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VxWorks v5.1 Benchmark Tests 

M. Botlo. M. Jagielski. and A. Romero 

Abstract 

We measure the perfonnance of the VxWorks Real-Time Operating System on various VME single-board 
computers and compare VxWorks (v5.0.2) and VxWorks (v5.1). 



1.0 INTRODUCTION 

This paper takes a look at the performance ofVxWorks1.2 (v5.0.2), released in July 1991, and VxWorks 
(v5.1), released in March 1993. VxWorks is a high-performance, real-time operating system. Some of the 
features provided by this real-time kernel are multitasking with preemptive priority scheduling, intertask 
synchronization, and interrupt handling. The speed at which these ocl;::ur is always a concern to the data 
acquisition (DAQ) developer. Since today's DAQ systems are moving to VME, single-board computers 
residing in VME were examined in this study. Most VME single-board computers support three types of 
external interrupts: VME IRQ, Location Monitors, and Mail Box Interrupts. The latency from when these 
interrupts were generated until they were serviced is examined, along with software interrupt latency, task 
dispatching, and context switches. 

Following are definitions of the four different categories of latencies examined: 

External Interrupt Latency. The delay to activate the first instruction in the interrupt handler following 
the external interrupt signal. Three types of external interrupts were used: VME IRQ, Location Monitors, and 
Mailbox Interrupts. 

Software Interrupt Latency. The delay to activate the first instruc:tion in the signal handler following 
the software interrupt signal [killO]. 

Task Dispatching. The time to pass control from the handler service routine to the user-mode code of the 
task. Two types of task dispatching exist: from external interrupt service requests and from software interrupt 
signal handler routines. 

Context Switch. The time to switch the CPU from one task to another. Context switches examined were 
the result of priority change, binary semaphore give/take, and pause. 

2.0 VxWORKS KERNEL CONFIGURATION 

In each case the kernel only consisted of the following subsystems as defmed in configAll.h: 

#define INCLUDE_NETWORK 

#define INCLUDE_NET_INIT 

#define INCLUDE_NET_SYM_TBL 

#defme INCLUDE_SHELL 

#define INCLUDE_STARTUP _SCRIPT 

#defme INCLUDE_STAT_SYM_TBL 

#define INCLUDE_STOIO 

#defme INCLUDE_SYM_TBL 

#define INCLUDE_NFS 

#defme INCLUDE_SIGNALS (5.1 Only) 

#define INCLUDE_LOADER (5.1 Only) 

/* network subsystem code */ 

/* network subsystem initialization */ 

/* load symbol table from network */ 

/* interai;:tive c-expression interpreter */ 

/* execute start-up script */ 

/* create user-readable error status */ 

/* standard I/O * / 

/* symbol table package */ 

/* nfs package * / 

/* software signal library */ 

/* object module loading */ 

During the context switch tests, all kernel tasks (tNetTask, tPortmapd, and tShell) were suspended with the 
exception of the tExcTask task. It should be noted that a taskDelayO needs to be called before actually starting 
the tests to allow the TTY driver to empty any remaing characters from the shell to the screen. Otherwise, 
periodic bumps will appear in the timing results as the CPU handles these interrupts from the serial port. The 
source code along with test instructions can be found at the following ftp site: slug.ssc.gov (134.3.33.40) in 
/pub/vwBench5.1. 



3.0 SINGLE·BOARD COMPUTERS 

The following VME single-board computers (SBC) were used in the evaluation: 

Motorola MVME167B3 is a MC68040-based board with a 25-MHz clock. 

Motorola MVME1624 is a MC68040-based board with a 25-MHz clock. 

Motorola MVM147S/A5 is a MC68030-based board with a 32-MHz clock. 

General Micro Systems GMS V376 is a MC68030-based board with a 16-MHz clock. 

4.0 MEASUREMENT METHODOLOGY AND RESULTS 
A VMETRO VBT-321B7 VME bus tracer was used to measure the latency times. This bus tracer triggers 

on the falling edge of the VME DTACK* signal and has a 25-MHz clock, resulting in a 40-ns resolution. To 
measure the time between action A and action B the test programs wrote to a Motorola MVME224A-28 
external memory board. This would cause VME activity, which is then clocked by the VME bus tracer. In the 
following discussions, the reader should assume the external memory board has a base address of 20000000 
(hexidecimal). For all the results presented in this section, the root mean square (rms) was less than 0.5, and 
MVMEl6X represents both the MVME167 and the MVME162. It should be noted that these tests were 
conducted under optimal conditions with a very small test program and with caching enabled. With caching 
disabled, the context switch times for the MVME16X were 6 times slower and twice as slow for external 
interrupt latency. 

4.1 External Interrupt Latency 

Two single-board computers were used to measure the external interrupt latency. The first SBC was the 
interrupter, and the second was the handler. The first SBC used the following "C" code routine to generate a 
VMEIRQ: 

IRQgenerate(IRQlevel, IRQ vector) 
int IRQ_level, IRQ_vector; 
{ 

t1 -> *(int *)(Ox20000000) = I; 1* START TIMING INTERRUPT LATENCY HERE *1 
sysBusIntGen(IRQlevel, IRQ_vector); 
} 

The second SBC would hook an interrupt service routine (ISR) to the appropriate interrupt vector, then 
wait in a forever loop for the interrupt to occur. The ISR "C" code would simply be a write to the external 
memory board to end the timing. 

t2 -> 

IRQisrO 
{ 
*(int *)(Ox20000004) = I; 
} 

1* END TIMING INTERRUPT LATENCY HERE *1 

Hence the time t2- t1 would represent the interrupt latency. Figure I shows the interrupt latency times for 
each SBC for both v5.0.2 and v5.1 when VME IRQs were used. Location monitor and mail box interrupts 
work in a similar manner. Figures 2 and 3 show results for location monitor and mail box interrupt latency, 
respectively. 
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Figure 1. VME IRQ Interrupt Latency. 
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Figure 2. Location Monitor Interrupt Latency. 
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Figure 3. Mall Box Interrupt Latency. 

