"reader" program. The "writer" writes to standard out a long, short, float" and double variable. The "reader" 
reads the data from standard in and prints out the results. Three tests were performed. In the first test the 
"writer" and "reader" executed on the same machine (SUN4). On the second test both programs executed on 
ULTRIX. The results were correct as expected. On the third test, the "writc~r" was executed on the SUN-4 and 
the reader on ULTRIX. Incorrect results were obtained due to the diffc~rences in data representation and 
memory organization. The following "e" code was taken explicitly from the document associated with 
Reference 1. 

TABLE 1. "WRITER" AND "READER" PROGRAM. 

writer.c reader.c 
iinclude <stdio.h> 

main() 
{ 

iinclude <stdio.h> 
main () 

long i = 20; 
char j = 10; 
short k = 15; 
float 1 = 2; 
double m = 2; 

fwrite(&i,sizeof(i),l,stdout); 
fwrite(&j,sizeof(j),l,stdout); 
fwrite(&k,sizeof(k),l,stdout); 
fwrite(&l,sizeof(l),l,stdout); 
fwrite(&m,sizeof(m),l,stdout); 

( 

long i; 
char j; 
short k; 
float 1; 
double m; 
fread(&i,sizeof(i),l,stdin); 
fread(&j,sizeof(j),l,stdin); 
fread(&l,sizeof(l);l,stdin); 
fread(&m,sizeof(m),l,stdin); 
printf(Wlong = %1 char = 
i, j, k) ; 

%c short = %d\nW, 

exit (0); printf(Wfloat = %g double = %g \nW,l,m); 
exit(O); 

Test 1: 

Test 2: 

Test 3: 

%sun writer I reader 
long = 20 char = 10 short = 15 
float = 2 double = 2 

%ultrix 1 writer I reader 
long = 20 char = 10 short = 15 
float = 2 double = 2 

%sun writer I rsh ultrix reader 

} 

long = 335544320 char = 10 short = 3840 
float = 8.96831e-44 double = 3. 16202e-322 



Data representation, memory organization, and address alignment problems are inherent in the various 
hardware platforms available on the market today. Furthermore, issues such as how to coordinate parallel 
software efforts on multiple platforms that share data must be resolved. Traditionally such efforts are 
coordinated through meetings, memos, and documents describing shared data blocks (Data Interface 
Documents). The traditional approach is risky at best: the frequency of changes demanded by end-users is 
faster than the rate at which interface documents can be updated. Simple changes in data structures tend to 
dramatically increase the software development time, as all the tools must be modified to accommodate the 
changes. 

In Section 2.0 we examine in detail the technical implications for data handling when using distributed 
applications. In Section 3.0 we compare different approaches in handling the data in distributed 
environments. The four methods studied are: 

1. Abstract Syntax Notation 1 (ASN.l) 

2. External Data Representation (XDR) 

3. Self Describing Data Format (SDS) 

4. ZEBRA. 

We compared the four tools with the standard programming method (using "C"). In Section 4.0 we present 
conclusions of the test using the four different tools. 

Additional documents derived from this paper describe the methods evaluated here. They can be found 
with the source code used in the evaluation at the anonymous ftp site slug.ssc.gov in the directory 
/pub/doc/dmi. The fIle ASN1.ps describes the ISO 8824 and ISO 8825 standard that advocates Abstract 
Syntax Notation One [2,3]. This approach has been used successfully in the implementation of the Small 
Network Management Protocol (SNMP) to develop network management tools in distributed environments. 
The flle XDR.ps examines the External Data Representation solution to share data across multi-vendor 
platforms. The External Data Representation is used successfully to implement NFS (Networked File 
Systems) and RPC (Remote Procedure Calls) [1,4]. The fIle SDS.ps deals with the "Self Describing Data 
Format" or SDS [5]. SDS is used at the Magnet Development Laboratory of the SSC. The documentation 
describing Zebra can be found at the anonymous ftp site asisOl.cern.ch in the directory pub/docslcernlib. 
Zebra is one of the standard high-energy physics packages used in the organization oflarge off-line data sets. 

2.0 DATA-HANDLING PROBLEMS IN DISTRIBUTED SYSTEMS 

2.1 Data Representation and Memory Organization 

Table 2 illustrates the differences in data representation and memory organization for several popular 
computers. 

2.2 Character Data 

For character data some machines use ASCII, others use EBCDIC. If an application running on a SUN-4 
needs to send the string "hello world" to an application running a specific class of mM (EBCDIC) machines, 
a common format for transmission will have to be pre-established, and the applications on each side will do 
appropriate translations. The ASCII representation is bit backward, with the most significant bit at the 
highest address, and EBCDIC is bit forward, with the most significant bit at the lowest address. 

