
Data-Machine Independence (DMI)

Superconducting Super Collider
Laboratory

SSCL-628
May 1993
Distribution Category: 400

M. Botlo
M. Jagielski
L. Miller
A.Romero

Data-Machine Independence (DMI)

M. Botlo, M. Jagielski, L. Miller, and A. Romero

Superconducting Super Collider Laboratory·
2550 Becldeymeade Ave.

Dallas, TX 75237

May 1993

SSCL-628

·Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

1.0 INTRODUCTION

A distributed data acquisition system (DAQ) should not restrict the number or type of processors used in a
given application. For any software applications that must operate on a multi-vendor distributed system,
three serious problems have to be addressed regarding data handling: data representation, memory
organization, and address alignment.

The severity of the problem can be illustrated with a simple example. Table 1 is a listing of a "writer" and
"reader" program. The "writer" writes to standard out a long, short, float" and double variable. The "reader"
reads the data from standard in and prints out the results. Three tests were performed. In the first test the
"writer" and "reader" executed on the same machine (SUN4). On the second test both programs executed on
ULTRIX. The results were correct as expected. On the third test, the "writc~r" was executed on the SUN-4 and
the reader on ULTRIX. Incorrect results were obtained due to the diffc~rences in data representation and
memory organization. The following "e" code was taken explicitly from the document associated with
Reference 1.

TABLE 1. "WRITER" AND "READER" PROGRAM.

writer.c reader.c
iinclude <stdio.h>

main()
{

iinclude <stdio.h>
main ()

long i = 20;
char j = 10;
short k = 15;
float 1 = 2;
double m = 2;

fwrite(&i,sizeof(i),l,stdout);
fwrite(&j,sizeof(j),l,stdout);
fwrite(&k,sizeof(k),l,stdout);
fwrite(&l,sizeof(l),l,stdout);
fwrite(&m,sizeof(m),l,stdout);

(

long i;
char j;
short k;
float 1;
double m;
fread(&i,sizeof(i),l,stdin);
fread(&j,sizeof(j),l,stdin);
fread(&l,sizeof(l);l,stdin);
fread(&m,sizeof(m),l,stdin);
printf(Wlong = %1 char =
i, j, k) ;

%c short = %d\nW,

exit (0); printf(Wfloat = %g double = %g \nW,l,m);
exit(O);

Test 1:

Test 2:

Test 3:

%sun writer I reader
long = 20 char = 10 short = 15
float = 2 double = 2

%ultrix 1 writer I reader
long = 20 char = 10 short = 15
float = 2 double = 2

%sun writer I rsh ultrix reader

}

long = 335544320 char = 10 short = 3840
float = 8.96831e-44 double = 3. 16202e-322

Data representation, memory organization, and address alignment problems are inherent in the various
hardware platforms available on the market today. Furthermore, issues such as how to coordinate parallel
software efforts on multiple platforms that share data must be resolved. Traditionally such efforts are
coordinated through meetings, memos, and documents describing shared data blocks (Data Interface
Documents). The traditional approach is risky at best: the frequency of changes demanded by end-users is
faster than the rate at which interface documents can be updated. Simple changes in data structures tend to
dramatically increase the software development time, as all the tools must be modified to accommodate the
changes.

In Section 2.0 we examine in detail the technical implications for data handling when using distributed
applications. In Section 3.0 we compare different approaches in handling the data in distributed
environments. The four methods studied are:

1. Abstract Syntax Notation 1 (ASN.l)

2. External Data Representation (XDR)

3. Self Describing Data Format (SDS)

4. ZEBRA.

We compared the four tools with the standard programming method (using "C"). In Section 4.0 we present
conclusions of the test using the four different tools.

