
VxWorks v5.1 Benchmark Tests

Superconducting Super Collider
Laboratory

SSCL-627
May 1993
Distribution Category: 400

M. Botlo
M. Jagielski
A.Romero

VxWorks v5.1 Benchmark Tt~sts

M. Botlo, M. Jagielski, and A. Romero

Superconducting Super Collider Laboratory*
2550 Beckleymeade Ave.

Dallas, TX 75237

May 1993

SSCL-627

*Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

VxWorks v5.1 Benchmark Tests

M. Botlo. M. Jagielski. and A. Romero

Abstract

We measure the perfonnance of the VxWorks Real-Time Operating System on various VME single-board
computers and compare VxWorks (v5.0.2) and VxWorks (v5.1).

1.0 INTRODUCTION

This paper takes a look at the performance ofVxWorks1.2 (v5.0.2), released in July 1991, and VxWorks
(v5.1), released in March 1993. VxWorks is a high-performance, real-time operating system. Some of the
features provided by this real-time kernel are multitasking with preemptive priority scheduling, intertask
synchronization, and interrupt handling. The speed at which these ocl;::ur is always a concern to the data
acquisition (DAQ) developer. Since today's DAQ systems are moving to VME, single-board computers
residing in VME were examined in this study. Most VME single-board computers support three types of
external interrupts: VME IRQ, Location Monitors, and Mail Box Interrupts. The latency from when these
interrupts were generated until they were serviced is examined, along with software interrupt latency, task
dispatching, and context switches.

Following are definitions of the four different categories of latencies examined:

External Interrupt Latency. The delay to activate the first instruction in the interrupt handler following
the external interrupt signal. Three types of external interrupts were used: VME IRQ, Location Monitors, and
Mailbox Interrupts.

Software Interrupt Latency. The delay to activate the first instruc:tion in the signal handler following
the software interrupt signal [killO].

Task Dispatching. The time to pass control from the handler service routine to the user-mode code of the
task. Two types of task dispatching exist: from external interrupt service requests and from software interrupt
signal handler routines.

Context Switch. The time to switch the CPU from one task to another. Context switches examined were
the result of priority change, binary semaphore give/take, and pause.

2.0 VxWORKS KERNEL CONFIGURATION

In each case the kernel only consisted of the following subsystems as defmed in configAll.h:

#define INCLUDE_NETWORK

#define INCLUDE_NET_INIT

#define INCLUDE_NET_SYM_TBL

#defme INCLUDE_SHELL

#define INCLUDE_STARTUP _SCRIPT

#defme INCLUDE_STAT_SYM_TBL

#define INCLUDE_STOIO

#defme INCLUDE_SYM_TBL

#define INCLUDE_NFS

#defme INCLUDE_SIGNALS (5.1 Only)

#define INCLUDE_LOADER (5.1 Only)

/* network subsystem code */

/* network subsystem initialization */

/* load symbol table from network */

/* interai;:tive c-expression interpreter */

/* execute start-up script */

/* create user-readable error status */

/* standard I/O * /

/* symbol table package */

/* nfs package * /

/* software signal library */

/* object module loading */

During the context switch tests, all kernel tasks (tNetTask, tPortmapd, and tShell) were suspended with the
exception of the tExcTask task. It should be noted that a taskDelayO needs to be called before actually starting
the tests to allow the TTY driver to empty any remaing characters from the shell to the screen. Otherwise,
periodic bumps will appear in the timing results as the CPU handles these interrupts from the serial port. The
source code along with test instructions can be found at the following ftp site: slug.ssc.gov (134.3.33.40) in
/pub/vwBench5.1.

3.0 SINGLE·BOARD COMPUTERS

The following VME single-board computers (SBC) were used in the evaluation:

Motorola MVME167B3 is a MC68040-based board with a 25-MHz clock.

Motorola MVME1624 is a MC68040-based board with a 25-MHz clock.

Motorola MVM147S/A5 is a MC68030-based board with a 32-MHz clock.

General Micro Systems GMS V376 is a MC68030-based board with a 16-MHz clock.

4.0 MEASUREMENT METHODOLOGY AND RESULTS
A VMETRO VBT-321B7 VME bus tracer was used to measure the latency times. This bus tracer triggers

on the falling edge of the VME DTACK* signal and has a 25-MHz clock, resulting in a 40-ns resolution. To
measure the time between action A and action B the test programs wrote to a Motorola MVME224A-28
external memory board. This would cause VME activity, which is then clocked by the VME bus tracer. In the
following discussions, the reader should assume the external memory board has a base address of 20000000
(hexidecimal). For all the results presented in this section, the root mean square (rms) was less than 0.5, and
MVMEl6X represents both the MVME167 and the MVME162. It should be noted that these tests were
conducted under optimal conditions with a very small test program and with caching enabled. With caching
disabled, the context switch times for the MVME16X were 6 times slower and twice as slow for external
interrupt latency.