2 



SUN-4 

HP68000 

SGI-R3000 

VAX 

68030 

MAC6B020 

IBM-PC BOX86 

IBM-360 

TABLE 2. DATA REPRESENTATION AND MEMORY C)RGANIZATION FOR 
VARIOUS COMPUTERS. 

CHARACTER SHORT LONG FLOAT DOUBLE 

ASCII 2-Byte 4-Byte 4-Byte 8-Byte 
Bit Backward Big-Endian ieee ieee 

ASCII 2-Byte 4-Byte 4-Byte 8-Byte 
Bit Backward Big-Endian ieee ieee 

ASCII 2-Byte 4-Byte 4-Byte 8-Byte 
Bit Backward Big-Endian ieee ieee 

ASCII 2-Byte 4-Byte 4-Byte 8-Byte 
Bit Backward Little-Endian Short Reverse F _float D_Float 

ASCII 2-Byte 4-Byte 4-Byte 8-Byte 
Bit Backward Big-Endian ieee ieee 

ASCII 2-Byte 4-Byte 4-Byte 8-Byte 
Bit Backward Big-Endian ieee ieee 

ASCII 2-Byte 4-Byte 4-Byte 8-Byte 
Bit Backward Little-Endian Short Reverse ieee ieee 

EBCDIC 2-Byte 4-Byte 4-Byte 8-Byte 
Bit Forward Big-Endian ieee ieee 

2.3 Memory Organization 

Computers group bytes (8 bits) into words. The word size of a computer is typically derived from the width 
of the data path 'Or bus. Most prevalent today are 2-byte and 4-byte word machines. Computers order the bytes 
withm a word differently: (See Figure 1.) [6] "Little Endian" computers put the least significant byte at the 
lowest address (Figure 2) [6]. "Big Endian" computers put the most significant byte at the lowest address 
(Figures 3 and 4) [6]. Bit ordering within a byte may vary between Icomputers. Some computers have 
backward.bitordering:: bit 0 contains the mostsignificant bit from left to right. In forward bit ordering, bit 0 
is the least significant bit. Figures 2~ illustrate the bigllittle endian and bit-ordering differences among 
several popular computers. The byte labeled 0 in each example is the first byte in physical memory. 

ByteO Byte1 

Big Endian I MSB I LSB I 
ByteO Byte1 

Little Endian I LSB I MSB I 
Figure 1. Different Memory Organlzatllon. 

Byte 3 Byte 2 Byte 1 Byte 0 

L-13_1 ____ 2.....1411 L.. 23 _____ 1--J6 11 ..... 15 ___ ~1 L.. 7 ____ ---10 I 
Figure 2. Little Endlan With Backward Bit Ordering, VAX and Intel 80386. 

Byte 0 Byte 1 Byte 2 Byte 3 

1L-3_1 ____ 2 ..... 411 L..23 _____ 1-J6 11 L-15 ___ ~ 1'--7 _____ ° ..... 1 

Figure 3. Big Endlan With Backward Bit Ordering, MG680XO and SPARC. 
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Byte 0 Byte 1 Byte 2 Byte 3 

1
0 7 1 Is 15 1 116 23 1 124 31 1 

-_. --.--.. _ .. -. -- ---.-.-.-.~-.---.-- .. -----. ----_._- ~-.... --.. - -

Figure 4. Big Endlan With Forward Bit Ordering, IBM-360. 

2.4 Short Integer and Long Integer 

For most machines listed in Table 2 a short integer is 2 bytes wide and a long integer is 4 bytes wide. 
Sharing integer data between applications running on different computers is not a problem if the two 
computers use the same memory organization (bigllittle endian and bit order). The DAQ architecture, 
however, cannot impose any restrictions on the types of computers being used. 

2.5 Floating Point 

Most of the computers support the IEEE 4-byte, single-precision, floating-point number (Figure 5) and the 
IEEE 8-byte, double-precision, floating-point number (Figure 6) [7]. 

31 30 23 22 0 

~ I eeeeeeee I I fffffffffffffffffffffff I 

where s = sign bit, e = exponent, f = fraction, b = bias 

s (e - b) 
Number = (-1) * 2 * 1.f 
bias = 127 

Figure 5. IEEE Single Precision. 

63 62 52 51 0 

~ I eeeeeeeeee I I ffffffffffffffffffffffffffffffffffffffffffffffffffff I 

where s = sign bit, e = exponent, f = fraction, b = bias 

s (e - b) 
Number = (-1) * 2 * 1.1 
bias = 1023 

Figure 6. IEEE Double Precision. 