Additional documents derived from this paper describe the methods evaluated here. They can be found
with the source code used in the evaluation at the anonymous ftp site slug.ssc.gov in the directory
/pub/doc/dmi. The fIle ASN1.ps describes the ISO 8824 and ISO 8825 standard that advocates Abstract
Syntax Notation One [2,3]. This approach has been used successfully in the implementation of the Small
Network Management Protocol (SNMP) to develop network management tools in distributed environments.
The flle XDR.ps examines the External Data Representation solution to share data across multi-vendor
platforms. The External Data Representation is used successfully to implement NFS (Networked File
Systems) and RPC (Remote Procedure Calls) [1,4]. The fIle SDS.ps deals with the "Self Describing Data
Format" or SDS [5]. SDS is used at the Magnet Development Laboratory of the SSC. The documentation
describing Zebra can be found at the anonymous ftp site asisOl.cern.ch in the directory pub/docslcernlib.
Zebra is one of the standard high-energy physics packages used in the organization oflarge off-line data sets.

2.0 DATA-HANDLING PROBLEMS IN DISTRIBUTED SYSTEMS

2.1 Data Representation and Memory Organization

Table 2 illustrates the differences in data representation and memory organization for several popular
computers.

2.2 Character Data

For character data some machines use ASCII, others use EBCDIC. If an application running on a SUN-4
needs to send the string "hello world" to an application running a specific class of mM (EBCDIC) machines,
a common format for transmission will have to be pre-established, and the applications on each side will do
appropriate translations. The ASCII representation is bit backward, with the most significant bit at the
highest address, and EBCDIC is bit forward, with the most significant bit at the lowest address.

2

SUN-4

HP68000

SGI-R3000

VAX

68030

MAC6B020

IBM-PC BOX86

IBM-360

TABLE 2. DATA REPRESENTATION AND MEMORY C)RGANIZATION FOR
VARIOUS COMPUTERS.

CHARACTER SHORT LONG FLOAT DOUBLE

ASCII 2-Byte 4-Byte 4-Byte 8-Byte
Bit Backward Big-Endian ieee ieee

ASCII 2-Byte 4-Byte 4-Byte 8-Byte
Bit Backward Big-Endian ieee ieee

ASCII 2-Byte 4-Byte 4-Byte 8-Byte
Bit Backward Big-Endian ieee ieee

ASCII 2-Byte 4-Byte 4-Byte 8-Byte
Bit Backward Little-Endian Short Reverse F _float D_Float

ASCII 2-Byte 4-Byte 4-Byte 8-Byte
Bit Backward Big-Endian ieee ieee

ASCII 2-Byte 4-Byte 4-Byte 8-Byte
Bit Backward Big-Endian ieee ieee

ASCII 2-Byte 4-Byte 4-Byte 8-Byte
Bit Backward Little-Endian Short Reverse ieee ieee

EBCDIC 2-Byte 4-Byte 4-Byte 8-Byte
Bit Forward Big-Endian ieee ieee

2.3 Memory Organization

Computers group bytes (8 bits) into words. The word size of a computer is typically derived from the width
of the data path 'Or bus. Most prevalent today are 2-byte and 4-byte word machines. Computers order the bytes
withm a word differently: (See Figure 1.) [6] "Little Endian" computers put the least significant byte at the
lowest address (Figure 2) [6]. "Big Endian" computers put the most significant byte at the lowest address
(Figures 3 and 4) [6]. Bit ordering within a byte may vary between Icomputers. Some computers have
backward.bitordering:: bit 0 contains the mostsignificant bit from left to right. In forward bit ordering, bit 0
is the least significant bit. Figures 2~ illustrate the bigllittle endian and bit-ordering differences among
several popular computers. The byte labeled 0 in each example is the first byte in physical memory.

ByteO Byte1

Big Endian I MSB I LSB I
ByteO Byte1

Little Endian I LSB I MSB I
Figure 1. Different Memory Organlzatllon.

Byte 3 Byte 2 Byte 1 Byte 0

L-13_1 ____ 2.....1411 L.. 23 _____ 1--J6 11 15 ___ ~1 L.. 7 ____ ---10 I
Figure 2. Little Endlan With Backward Bit Ordering, VAX and Intel 80386.

