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1.0 INTRODUCTION 
The High Energy Booster (HEB) ring is the last booster of the 20-TeV Superconducting Super Collider 

(SSC). The 2-Te V beam transfer lines between these two giant accelerator complexes should meet all 
geometrical and optical matching conditions while having sufficient tuning flexibility. The lattice design of 
these lines also has to be concerned with the huge energy each HEB extracted batch carries (6.55MJ). A 
compact lattice design with all magnets being resistive was adopted for its optical flexibility, operational 
reliability, and cost saving. 

The HEB west long straight section (HWLS) is directly over the two c:ollider west utility straight sections 
(WUSS). The vertical separation between HEB and the bottom collid(:r is 14 m, which is determined by 
radiation safety requirements. The elevation separation between the two colliders is 0.9 m. 

There are two beam lines to transfer both the clockwise (CW) and c:ounterclockwise (CCW) extracted 
HEB beams to top collider and bottom collider, respectively. Geometric boundaries of these lines are fixed by 
the global machine layout. The two transfer lines are in the same vertical plane, which is about 18 mm inside 
of either the HEB or the Colliders' west long straight sections. There arle no horizontal bending magnets in 
these lines; the small horizontal shift of the transfer plane is generated by horizontal kickers. The length of 
each beam line is approximatly 640 m. To transfer a 2-Te V proton bearn, this length is relatively short. 

The Site-Specific Conceptual Design Report (SCDR) presented a superconducting approach for this 
transfer systeml that closely fits the present global layout. The design used several types of Fermi National 
Accelerator Laboratory (FNAL) superconducting magnets. Lattice structures of the two lines were similar, 
which is important to maintain uniformity in operation. This criterion has been applied to all subsequent 
designs. Concerns of superconducting magnet quenching problems wen~ reflected in the SCDR by way of a 
suggestion to consider using resistive magnets throughout the beamline:. 

In 1991, a resistive magnet solution2 with 14-m vertical separation from HEB to bottom collider had been 
worked out. However, the use of iron-dominated magnets, limited to 1.8 T, basically fllled approximatly half 
the length of the transfer line with dipoles. The consequent restrictions on the placement of quadrupoles 
resulted in an irregular beta function and limited tuning flexibility. But it was realized that building any 
superconducting magnets other than HEB or collider superconducting magnets would be extremely costly. 
Further study of optics with the possibility of using existing HEB or collider superconducting magnets to 
improve the lattice was required. 3 

An intensive study of lattice design was performed in 1992, resulting in several different designs: a lattice 
with two -I achromats;4 a hybrid solution5 using superconducting and resistive magnets; and a compact 
resistive magnet solution.6 This systematic approach has given us a clear scope of what we can do for optics 
with considerations of technical and budget constraints. 

The compact resistive solution has been adopted because its cost is lower and it has fewer problems of 
physical interference. Since all magnets are warm, one can consider impllementation of a collimator system to 
protect collider elements from HEB extract kicker misfire. The optics of this lattice is compact and flexible. 
Figure 1 shows the layout of this design, and Figure 2 depicts various optical functions. 

The design study here in many ways is an effort to solve inter-accekrator transfer line optical problems 
dealing with insufficient phase advance and strict matching requirements. 
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2.0 BASIC OPTICAL CONFIGURATION7 

The basic optical design goals of these lines are (a) centroid matching, i.e., closed orbit matching; 
(b) P matching; and (c) dispersion function matching. 

To meet the layout requirements, these beam lines contain only vertical bending magnets. Each transfer 
line is a parallel beam axis shift system. One group of bending magnets bends the beam down and the other 
group of dipoles bends the beam up. 

The HEB west long straight section and collider utility straight sections are dispersion-free regions. 
Therefore the transfer line should be an achromatic system. 

The beam line lattices may fall into the following three categories by dealing with '11 and p matching 
differently: 

1. '11 matching first, p matching second. This type of lattice typicallly has two achromats 
on both ends and a Twiss matching section between. Orthogonal trim of p and '11 
functions may be attainable. Control of p and '11 functions orthogonally will make beam 
line tuning easy and operation simple, which is one of the design goals if achievable. 
When making achromats, proper control of P amplitudes is always a concern. A two -I 
transfer lattice was made in the belief that it was the best strategy for this approach. 
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2. ~ matching first, 'YI matching second. In this case, one places Twiss matching sections 
at each end, matching the HEB and collider ~ functions into a periodic structure in the 
middle, say FODO. Then by placing the two dipole groups, with opposite bending 
directions properly, one can match coordinates and close the dispersion vector diagram 
(Section 3.3). 

Most of our designs proceeded in this way, as dipoles have little effect on Twiss parameter matching. 
However the game to "place dipoles properly" is not straight forward, even when a dispersion vector diagram 
has been drawn, because the vector is a combination of bending angle and local ~ amplitude. Also the 
positions available for dipoles and quadrupoles are badly constrained by interference problems with HEB, 
Colliders, and even the beamlines themselves. 