4.2 Software Interrupt Latency 

The software interrupt latency test determines the time it takes to enter the signal handler of task B after 
task A issues a killO call. The signal handler and task B "C" code looks as follows: 

SigHandlerO 
{ 

t2 -> *(int *)(Ox20000004) = 1; 1* END TIMING INTERRUPT LATENCY HERE *1 
} 

taskBO 
( 
struct sigvec vec; 

vec.sv _handler = SigHandler; 
vec.sv _mask = 0; 
vec.sv _flags = 0; 
sigvec(SIGUSR1, &vec, NULL); 
pauseO; 

Then task A simply executes the following code: 

taskAO 
{ 

tl -> *(int *)(Ox20000000) = 1; 
ki1l(taskID_B. SIGUSR1) 

1* START TIMING INTERRUPT LATENCY HERE *1 
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Again t2-t 1 would represent the software interrupt latency. Figure 4 shows the software interrupt latency for 
each SBe. 
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Figure 4. Software Interrupt Latency. 

4.3 Task Dispatching Latency 

TIP-04483 

In Sections 4.1 and 4.2, external and software interrupts were examined by looking at the latency from the 
time an interrupt is generated until an interrupt handler routine services the interrupt. This section examines 
task dispatching, which is the time it takes to get from the handler routine back to executing a task. 

For example, one could rewrite the ISR in Section 4.1 as follows: 

tl-> 

IRQisr() 
{ 
globalFlag = 1; 
*(int *)(Ox2{)()()()()()()) = 1; 
} 

1* START TIMING DISPA;TCH LATENCY HERE *1 

Then the task running on this same SBC could have "C" code as follows: 

taskO 

t2 -> 

{ 

globalFlag = 0; 
1* Hook interrupt vector here *1 

do { 
if (globalFlag) 

*(int *)(Ox20000004) = 1; 
} while (1); 

1* END TIMING DISPATCH LATENCY *1 

Thus t2-tl would give the dispatch time from an external ISR. Figure 5 shows ISR task dispatching 
latency for each SBC. 
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Figure 5. ISR Task Dispatching Latency. 

Likewise task B in Section 4.2 could be modified to add a write to VME after the pauseO call. This would 
measure the task dispatching from a signal handler. Figure 6 shows results for task dispatching from a signal 
handler. 
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Figure 6. Signal Handler Task Dispatching Latency. 
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4.4 Context Switch Latency 

This section examines the context switch latency-that is, how fast can the kernel stop executing one task 
and start executing another. Several situations can cause the kernel to swap execution of tasks. Three methods 
will be examined here. First a test was done with three tasks executing in a loop, with each task simply 
lowering its own priority and causing a context switch to the next task. Figure 7 shows the results of this test 
on each SBC. 
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Figure 7. Priority Change Context Switch. 

The second context switch test used binary semaphores. For example, task A writes to an address on the 
external memory board and then executes a semTakeO. Task B writes to the external memory and executes a 
semGiveO. Since task B runs at a lower priority, a context switch to task A takes place. This sequence 
executed in a loop in both tasks, causing them to ping back and forth. The code fragments for each task look 
like this: 

tl-> 

t4-> 

taskAO 
{ 
i = 0; 
do 

taskBO 
{ 
i = 0; 

{ 
*(int *)(Ox20000000) = OxIA; 1* START semTakeO TIMING *1 
semTake(sem, WAIT_FOREVER); 
*(int *)(Ox20000000) = Ox4A; 1* END semGiveO TIMING *1 
} while (++i < 25); 
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do 
t3 -> 

t2 -> 

{ 
*(int *)(Ox20000000) = Ox3B; 
semGive(sem); 
*(int *)(Ox20000000) = Ox2B; 
} while (++i < 25); 

1* START semGiveO TIMING *1 

1* END semTakeO TIMING *1 

Examing the above we see that t2-t 1 measures the time for a context switch to take place when caused by a 
semTakeO, and t4-t3 measures the context switch time for a semGiveO. Figure 8 shows the context switch 
times for taking a binary semaphore, and Figure 9 shows the times for giving a binary semaphore. 

The third context switch measured was caused by the pauseO call. Looking back at Section 4.2, if the 
pauseO in task B and the kil10 in task A are put in loops like the semapore example above, one can measure 
the context switch time caused by pauseO call. Figure 10 shows results for the pause context switch for each 
SBe. 
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Figure 8. Semaphore Take Context Switch. 
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Figure 9. Semaphore Give Context Switch. 
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Figure 10. Pause Context Switch. 
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5.0 CONCLUSION 

As expected, the MVME16X SBCs performed better than the other two SBCs in the evaluation. The 
MVME16X was roughly 100 percent faster than the MVME147 when comparing context switch latencies, 
and the MVME147 was also 100 percent faster than the GMS-V37. 

The biggest improvement in the VxWorks software was in the area of signal interrupt latency and signal 
task dispatching. The improvement from VxWorks (vS.0.2) to VxWorks (vS.l) was between 60 and 120 
percent for signal interrupt latency and between 550 and 930 percent for signal handler task dispatching. 

Context switch latencies improved slightly for the MVME 147 but showed a greater gain, between 40 and 
80 percent, for the MVME16X. One could conclude that the software changes were more beneficial to the 
pipeline execution scheme of the MC68040 processor. 
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