4.1 External Interrupt Latency

Two single-board computers were used to measure the external interrupt latency. The first SBC was the
interrupter, and the second was the handler. The first SBC used the following "C" code routine to generate a
VMEIRQ:

IRQgenerate(IRQlevel, IRQ vector)
int IRQ_level, IRQ_vector;
{

t1 -> *(int *)(Ox20000000) = I; 1* START TIMING INTERRUPT LATENCY HERE *1
sysBusIntGen(IRQlevel, IRQ_vector);
}

The second SBC would hook an interrupt service routine (ISR) to the appropriate interrupt vector, then
wait in a forever loop for the interrupt to occur. The ISR "C" code would simply be a write to the external
memory board to end the timing.

t2 ->

IRQisrO
{
*(int *)(Ox20000004) = I;
}

1* END TIMING INTERRUPT LATENCY HERE *1

Hence the time t2- t1 would represent the interrupt latency. Figure I shows the interrupt latency times for
each SBC for both v5.0.2 and v5.1 when VME IRQs were used. Location monitor and mail box interrupts
work in a similar manner. Figures 2 and 3 show results for location monitor and mail box interrupt latency,
respectively.

2

20.---------,----------,----------,

18

16

14

12

Ils 10

8

6

4

2

o

IlS

_ VxWorks 5.0.2
_ VxWorks 5.1

MVME16X MVME147 GMS V37

Figure 1. VME IRQ Interrupt Latency.

11 .-------------,-------------,

10 IIIIIIIII!I VxWorks 5.0.2

9 - VxWorks 5.1

8

7

6

5

4

3

2

1

o
MVME16X MVME147

TIP-04481

Figure 2. Location Monitor Interrupt Latency.

3

TIP-04480

11

10 IIIIIIIIIIIIIII VxWorks 5.0.2

9 _ VxWorks 5.1

8

7

6
Jls

5

4

3

2

1

0
MVME16X MVME147

TIP-04482

Figure 3. Mall Box Interrupt Latency.

4.2 Software Interrupt Latency

The software interrupt latency test determines the time it takes to enter the signal handler of task B after
task A issues a killO call. The signal handler and task B "C" code looks as follows:

SigHandlerO
{

t2 -> *(int *)(Ox20000004) = 1; 1* END TIMING INTERRUPT LATENCY HERE *1
}

taskBO
(
struct sigvec vec;

vec.sv _handler = SigHandler;
vec.sv _mask = 0;
vec.sv _flags = 0;
sigvec(SIGUSR1, &vec, NULL);
pauseO;

Then task A simply executes the following code:

taskAO
{

tl -> *(int *)(Ox20000000) = 1;
ki1l(taskID_B. SIGUSR1)

1* START TIMING INTERRUPT LATENCY HERE *1

4

Again t2-t 1 would represent the software interrupt latency. Figure 4 shows the software interrupt latency for
each SBe.

400

350 .. VxWorks 5.0.2

_ VxWorks 5.1

300

250

IJS 200

150

100

50

0
MVME16X MVME147 GMS V37

Figure 4. Software Interrupt Latency.

4.3 Task Dispatching Latency

TIP-04483

In Sections 4.1 and 4.2, external and software interrupts were examined by looking at the latency from the
time an interrupt is generated until an interrupt handler routine services the interrupt. This section examines
task dispatching, which is the time it takes to get from the handler routine back to executing a task.

For example, one could rewrite the ISR in Section 4.1 as follows:

tl->

IRQisr()
{
globalFlag = 1;
*(int *)(Ox2{)()()()()()()) = 1;
}

1* START TIMING DISPA;TCH LATENCY HERE *1

Then the task running on this same SBC could have "C" code as follows:

taskO

t2 ->

{

globalFlag = 0;
1* Hook interrupt vector here *1

do {
if (globalFlag)

*(int *)(Ox20000004) = 1;
} while (1);

1* END TIMING DISPATCH LATENCY *1

Thus t2-tl would give the dispatch time from an external ISR. Figure 5 shows ISR task dispatching
latency for each SBC.

5

20

18 _ VxWorks 5.0.2

16 _ VxWorks 5.1

14

12

J.1s 10

8

6

4

2

0
MVME16X MVME147 GMS V37

TIP.Q4484

Figure 5. ISR Task Dispatching Latency.

Likewise task B in Section 4.2 could be modified to add a write to VME after the pauseO call. This would
measure the task dispatching from a signal handler. Figure 6 shows results for task dispatching from a signal
handler.