An example of such an approach is the SCDR design, which matches both ends to a FODO structure 
between. Then by adjusting the phase advance in the FODO cells and introducing a small dogleg in the center, 
the vertical dispersion is cancelled. However due to insufficient phase advance in the FODO structure, 
adjustment of'YI and ~ matching has to be mixed to some extent. 

3. Mixed'YI and ~ matching. The two preceding lattice designs applied to these lines all 
need superconducting dipoles and quadrupoles to generate sufficient bending angle and 
betatron phase advance. 

Mixed'YI and ~ matching must be implemented in our hybrid or resistive magnet solutions because there is 
insufficient phase advance to separate the two functions. This makes the problem difficult to solve in a 
systematic way, and orthogonal tuning for these lines is not possible. 

Three designs of this kind have been tested: 

The first was a warm (all resistive magnets) solution (Oct. 1991, the "old warm lattice"), which attempted 
to work out two achromats but did not succeed. The 13 quadrupoles had to be tuned simultaneously to match 
all conditions. 

The second was a hybrid solution, which used one HEB superconducting dipole and one HEB quadrupole 
at each end of the beam lines to help control ~ amplitudes. When working on this solution, we tried to match 
Twiss parameters on both ends first. 

The third design (compact resistive) was an evolution of the hybrid solution above. Realizing that with 
resistive magnets, this transfer length is too short to separate 'YI and ~ matching, we decided to make a simple 
piece of lattice to match both 'YI and ~ directly from HEB to Collider. However some kind of ~ amplitude 
control is still needed on each end. Instead of making "Optical Insults" (highly irregular ~ matching section) 
as in case 2, here two quadrupoles were used at each end to reduce maximum ~ amplitude and to present 
reasonable ~ functions to start a periodical oscillation. 

The following data may give a feeling of what phase advance can be expected for a warm solution: 

• 67 m is needed for either extraction or injection septum and C-magnets (field - 1.1 n 
array to shift the beam 32 cm away from the ring orbit. This is the space required to 
install a high-field dipole magnet.8 The remaining length of transfer line is - 500 m. This 
is the space available for matching the optics and geometry of the beam. 

• Possible phase advance with limited Q gradient strength, and reasonable ~ amplitude. For 
90° FODO (thin lens approximation) the 23t structure 1ength9 is: 

8 
8L = 3.4 ~max = 2.35~max, 

4 
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where L is the distance between adjacent quadrupole centers, and ~ is the maximum beta amplitude of the 
structure. The quadrupole focal length is: 

/= 0.7L = ~~, (2) 

where G is the field gradient, I is the effective length, and BQ is the beam rigidity. 

Assuming quadrupole length 1=5 m and gradient G = 32T/m, for a 2-TeV beam one obtains/= 41.7 m. 
Choosing a reasonable number for~, say 200 m, one has a structure length of 470 m. This means that the 
phase advance with warm quads can be no larger than - 23t + phase advances in extraction and injection 
septum and C-magnets. 

As the two bending groups bend the beam in opposite directions, to cc:mcel dispersions the "bend centers" 
of the two groups should be 2n3t apart. As stated in Section 3.3, the "bend center" here is a combined gravity 
of bending angle and p amplitude in phase space. However, in our case they are close to geometric bending 
centers. Bending angle of all septa and C-magnets is about 1/3 of totc:lil bending angle needed. Therefore 
geometrical bending centers will be out of septa and C-magnets and closer to the center. 

Obviously with resistive magnets, the possible choice to closely cancel dispersions by positioning dipoles 
is to make a 23t phase advance between these two "bend centers." 

3.0 THE OPTICAL SOLUTIONS 

Five lattice designs are discussed here. Figure 3 is a compact plot of their optical functions. 

3.1 The Two -I Achromats Design 

In this design there is a -I achromat on each end of the transfer line, and a ~-matching section in the center 
part (see Figure 4). The design was constrained to use HEB-type dipolle or quadrupoles if they have to be 
superconducting. 

Each -I achromat consists of three HEB-type dipoles and an array of septa and C-magnets. One of these 
HEB dipoles (the middle of the three) is separately powered to couple the septum and C-magnets array at 
3t phase advance in order to cancel dispersion generated by each othl~r. The other two HEB dipoles are 
powered in series, also 3t-phase apart. By changing the bending field of these two dipoles, it is possible to 
steer the beam while not introducing dispersion. There are five quadrupoles to constitute two 90° FODO cells 
in each of these two achromats. One of the quadrupoles is split. 

The minimum FODO cell length (3tl2 phase advance) is about the length of the septum and C-magnet 
array, since the independently powered dipole has to be placed between two quadrupoles to make its center 
3t-phase advance from the center of the septum and C-magnet array. Septum and C-magnets' array length is 
decided by space interference limits and magnet field limits for the septum and C-magnet, not for any optical 
reason. In our case, the 90° FODO cell length is - 87 m (septum and C-magnet length -70 m). 