Byte 0 Byte 1 Byte 2 Byte 3

1L-3_1 ____ 2 411 L..23 _____ 1-J6 11 L-15 ___ ~ 1'--7 _____ ° 1

Figure 3. Big Endlan With Backward Bit Ordering, MG680XO and SPARC.

3

Byte 0 Byte 1 Byte 2 Byte 3

1
0 7 1 Is 15 1 116 23 1 124 31 1

-_. --.--.. _ .. -. -- ---.-.-.-.~-.---.-- .. -----. ----_._- ~-.... --.. - -

Figure 4. Big Endlan With Forward Bit Ordering, IBM-360.

2.4 Short Integer and Long Integer

For most machines listed in Table 2 a short integer is 2 bytes wide and a long integer is 4 bytes wide.
Sharing integer data between applications running on different computers is not a problem if the two
computers use the same memory organization (bigllittle endian and bit order). The DAQ architecture,
however, cannot impose any restrictions on the types of computers being used.

2.5 Floating Point

Most of the computers support the IEEE 4-byte, single-precision, floating-point number (Figure 5) and the
IEEE 8-byte, double-precision, floating-point number (Figure 6) [7].

31 30 23 22 0

~ I eeeeeeee I I fffffffffffffffffffffff I

where s = sign bit, e = exponent, f = fraction, b = bias

s (e - b)
Number = (-1) * 2 * 1.f
bias = 127

Figure 5. IEEE Single Precision.

63 62 52 51 0

~ I eeeeeeeeee I I ff I

where s = sign bit, e = exponent, f = fraction, b = bias

s (e - b)
Number = (-1) * 2 * 1.1
bias = 1023

Figure 6. IEEE Double Precision.

When floating point values are shared between different computers, the memory organization and
bit-ordering differences will result in the same problems as in the case of the integer data type. In addition,
various vendors use floating-point representations that are not supported by other vendors. For example in
the VAX-ll we find the F-float, D-float, G-float, and H-float data types [8]. In the Macintosh there are
extended precision lO-byte (SANE), 12-byte (MC68881), and universal (12-byte) floating-point values [9].

4

2.6 Memory Alignment

Software development tools (compilers, assemblers, and code generaltors) take into account the machine
architecture of the target system when generating their output. For example, if a machine cannot address short
words (16 bits) on an odd memory address, the &oftware developme:nt tools will perform ·>appropriate
"padding" so that all variables can be referenced.

Consider the following "C" code. Two global variables are declared:

char a;

long b;

On machines that allow odd-byte addressing, the compiler can allocate space for lOb" in the data segment at
offset 1 from the start of the data segment. If the machine requires short-word (16-bit) or long-word (32-bit)
alignment, then the software tools will "pad" one or three bytes after "a" before allocating memory for "b".

For applications that use only primitive data types, this is a non-issue and programs will be portable
between platforms. However, applications need to group related data items into records (or structures) to
increase performance and ease maintenance. The following example illustrates how the memory alignment
can create data-portability conflicts in distributed systems. (See Table 3 ..)

TABLE 3. MEMORY ALLOCATION AND ALIGNMENT FC)R STRUCT f ON
DIFFERENT ARCHITECTURES.

f •• f.b f.e SIZE OF(f)

SUN 4 Bytes 4 Bytes 8 Bytes 16 Bytes

HP68000 4 Bytes 2 Bytes 8 Bytes 14 Bytes

VAX 4 Bytes 1 Bytes 8 Bytes 13 Bytes

PC 2 Bytes 2 Bytes 8 Bytes 12 Bytes

Three primitives data types are grouped into a record or structure:

struct {

f;

int a;
char b;
double c;

If an application produces a record "f" on one of the above machines, and a consumer running in a different
machine reads the record, the data will be interpreted incorrectly.