550

500 .. VxWorks 5.0.2

450 _ VxWorks 5.1

400

350

300
J.1s

250

200

150

100

50

0
MVME16X MVME147 GMS V37

TIP-04485

Figure 6. Signal Handler Task Dispatching Latency.

6

4.4 Context Switch Latency

This section examines the context switch latency-that is, how fast can the kernel stop executing one task
and start executing another. Several situations can cause the kernel to swap execution of tasks. Three methods
will be examined here. First a test was done with three tasks executing in a loop, with each task simply
lowering its own priority and causing a context switch to the next task. Figure 7 shows the results of this test
on each SBC.

120

110
IIIIIIiIIIIII VxWorks 5.0.2

100 _ VxWorks 5.1

90

80

70

~s 60

50

40

30

20

10

0
MVME16X MVME147 GMSV37

TlP-04486

Figure 7. Priority Change Context Switch.

The second context switch test used binary semaphores. For example, task A writes to an address on the
external memory board and then executes a semTakeO. Task B writes to the external memory and executes a
semGiveO. Since task B runs at a lower priority, a context switch to task A takes place. This sequence
executed in a loop in both tasks, causing them to ping back and forth. The code fragments for each task look
like this:

tl->

t4->

taskAO
{
i = 0;
do

taskBO
{
i = 0;

{
*(int *)(Ox20000000) = OxIA; 1* START semTakeO TIMING *1
semTake(sem, WAIT_FOREVER);
*(int *)(Ox20000000) = Ox4A; 1* END semGiveO TIMING *1
} while (++i < 25);

7

do
t3 ->

t2 ->

{
*(int *)(Ox20000000) = Ox3B;
semGive(sem);
*(int *)(Ox20000000) = Ox2B;
} while (++i < 25);

1* START semGiveO TIMING *1

1* END semTakeO TIMING *1

Examing the above we see that t2-t 1 measures the time for a context switch to take place when caused by a
semTakeO, and t4-t3 measures the context switch time for a semGiveO. Figure 8 shows the context switch
times for taking a binary semaphore, and Figure 9 shows the times for giving a binary semaphore.

The third context switch measured was caused by the pauseO call. Looking back at Section 4.2, if the
pauseO in task B and the kil10 in task A are put in loops like the semapore example above, one can measure
the context switch time caused by pauseO call. Figure 10 shows results for the pause context switch for each
SBe.

110

100 .. VxWorks 5.0.2

90 _ VxWorks 5.1

80

70

60
j..ls

50

40

30

20

10

0
MVME16X MVME147 GMSV37

TIP-04487

Figure 8. Semaphore Take Context Switch.

8

100

90 IIIIIIIIIII VxWorks 5.0.2

80
_ VxWorks 5.1

70

60

Jls 50

40

30

20

10

0
MVME16X MVME147 GMS V37

TIP-04488

Figure 9. Semaphore Give Context Switch.

140

120
.. VxWorks 5.0.2
_ VxWorks 5.1

100

80

Jls

60

40

20

0
MVME16X MVME147 GMSV37

TIP-04489

Figure 10. Pause Context Switch.

9

5.0 CONCLUSION

As expected, the MVME16X SBCs performed better than the other two SBCs in the evaluation. The
MVME16X was roughly 100 percent faster than the MVME147 when comparing context switch latencies,
and the MVME147 was also 100 percent faster than the GMS-V37.

The biggest improvement in the VxWorks software was in the area of signal interrupt latency and signal
task dispatching. The improvement from VxWorks (vS.0.2) to VxWorks (vS.l) was between 60 and 120
percent for signal interrupt latency and between 550 and 930 percent for signal handler task dispatching.

Context switch latencies improved slightly for the MVME 147 but showed a greater gain, between 40 and
80 percent, for the MVME16X. One could conclude that the software changes were more beneficial to the
pipeline execution scheme of the MC68040 processor.

10

REFERENCES

1. VxWorks 5.0 Programmer's Guide, Wind River Systems.

2. VxWorks 5.0 Reference Manual, Wind River Systems.

3. MVME167IMVME187 Single Board Computers Programmer's Reference Guide,
July 1991 edition, Motorola.

4. MVME162 Embedded Controller lnstatllation Guide, March 1993 edition, Motorola.

5. MVME147S MPU VMEmodule User's Manual, April 1990 edition, Motorola.

6. GMS V37-D Special Applications Module User's Manual, May 1992 edition,
General Micro Systems.

7. User's Manual VBT-321, VBT-321A, VBT-321B, VPC Advanced VMEbus Tracer,
November 1991 edition, VMETRO.

8. MVME224A-I/-2/-3/-4 Series of DRAM Memory Modules User's Manual,
1990 edition, Motorola.

11