A major difficulty for this design is the control of peak p-amplitudes in the -I achromats. The natural peak 
p of a FODO structure is scale-to-celliength, see Eq. (1). As we cannoll further reduce cell length to reduce 
peak p, one of the quadrupoles has to be split, and the other quadrupoles have to be powered separately to 
allow trimming their gradients individually. This is a setback to the ideal of separating dispersion-matching 
and ~-matching. The other way to lower ~-peak is to reduce phase advance in the FODO cell, say, by going to 
a 60° FODO. However, we failed to do that due to insufficient length of the line. 

5 



(a) 
4~~~~~rr~~~~,,~rn~~ 

2 

I o~~~--~~--~==~~ 
-2 

_4~~LU~~~~~~uu~~~ 

~~ ~ ,. 
~O=rrnrn""IITTTTTlTlrrrrrnrnlB 
500 

_ 400 

.§. 300 
::I. 

200 

100 

m 

_4CU~~~~UUUU~~~~~WU~~ 

moom~ ~ lID ~~~ 
~=r~~~TT"rrrn~ITTTrrrnnl~ 

500 
_400 
.§.300 
c:Q. 

200 
100 

m 

(e) 
4 

2 

I 
,;: 0 

-2 

(b) 
4 

2 

I 0 
,;: 

-2 

-4 

HBHpIl 
600 
500 

_400 
.§.300 
c:Q. 