When floating point values are shared between different computers, the memory organization and 
bit-ordering differences will result in the same problems as in the case of the integer data type. In addition, 
various vendors use floating-point representations that are not supported by other vendors. For example in 
the VAX-ll we find the F-float, D-float, G-float, and H-float data types [8]. In the Macintosh there are 
extended precision lO-byte (SANE), 12-byte (MC68881), and universal (12-byte) floating-point values [9]. 
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2.6 Memory Alignment 

Software development tools (compilers, assemblers, and code generaltors) take into account the machine 
architecture of the target system when generating their output. For example, if a machine cannot address short 
words (16 bits) on an odd memory address, the &oftware developme:nt tools will perform ·>appropriate 
"padding" so that all variables can be referenced. 

Consider the following "C" code. Two global variables are declared: 

char a; 

long b; 

On machines that allow odd-byte addressing, the compiler can allocate space for lOb" in the data segment at 
offset 1 from the start of the data segment. If the machine requires short-word (16-bit) or long-word (32-bit) 
alignment, then the software tools will "pad" one or three bytes after "a" before allocating memory for "b". 

For applications that use only primitive data types, this is a non-issue and programs will be portable 
between platforms. However, applications need to group related data items into records (or structures) to 
increase performance and ease maintenance. The following example illustrates how the memory alignment 
can create data-portability conflicts in distributed systems. (See Table 3 .. ) 

TABLE 3. MEMORY ALLOCATION AND ALIGNMENT FC)R STRUCT f ON 
DIFFERENT ARCHITECTURES. 

f •• f.b f.e SIZE OF(f) 

SUN .... 4 Bytes 4 Bytes 8 Bytes 16 Bytes 

HP68000 4 Bytes 2 Bytes 8 Bytes 14 Bytes 

VAX 4 Bytes 1 Bytes 8 Bytes 13 Bytes 

PC 2 Bytes 2 Bytes 8 Bytes 12 Bytes 

Three primitives data types are grouped into a record or structure: 

struct { 

f; 

int a; 
char b; 
double c; 

If an application produces a record "f" on one of the above machines, and a consumer running in a different 
machine reads the record, the data will be interpreted incorrectly. 

3.0 EVALUATION OF METHODS USED FOR DATA-MAClfiNE INDEPENDENCE 

Four methods used to achieve data-machine independence were evaluated. The main goal was to obtain 
quantitative measurements of data overhead (data size), program size (code size), and execution time (speed) 
for applications performing the same logical work. The second goal was to evaluate how difficult 
(qualitative) it would be to develop the same application using each method. It should be noted that the 
evaluations reported here are targeted toward DAQ and on-line applications. For an off-line analysis of the 
four methods, different tests would have to be performed. 

Two applications were written with each method: writer and reader. The writer provides two functions: 
one function fills all the data set objects with constant data, and a second function writes the data set to disk: 

start time 
produce data (DATA SET) 
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write data (DATA SET) 
end timing. 

The reader provides two functions: one function reads the data set from disk, and a second function 
consumes the data: 

start time 
read data (DATA SET) 
consume data (DATA SET) 
end timing. 

Both reader and writer executed 10 000 frames on a stand-alone CPU with no other load. The average 
processing time was computed. The time to open and close data files was excluded from the measurements. 

3.1 Application 1 

In the ftrst test, the application data set comprises 8 data objects. Each object has a single and distinct 
primitive data type. The primitive data types used are char, unsigned char, short, unsigned short, long, 
unsigned long, float, and double. (See Figure 7.) 

Data Object Primitive 

0 ObjecCchar char 

A Objeccuchar unsigned char 

T Object_short short 

A ObjecCushort unsigned short 

ObjecClong long 

S Object_ulong unsigned long 

E ObjecCfloat float 

T ObjecCdouble double 

Figure 7. Complex Data Object. 

Results are shown in Table 4. 

TABLE 4. MEASUREMENTS OF THE COMPLEX DATA TYPE (FIGURE 7). 

WRITE READ WRITE READ WRITE READ WRITE READ WRITE READ 
C C SDS SDS XDR XDR ASN1 ASN1 ZEBRA ZEBRA 

File 16.3 16.3 90.1 98.3 16.3 16.3 122.8 122.8 319.5 376.9 
Size (Kb) 

Exec 16.0 16.8 16.0 16.0 32.0 32.0 40.0 68.0 100.0 156.0 
Size (Kb) 

Data 30 30 758 758 36 36 46 46 196 196 
Buffer 
Size 

(bytes) 

Data 4 4 732 732 10 10 20 20 170 170 
Overhead 

(bytes) 

Execution 1 1 87 55 2 2 13 6 15 7 
time· 

·Execution time nonnalized to "Co. 
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3.2 Application 2 

In the second test the application data is a single data object. The data object has a lOO-long integer array. 
(See Figure 8.) 