3.0 EVALUATION OF METHODS USED FOR DATA-MAClfiNE INDEPENDENCE

Four methods used to achieve data-machine independence were evaluated. The main goal was to obtain
quantitative measurements of data overhead (data size), program size (code size), and execution time (speed)
for applications performing the same logical work. The second goal was to evaluate how difficult
(qualitative) it would be to develop the same application using each method. It should be noted that the
evaluations reported here are targeted toward DAQ and on-line applications. For an off-line analysis of the
four methods, different tests would have to be performed.

Two applications were written with each method: writer and reader. The writer provides two functions:
one function fills all the data set objects with constant data, and a second function writes the data set to disk:

start time
produce data (DATA SET)

5

write data (DATA SET)
end timing.

The reader provides two functions: one function reads the data set from disk, and a second function
consumes the data:

start time
read data (DATA SET)
consume data (DATA SET)
end timing.

Both reader and writer executed 10 000 frames on a stand-alone CPU with no other load. The average
processing time was computed. The time to open and close data files was excluded from the measurements.

3.1 Application 1

In the ftrst test, the application data set comprises 8 data objects. Each object has a single and distinct
primitive data type. The primitive data types used are char, unsigned char, short, unsigned short, long,
unsigned long, float, and double. (See Figure 7.)

Data Object Primitive

0 ObjecCchar char

A Objeccuchar unsigned char

T Object_short short

A ObjecCushort unsigned short

ObjecClong long

S Object_ulong unsigned long

E ObjecCfloat float

T ObjecCdouble double

Figure 7. Complex Data Object.

Results are shown in Table 4.

TABLE 4. MEASUREMENTS OF THE COMPLEX DATA TYPE (FIGURE 7).

WRITE READ WRITE READ WRITE READ WRITE READ WRITE READ
C C SDS SDS XDR XDR ASN1 ASN1 ZEBRA ZEBRA

File 16.3 16.3 90.1 98.3 16.3 16.3 122.8 122.8 319.5 376.9
Size (Kb)

Exec 16.0 16.8 16.0 16.0 32.0 32.0 40.0 68.0 100.0 156.0
Size (Kb)

Data 30 30 758 758 36 36 46 46 196 196
Buffer
Size

(bytes)

Data 4 4 732 732 10 10 20 20 170 170
Overhead

(bytes)

Execution 1 1 87 55 2 2 13 6 15 7
time·

·Execution time nonnalized to "Co.

6

3.2 Application 2

In the second test the application data is a single data object. The data object has a lOO-long integer array.
(See Figure 8.)

Data Object IPrimitlve

DATASET ObjectJarr lon9[100]

Figure 8. Array of 1 DO-Long Intagena.

Results are shown in Table 5.

TABLE 5. MEASUREMENTS OF THE ARRAY OF 1OG-LONG IINTEGERS (FIGURE 8).

WRITE READ WRITE READ WRITE READ WRITE READ WRITE READ
C C SDS SOS XDA XDR ASHi ASH1 ZEBRA ZEBRA

File 16.3 16.3 90.1 98.3 16.3 16.3 9<1.1 90.1 319 3n
Size (Kb)

Exec 24.0 24.0 28.0 28.0 32.0 32.0 4(1.0 68.0 100.0 156.0
Size (Kb)

Data 400 400 548 548 400 400 300 300 548 548
Buffer
Size

(bytes)

Data 0 0 148 148 0 0 () 0 148 148
Overttead

(bytes)

Execution 1 1 68 37 6 3 48 46 8 8
time·

*Execution time nonnalizcd to "e"

In Figures 9-12 the four methods are normalized to the performance of "en to show the relative effIciency
of the methods. The categories measured were execution time, minimum data buffer size, executable run time
size (loaded in memory), and executable file size (after being stripped of symbol tables).

7

-.....
II

0 -Q)
()
c:
IU

E .g
Q)
0-
Q)

.t::!
"iii
E
0 z

100

10

1

0.1

IIIISDS DXDR

Exec file size Memory usage Data overhead Execution time

DMI performance/struct WRITE
TIP-04548

Figure 9. The "writer" Test Results for the Complex Oats Set Application (Figure 7).