200 
100 

100 

(d) 
4 

2 

I 0 
,;: 

~~~~~~rr~~~TT"rrrn~~ 

500 

'E 400 
;:300 

200 

m 

m 

m 
Figure 3. Lattice Designs for the HEB-to-Collider Transfer Unes. (a) SCDR Design, (b) Two -I Achromats, 

(c) Resistive One (Old Warm), (d) Hybrid Lattice, (e) Compact Resistive. 

6 



The remaining length in the center part for ~-matching is -140 m. To match ~ in a very confmed space is 
also a difficult task, though we solved it in this case. In cases that ~-matl::hing cannot be accomplished in this 
section, it will extend to achromats, thus mixing the two matching again. 

In Section 4.0, we will see that these space limits will spoil the orthogonal control and degrade optical 
flexibility to this ideal design. 

The maximum dispersion in a two-achromat system is small « -~ 2m), compared to a one-achromat 
lattice. But this is not a sensitive issue in these designs, due to the small fractional momentum spread 
( - 10-4) of the 2-Te V HEB beam. 
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3.2 Two Achromats Approach with Resistive Magnets (Old Warm) 

This was the flrst approach to make a resistive solution for these lines. The intention was to make two 
achromats. However, with the low bending magnet fleld limit ( - 1.8T), the resistive dipoles just spread to the 
center if one tries to balance the bending centers to cancel 11 on both ends. Even then it was still not possible to 
succeed with two achromats and to keep p-amplitude under control. That is, the maximum p-amplitude 
should be comparable to collider maximum p, so that the transfer line will not be a restricting aperture in 
normal operation. Also the effects of magnet errors are sensitive to large ps (e.g., see Appendix B). Efforts 
had been made to confront space interferences all along the line while maintaining a reasonable p-amplitude, 
< - 500 m. To match the full range of initial conditions, all quadrupole gradients had to be varied 
simultaneously. 

Optically the solution has an average large and irregular P-distribution (Figure 3(b», which brings into 
doubt its optical flexibility. 

3.3 The One Achromat Designs 

As mentioned earlier, the process of this approach usually is to match p fIrst, because bends have little 
effect on p-matching. However, to reduce the total bending power, the bending center should be pushed as 
close as possible to both ends. In general, the lattice should have a p-matching section on each end to match 
machine optics and to provide a FODO array between. 

The maximum p-amplitude in the REB regular cell is about 100m, and it is - 300 m in the collider. A 
reasonable value for maximum p of the line FODO is about 200 m, so that a length of 470 m is required for 
21t-phase advance using 90° FODO cells. This is just the approximate length between the ends of the septum 
and C-magnet arrays. We saw in Section 2.0 that the integral gradient of a quadrupole for such a 90° FODO is 
about 160 T. This is about half the strength of a superconducting REB cell quadrupole ( - 290 T). So if we 
want more phase advance, say 41t, it will require very strong quadrupoles ( - 320 T). This may be possible for 
a design with superconducting magnets, but will be very costly! 

Next let's clear the meaning of positioning the "bending centers" 21t away and further examine the 
requirements of achromaticity. The general transfer matrix between position 1 and position 2 in a transfer 
system is9 

R= 

.jf;(COS At/J + a l sin At/J 

(1 + a la2)sin(At/J) + (a2--al)cosAt/J 

jPlP2 

where At/J is the phase shift between position 1 and 2, 

If 2n1t shift is imposed, 

(3) 

o 
(4) 

Equations (3) and (4) are the transfer matrices for the transverse coordinates x and x'. In a bend-free region, 
the dispersion vector will have the same transfer matrices. 
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Now we assume that the bending groups can be represented by two point-bending centers and that they are 
2:n:-phase apart. The first bend generates rl'l (which is approximately equal to the bending angle, say 8b 1) at 
position 1, and TJl = O. The transfer space between the two bending centers is bend-free, so by Eq. (4) we 
have TJ2 = 0, TJ/2 = j~J~2 TI' I at position 2. 

To cancel this dispersion the second bend should have a bending angle 8b2 = j~2/~1 8bl. In case of equal 
bending angles, it requires ~1 = ~2. If the matching conditions are different at the two ends, both the phase 
advance and ~1 = ~2 conditions would have to be modified. 

Practically, the bending magnets are mixed with focussing quadrupoles, and in the strict sense "2:n: away 
bending centers" are not merely geometric centers of bending angles but combined centers of bending angle 
and ~-amplitude in phase space. However, the above bending-center mode is a good initiation of how to place 
these magnets. For more precise descriptions, we start from the standard linear equation of transverse motion: 

X" + K(s)X = I1p . _1_ 
P Q(S) , 

(5) 

where X is the transverse coordinate; s, the longitudinal coordinate; I1p/p, the fractional momentum 