Data Object IPrimitlve 

DATASET ObjectJarr lon9[100] 

Figure 8. Array of 1 DO-Long Intagena. 

Results are shown in Table 5. 

TABLE 5. MEASUREMENTS OF THE ARRAY OF 1OG-LONG IINTEGERS (FIGURE 8). 

WRITE READ WRITE READ WRITE READ WRITE READ WRITE READ 
C C SDS SOS XDA XDR ASHi ASH1 ZEBRA ZEBRA 

File 16.3 16.3 90.1 98.3 16.3 16.3 9<1.1 90.1 319 3n 
Size (Kb) 

Exec 24.0 24.0 28.0 28.0 32.0 32.0 4(1.0 68.0 100.0 156.0 
Size (Kb) 

Data 400 400 548 548 400 400 300 300 548 548 
Buffer 
Size 

(bytes) 

Data 0 0 148 148 0 0 () 0 148 148 
Overttead 

(bytes) 

Execution 1 1 68 37 6 3 48 46 8 8 
time· 

*Execution time nonnalizcd to "e" 

In Figures 9-12 the four methods are normalized to the performance of "en to show the relative effIciency 
of the methods. The categories measured were execution time, minimum data buffer size, executable run time 
size (loaded in memory), and executable file size (after being stripped of symbol tables). 
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100 

10 

1 

0.1 

IIIISDS DXDR 

Exec file size Memory usage Data overhead Execution time 

DMI performance/struct WRITE 
TIP-04548 

Figure 9. The "writer" Test Results for the Complex Oats Set Application (Figure 7). 

100r----------r--------~~--------,_--------_, 

10 

1 

0.1 
Exec file size Memory usage Data overhead Execution time 

DMI performance/array READ 
TIP-04549 

Figure 10. The "reader" Test Results for the Complex Oats Set Application (Figure 7). 
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100r---------.---------~--------~--------~ 

10 

1 

0.1 
Exec file size Memory usage Data overhead Execution time 

OMI performance/struct WRITE 
T1P-04550 

Figure 11. The "writer" Test Results for the Array Application (Figure 8). 

100r----------.--------~----------~--------~ 

10 

1 

0.1 
Exec file size Memory usage Data overhead Execution time 

OMI performance/struct READ 
T1P-04551 

Figure 12. The "reader" Test Results for the Array AppUcatlon (Figure 8). 
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4.0 CONCLUSION 
The XDR method was found to be "relatively" efficient (200-300% performance degradation), with little 

or no overhead as compared to "C". The data generated using this method are compatible across all platforms 
that support XDR. If a platform does not support XDR, the source code is available for use without charge 
from Sun Microsystems. The software tools were found to be stable. Many industry software tools are 
implemented with XDR, including NFS (Network File System) and other network administrator utilities. 
XDR provides a DDL in a "C" -style flavor. The XOR data descriptions are parsed by rpcgen to generate 
appropriate translation routines. A description of the data is not part of the data set [1]. 

The ASNI method was found to be inefficient, with 600-4800% more overhead compared to ''C'' method. 
The data generated are compatible across platforms that support ASNI. For platforms that do not support 
ASNl, the source code is available at the ftp side rena.dit.co.jp in the directory pub/misc.isode/isode-7. The 
software tools were found to be stable. Several industry packages have been developed using ASNI, 
including the Simple Network Management Protocol (SNMP). A description of the data is part of the data set. 
The abstract syntax Notation One is a Data Description Language (DDL). The utilities "pepy" and "pepsy" 
parse ASNI data set descriptions to generate translation routines [2]. 

The Self Describing Data Standard (SDS) method was found to have the largest performance degradation 
and largest data overhead. However, using the SDS method of disjoint data description, the overhead in data 
description can be kept separated from the original data set. The data generated using this method are 
compatible across platforms supported by the SDS libraries. If a platform does not support SDS, the source 
code is available at the ftp side largo.lbl.gov in the directory Ipub. (A C++ compiler is required for some of 
the tools.) The software tools were found to be relatively unstable. A description of the data is part of the data 
set offering the greatest flexibility. SDS provides a Data Description Language (DOL) called gasp [5]. 

The Zebra method was found to be inefficient for complex data models (mixed data types) but better than 
ASNI for array handling. Zebra was the worst in resource utilization. As with XDR, ZEBRA does not 
provide a description of the data, thus creating relatively unsafe situations. In addition, ZEBRA does not 
provide the developers with a DDL. The benefit of using ZEBRA seems to be wide acceptance in the 
high-energy physics community and the existence of extensive software tools. 
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