100r----------r--------~~--------,_--------_,

10

1

0.1
Exec file size Memory usage Data overhead Execution time

DMI performance/array READ
TIP-04549

Figure 10. The "reader" Test Results for the Complex Oats Set Application (Figure 7).

8

-,...
~ -Q)

g
CIS
Eg
Q)
0-

.~
a;
E
0 z

100r---------.---------~--------~--------~

10

1

0.1
Exec file size Memory usage Data overhead Execution time

OMI performance/struct WRITE
T1P-04550

Figure 11. The "writer" Test Results for the Array Application (Figure 8).

100r----------.--------~----------~--------~

10

1

0.1
Exec file size Memory usage Data overhead Execution time

OMI performance/struct READ
T1P-04551

Figure 12. The "reader" Test Results for the Array AppUcatlon (Figure 8).

9

4.0 CONCLUSION
The XDR method was found to be "relatively" efficient (200-300% performance degradation), with little

or no overhead as compared to "C". The data generated using this method are compatible across all platforms
that support XDR. If a platform does not support XDR, the source code is available for use without charge
from Sun Microsystems. The software tools were found to be stable. Many industry software tools are
implemented with XDR, including NFS (Network File System) and other network administrator utilities.
XDR provides a DDL in a "C" -style flavor. The XOR data descriptions are parsed by rpcgen to generate
appropriate translation routines. A description of the data is not part of the data set [1].

The ASNI method was found to be inefficient, with 600-4800% more overhead compared to ''C'' method.
The data generated are compatible across platforms that support ASNI. For platforms that do not support
ASNl, the source code is available at the ftp side rena.dit.co.jp in the directory pub/misc.isode/isode-7. The
software tools were found to be stable. Several industry packages have been developed using ASNI,
including the Simple Network Management Protocol (SNMP). A description of the data is part of the data set.
The abstract syntax Notation One is a Data Description Language (DDL). The utilities "pepy" and "pepsy"
parse ASNI data set descriptions to generate translation routines [2].

The Self Describing Data Standard (SDS) method was found to have the largest performance degradation
and largest data overhead. However, using the SDS method of disjoint data description, the overhead in data
description can be kept separated from the original data set. The data generated using this method are
compatible across platforms supported by the SDS libraries. If a platform does not support SDS, the source
code is available at the ftp side largo.lbl.gov in the directory Ipub. (A C++ compiler is required for some of
the tools.) The software tools were found to be relatively unstable. A description of the data is part of the data
set offering the greatest flexibility. SDS provides a Data Description Language (DOL) called gasp [5].

The Zebra method was found to be inefficient for complex data models (mixed data types) but better than
ASNI for array handling. Zebra was the worst in resource utilization. As with XDR, ZEBRA does not
provide a description of the data, thus creating relatively unsafe situations. In addition, ZEBRA does not
provide the developers with a DDL. The benefit of using ZEBRA seems to be wide acceptance in the
high-energy physics community and the existence of extensive software tools.

10

REFERENCES

1. External Data Representation: Sun Technical Notes, March 1990, PN 800-3851-10,
Sun Microsystems.

2. Marshall T. Rose, The Open Book: A Practical Perspective on OSI, 1990 edition, Prentice-Hall,
New Jersey.

3. The ISO Development Environment: User's Manual, Volume 4: "The Applications Cookbook,"
July 19, 1991, Version 7.0, Performance Systems International, Inc.

4. The XDR Library: Network Interfaces Programmer's Guide, March 1990, PN 800-3844-10,
Sun Microsystems.

5. Chris Saltmarsh and Erick Lutz, SDS Document, Rough Draft, September 9,1991.

6. Integer Representation: C Programmer Guide, March 1990, PN 800-3844-10, Sun Microsystems.

7. Floating Point: Networking Interfaces. March 1990, PN 800-3850-10. Sun Microsystems.

8. Sara Baase, VAX-lJ Assembly Language Programming. 1983 edition. Prentice Hall, New Jersey.

9. Apple Numberics Manual, 1986 edition, Apple Computer, Inc.

11