deviation; and Q(s) the radius of curvature at s. 

In linear approximation, the transverse motion can be separated into two parts: a displaced trajectory of 
off-energy particles (X,,), aniffte free betatron oscillation about this trajectory (X~). The traject~ of an 
off-energy particle X'l = TI . p is the unique particular solution of Eq. (5) with the driving term p . t. 

In a bend-free region (l/Q = 0), from Eq. (5) the behavior of X" is similar to a free betatron oscillation. 
Therefore we can write the off-energy trajectory in a normalized phase space as: 

(6) 

The emittance E is an invariant determined by momentum offset /1p/p and by the initial dispersion 
function. Using the relation X'l = TI . ~ and X'l' = TI' . ~, one can further write a normalized phase-space 
expression for the dispersion function as 

(7) 

Here E" is an invariant as well. 

We can take the dispersion as a vector in phase space. The two orthogonal components of such a 
normalized dispersion vector are 

..!l.. and TJ'.ffi + ..£. TJ . 
.ffi .ffi 

(8) 

For a system consisting of many bending magnets, the resulting off-energy trajectory is the linear sum of 
those generated by individual bending magnets. In case of an achromatic system, the vector sum of these 
individual dispersion vectors should be zero (see Figure 5(a». ' 
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Figure 5. Dispersion Vectors of Compact lattice. (a) FLOQUET Coordinates for the Dispersion Vector. 
(b) Dispersion Vectors by Dipoles. 

An explicit way to describe the effect of each bend is to draw the normalized dispersion vector generated 
by each bend separately. Consider a single bend, with a small bending angle of 6b. The normalized dispersion 
vector that it generates is (0, ~ 0b)' The normalized dispersion vector at a subsequent point can be derived 
from Eq. (3), and Eq.(7) becomes 

2 2 ( JP ab cos 1jJ) + (JP ab sin 1jJ) = £'1' (9) 

where P is always the beta amplitude at the bend position and 1jJ is the betatron phase advance from the bend to 
the point concerned. 

Now starting from the beginning of the system, we can draw the dispersion vectors along with their phase 
angle in normalized phase space.This is shown in Figure 5(b) for the compact resistive solution. For an 
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achromatic system the sum of all vectors should be null. A dispersion vector diagram may be illustrative, but 
not very instructive as to how one should proceed. 

The SCDR design matches ~ fIrst and makes the FODO between (Figure 3(a». The two opposite-direction 
bend groups have the same bending angle value, and the bend centers of the two are 360-deg phase apart. 
However the ~ functions are dissimilar at these centers, as the line is matched into two rings with dissimilar 
~ functions. Also the bends are mixed with quadrupoles. So the cancellation of dispersion cannot be 
complete. 1\vo more variable parameters are provided: one is the phase shift in the FODO, and the other is a 
dogleg bending structure in the middle of the line. Further trimming of dispersion was not a issue to be 
addressed at that time. However orthogonal control of ~ and TJ in operation is not likely to be the case. 

In the systematic study of possible lattice designs, a hybrid solution was presented (Figure 3(d». 
Constrained by using the fIxed type of superconducting dipoles and quadrupoles, this design has only half the 
FODO cell of the SDCR design. The design process is again to match ~ fIrst; with ~-matching sections at both 
ends, match TJ second. Usually TJ-matching is done in the middle section by varying quadrupoles (including 
those inside the bending groups) and even by moving dipole positions somewhat. Iterations are needed to 
match dispersion while keeping the ~-oscillation periodic in the center. This is benefIcial to tuning flexibility 
(see Section 4.0). 

The cost of the all-superconducting solution (two -I design) is expected to be high because of the 
superconducting current bus, leads, etc. Also the possibility of implementing collimators in the line is dim. 
The hybrid design trades orthogonal control of TJ and ~ for money saving and the possibility of installing 
collimators. However to solve spatial conflicts with the collider and HEB, special cryostats still have to be 
developed in both ends. They are costly and would add technical complications in this troublesome region. 
So another pursuit to resistive lattice was pushed. 

3.4 The Compact Resistive Lattice 

The major change in this design is to give up trying to match on the two ends and to make a one-piece ~
and TJ- matching lattice. 

It is easy to count how many variables are needed to match the HEB to the Collider directly: two for TJ and 
four for 1\viss parameters. Practically, one quadrupole on each side is added to have some preliminary control 
of ~-amplitudes, which are the extensions of the ~-oscillation in the straight sections of the rings. 

To cancel dispersion more naturally, one has to pay attention to the 2J1~-phase shift between the two major 
bending centers. On the one hand, we want to push bends to both ends to save total bending power; on the 
other hand, we distribute some of the bending power of each bending group toward the center to balance the 
group bend center position. 

The fInal matching of six parameters in most cases is accomplished by varying gradients of the "six 
quadrupoles" in the middle of the line. However, the two quadrupoles--one at each end-play important 
roles in shaping the ~-oscillation wave forms in the center part (Figure 6 (a». Iterations usually are carried out 
to make ~-osci11ations in the middle part closer to a periodical form. 

The present compact resistive solution has a maximum j3-amplitude - 600 m, and a fine 
pseudo-periodical structure in the middle. Ten quadrupoles and nine indc~pendent power supplies are used to 
further improve the l3-oscillation waveform (Figure 6 (b». 

The evolution of these solutions, in fact, is not totally based on the sarne boundary conditions. The hybrid 
and compact resistive solution fit the same collider straight section lattice, while the old warm solution and 
the -I solution fit the earlier collider lattice. 
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Figure 6. Compact Resistive lattice with Different Independent Quadrupole PS Numbers. 
(a) Eight Quadrupole PS. (b) Nine Quadrupole PS. 

Boundary conditions will defmitely make a difference in matching or shaping ~-oscillations; however the 
one-piece compact resistive layout does work to some extent. Figures 7 (a) and (b) give an example with the 
same old boundary conditions for old warm solution and for the compact resistive lattice. Without any 
revision (moving magnet positions), the second one, which is designed to fit the new boundary conditions, 
fits the old matching conditions easily and improves the ~-oscillation waveform. The merit of the compact 
resistive lattice shown in this example will be further examined in Section 4.0. 

We now have arrived at a solution that has no orthogonal ~- and TI- control. Therefore, we must ask, what is 
the tuning flexibility? 
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Figure 7. Equal Matching for Old Warm and Compact lattice. (II) First Warm Solution. 
(b) With Compact Structure. 

4.0 COMPARISON OF OPTICAL FLEXffiILITY 
In real machine operation, the matching conditions on both the HEB and collider sides may change to what 

may be good for the machine tuning. It is ideal to fit these new conditions without moving quadrupoles 
around in beam lines. In our case, the tolerances for mismatching are very small to prevent emittance dilution 
in colliders. In addition, the lattice structures are not regular, and in most designs ~- and 'l1-control are not 
orthogonal. 

The optical or tuning flexibility of the beam line may be defmed as the matching range of HEB and 
Collider operating points that the beam line can accommodate. The criterion set for matching is the maximum 
allowed emittance dilution in the following machine (here, collider rings) when a perfect match is not 
possible. 

13 



The constraints for beamline tuning are (1) quadrupole gradient strength limit, a technical limit, and 
(2) maximum betatron amplitude along the line, a consideration from beamline aperture and error sensitivity 
requirements. Figures 8 and 9 are graphical descriptions of the above statement. 
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Figure 8. Optical Flexibility for -I, Old Warm, and Hybrid Solutions. 
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Figure 9. Optical Flexibility for Compact Resistive Solution. 
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Using common sense, one would ask how much change from the de:signed values of ~ or TJ in either the 
HEB or Collider straight sections can be made and the line still fit. 

We have to link changes on ~- or TJ-values to emittance dilution properly (Appendix A). The allowed 
maximum fractional emittance dilution is 10%, according to general requirements in the SCDR (for 
comparison purposes here only). This roughly corresponds to one transverse direction +50% ~-mismatch, or 
to I-m TJ-mismatch at the collider side. 

Results of several fitting calculations for the -I, hybrid, old warm,. and compact resistive designs are 
depicted in Figures 8 and 9. To make a fair comparison, fitting was made by whatever means to deal with 
mathematical problems: quadrupoles can be grouped in different ways or in different fitting order. Fitting 
criteria for TJ or ~ may be different to obtain minimum emittance dilution value. All fittings were done with 
"TRANSPORT." 

An amazing result is that the one-piece compact resistive solution can always make a perfect match in all 
matching conditions, while the others may result in some degree of dilution under some of these conditions. It 
is believed that the pseudo-periodical structure helps to accommodate a wide range of matching conditions 
by accommodating a wide range of ~-amplitudes in the center part. 

Table 1 and Figure 10 give an example of fitting for the compact resistive lattice. Figure 1O( a) shows that 
when a 0.3-m TJ is initiated in the HEB side, the result TJ at the collider side is -0.8 m. In the worst case if a 
+ I-m residual TJ is required at the collider side, the line has to tune itself up to fit it. This is shown Figure 10(b). 
The ~-osci11ation waveform is changed, and the pseudo-periodical structure allows the ~-amplitude 
sufficient margin to expand in the middle to adjust the phase shift to meet the matching requirements. A more 
difficult situation is depicted in Figures 1O(c) and 1O(d), where both TJ and ~ are required to match to 
controversial conditions. Table 1 lists the details of TJ and ~, dilution, qu.adrupole gradients before and after 
fitting. In case 4 (Figure 1O(d», one quadrupole field gradient is tuned up to 40 TIm, a 27% increase over 
design value. 
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TABLE 1. OPTICS FLEXIBILITY STUDY FOR COMPACT RESISTIVE LATTICE. 

The Design P.,.meter Bx Bv Ax Av Gx Gv E1av Etl·y SiQma(p) Emittance/(S<; 

HEB extraction 110.2045 18.8725 0.3108 .. 1.0215 0.0100 0.0530 0.0000 0.0000 (m Rad) 

Collider Injection 139.0860 154.8894 0.2398 ..u.3CCO 0.0078 0.0070 0.0000 0.0000 0.0001 3.75E-l0 

Matching requirements Required R_ult Emittance Dilution Dab Q G(T/m) G(T/m) DG/G 
Variables Design Fit 

c. .. 1 

(FIg. 10 (a)) Bx 139.0860 139.10C4 (DBxJBx)eq 0.0002 Q1 -03.saSO ·33.eeeo 0.0000 
Ax 0.2398 0.2395 (OBylBy)eq 0.0000 Q2 30.8610 30.8610 0.0000 

0.3m eca Gx 0.0078 0.0078 Q3 30.8810 30.8610 0.0000 
AtHEB side Bv 154.8894 154.8859 Q4 ·2e.:N!65 -28.9865 0.0000 
1m ETA Ay "".3000 "".3000 (OEta)equ 1.9315 Q5 25.Z!55 25.2355 0.0000 
AtCol1Ider Gy 0.0070 0.0070 Sigmap 0.0001 Q6 -02.g120 -32.9120 0.0000 

etav 1.0000 -0.8500 OF(A,s)1 0.0000 Q7 33.8275 33.8275 0.0000 
Etay' 0.0000 0.0000 OF{A,s1Y 0.0000 Q8 ~'31A875 -31.4875 0.0000 

OF{ETAlY 0_3211 Q9 32.6365 32.6365 0.0000 
YOF 0.3211 Q10 -2i.i780 -27.7760 0.0000 

c. .. 2(ftt) 

(Fig. 10 (b)) Bx 139.0860 139.OSSa (DBxJ8x)eq 0.0000 Q1 ·:33.Seeo -31.3130 -O.070S 
Ax 0.2396 0.2396 (OBylBy)eq 0.0000 Q2 30.8610 30.5945 -0.0088 

0.3m eta Gx 0.0078 0.0076 Q3 30.8610 30.5945 -0.0086 
AtHEB side BV 154.8894 154.8897 Q4 -28.9885 ·215.2545 -0.0943 
1m ETA Ay "".3000 "".3000 (OEta)eQu 0.0000 Q5 25.2355 25.6985 0.0183 
At Collldw Gy 0.0070 0.0070 Slgmap 0.0001 Q6 -02.9120 -34.9875 0.0631 

Etav 1.0000 1.0000 OF(A,s)1 0.0000 Q7 33.8275 33.4670 -0.0107 

Etav' 0.0000 0.0000 OF{A,s1Y 0.0000 Q8 ~1'~75 -35.8585 0.1391 
OF{ETAlY 0.0000 Q9 32.6365 33.1025 0.0143 

Y OF 0.0000 Ql0 -27.7760 -27.i750 0.0000 

c. .. 3 
(FIg. 10(c)) Bx 208.6290 68.6109 {08xJBx)eq 2.1237 Ql -03.Sase ·33.6880 0.0000 
~BI,-5O'Y. By. Ax 0.2398 0.2350 (OBylBy)eq 2.0449 Q2 30.8610 30.8610 0.0000 
o.3m eta Gx 0_0051 0.0154 Q3 30.8610 30.8610 0.0000 
AtHI!B side Bv 232.3341 79.5216 Q4 ·29.9865 -28.9885 0.0000 
+5O'Y.BI,..scwoBy Ay "".3000 "".2962 (OEta)equ 1.9315 Q5 25.2355 25.2355 0.0000 
1m ETA Gy 0.0047 0.0137 Sl9nap 0.0001 Q6 -02.9120 ~32.9120 0.0000 
AtCoIlider Etav 1.0000 -0.8500 OF(A,B)1 0.7219 Q7 33.8275 33.8275 0.0000 

Etay' 0.0000 0.0000 OF(A,s)y 0.8867 Q8 ~'31 .. :e7S -31.4875 0.0000 
OF{ETAlY 0.2141 Q9 32.6365 32.6365 0.0000 
Y OF 0.9008 Q10 -2i.i76C -27.7760 0.0000 

c. .. 4{ftt) 

(FIg. 10(d» Bx 208.6290 208.6290 (OBxIBx)8Q 0.0066 Q1 -03.SSse ~33.S5e5 -0.0039 
~Bl.-5O'Y. By Ax 0.2398 0.2462 (OBylBy)8Q 0.0017 Q2 30.8610 31.4470 0.0190 
o.3m eta Gx 0.0051 0.0051 Q3 30.8610 31.4470 0.0190 

AtHeB side Bv 232.3341 232.3505 Q4 ·29.;)865 ·23.0195 ..:1.2059 

+5O'Y.Bx...scwoBy Ay .-0.3000 -o.29S<! (DEta)equ 0.0000 Q5 25.2355 27.3315 0.0831 
1m ErrA Gy 0.0047 0.0047 Sigmap 0.0001 Q6 -02.9120 ·30.7.:.85 ·0.0657 
At CoIUdw Etav 1.0000 1.0000 DF(A.Blx 0.0000 Q8 33.8275 38.7120 0.1444 

Etay' 0.0000 0.0000 OF(A,B1Y 0.0000 Q7 -:3' . .!S75 -40.0500 0.2719 

DF(ETAlY 0.0000 Q9 32.6365 31.8735 -0.0234 

Y OF 0.0000 Ql0 ?----!"'II -_1.1100 -26.5890 -00-127 

siqmap : rms relative momentum saread 
OF: fractional emittance dilution 
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Figure 10. Optical Flexibility Study (Compact Resistive lattice). (a) 0.3-m TJ at HEB (no fitting). 
(b) 0-3-m TJ at HEB, 1-m at collider vary eight gradients (Q1-Q9). (c) 0.3-m TJ and -50% ~ 
at HEB. (d) 0.3-m TJ and -50% ~ at HEB matching to 1-m TJ and +50% ~ at Collider 
(Nine Gradients varied: Q1-Q10). 
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APPENDIX A 

A.1 ~~, (~~/~)eq and Emittance Dilution Factor AF 

The intention here is to quantitatively link ~- or T1-mismatch to emittance dilution. Starting point is 
M. Syphers's formula: IO 

(A.l) 

where ( ~:).q = D + /D2 + 1 and D = 0.5 (~lY2 + ~2Yl-2ala2)' 
For simplification, we consider only ~-mismatch, keeping u the same and letting k = ~2f~1. Then from 

Eq. (A.1): 

So dilution should be a function of u and the ratio of ~2 and ~l only. 

At the collider side uy = -0.3 (WUSS lattice July 6, 1992). 

When talking +50% ~y-mismatching, equivalents are M' = 9% and (~~/~)eq = 0.53, while with 

-50%~y , M' = 27% and (~W~)eq = 1.06. 

A.2 ~T1, ~T1eq, and Emittance Dilution 

with ~l].q = j ~l]2 + (~~l]' + a~l])2 and 00 = jEnM(Y~) = .f£f,. 
Again for simplification, assume different" only (l]' = 0). Thus, 

(1 + U2)~T120'2 
M'h = 0.5 E~ p 

(A.2) 

(A.3) 

(A.4) 

Specified to the HEB beam: op six 10-4 and E = 3.75 X 10-10 m • roo, (En = 0.831: mm-mrad), then at 
the Collider side, ~y = 154.9 m, uy = -0.3, for ~" = 1m: M' = 9.4%, and at the HEB side, ~y = 18.9 m, 
a y = -0.03 m, for ~" = 0.36 m: M = 9.6%. 

A.3 Thin-Lens Approximation for ~Fll 

From Eq. (A.I), 

(A.5) 
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With thin-lens approximation, the quadrupole transfer matrix is 

Also across a thin lens, J3 is unchanged, and Eq.(A.5) is reduced to 

2 
M' = 0.5 (0.1-(12) • 

(A.6) 

(A.7) 

Let a.o be the a value before this thin lens, and 0.1 the a value after the lens with design quadrupole gradient 
G and 0.2 with gradient error AG, by Eq. (A.6): 

0.2 = Yz + 0.0 and 0.1 = ~ + 0.0' (A.S) 

From Eq. (A.7), we obtain 

(A.9) 
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APPENDIXB: 

SENSITIVITY TO QUADRUPOLE GRADIENT ERRORS 

One reason to keep small ~-amplitude and weaker focussing-gradient strength in a lattice design is to make 
the matching less sensitive to quadrupole gradient errors. Quadrupole gradient errors of concern here are 
from current ripple or are reproducible for ramped power supplies that will have continuing effects on 
emittance dilution. Systematic calibration or setting errors will be eliminated by proper tuning. 

The major effect of gradient errors is deterioration of ~-matching. Adopting M. Syphers's formula and 
J. McGill's approximation (see Appendix A), the fractional emittance dilution due to ~-mismatching is 

2 

~. = ~ ~ (G:n (AG/G): = F· (AG/G);"'. (B.l) 

where BQ is the particle magnetic rigidity, and AG/G is the fractional gradient error. Sum is over all 
quadrupoles. F, the dilution coefficient, is shown in Table B-1. 

Table B-1 lists the coefficient terms of quadrupoles in each lattice, as well as the sum of them (F), which is 
proportional to the emittance dilution when all quadrupole supplies have similar rms deviation value. 

The two achromats lattices are more sensitive to gradient errors because they consist of more quadrupoles 
and have larger average ~. The hybrid one has the minimum F. Largest value of F is about 5 times greater than 
the smallest value of F for these lattices. 

The reliability of the above estimation is confirmed by comparing results with those from the error 
simulation program. 12 Figure B-1 depicts the error sensitivity results for Ithe compact resistive lattice directly 
from optics calculations with random gradient errors (normal distribution) assigned for each quadrupole. The 
parameters shown in the figures are A~xeq/~xeq, the fractional change of I~quivalent ~-amplitude at the end of 
the line, and the emittance dilution factor AF, both defined in Eq. (B.l). 

The results agree with Table B-1 by Eq. (B.1). For example, from Table B-1 with rms gradient error of 
0.002, emittance dilution is 0.127% for X direction and 0.064% for Y direction. Counting one a-width trial 
number (-68% of total trials) in Figures B-l(c) and B-l(d), we get ne:arly the same values as those. 
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TABLE B-1. COMPARISON OF SENSITIVITY TO QUADRUPOLE GRADIENT ERRORS. 

The Two ~ Acl'lromets SOlution 
NAME UM) GRADIENT(T/M) BETA-X SETA-Y 112(L6xGIBR)2 1I2(LByGlBR) 2 

00 1.6000 -Ht3.2480 116.1727 268.7331 12.0739 ~.6075 

OF 1.6000 187.6745 489.0866 33.4484 242.6468 1.1349 

00 1.6000 -,:)8.1155 12.5198 327.3668 0.0861 S8.8nl 
OF 1.6000 138.1155 259.0540 90.4900 36.8687 4.4986 

00 1.6000 -162.3040 113.3782 268.1344 9.7524 54.5451 
a5 1.6000 122.1070 255.0958 63.4002 27.9435 1.7261 
08 1.0SOO -se.S595 55.4594 87.4909 0.3557 0.8852 
a7 1.0seO 158.2915 73.9307 152.6714 1.6986 7.2437 
a8 1.0500 ·150.3005 34.7360 493.4178 0.3383 68.2697 
aD 1.6000 -18.2405 51.8142 432.5595 0.0257 1.7929 
aF 1.6000 138.1175 233.9020 151.7668 30.0578 12.8545 
aD 1.6000 .. 1~ .. 1'75 10.1ee9 522.2899 0.0568 149.8695 
aF 1.6000 187.7380 178.5109 11.5847 31.8250 0.1362 
aD 1.6000 -143.3045 53.5791 429.0045 1.6979 108.8519 

SUM F= 395.23 535.09 
The Compact Reslatlve Solution 
a NAME UM) GRADIENT(TIM) BETA-X BETAoY 112(LBx GlBR).2 1/2(LBvGlBR).2 
al 6.0000 . 33.68SO 137.9200 414.0408 8.7430 78.7937 
al 3.0000 -33.6880 206.8488 320.4125 4.9164 11.7968 
a2 6.0000 30.8610 310.1233 205.6656 37.0974 16.3154 
a3 6.0000 30.8610 424.0952 69.0480 69.3748 1.8390 
a4 6.0000 -28.9865 51.2336 168.0768 0.8932 9.3857 
a5F 6.0000 25.2355 235.8479 30.1484 14.3221 0.2344 
a60 6.0000 -32.9120 46.4083 201.0228 0.9448 17.7278 
a7F 6.0000 33.8275 201.7063 18.8370 18.8553 0.1644 
a80 6.0000 -31.4875 15.7372 193.4612 0.0994 15.0286 
09 6.0000 32.6365 578.8738 48.8780 144.5540 0.9480 
al0 6.0000 -27.7760 237.9227 147.7405 17.6875 6.8201 

SUM F,. 317.49 159.05 
The Hybrid SOlution 
NAME UM) GRADIENT(T/M) BETA-X BETAoY 112(LBxGIBR) 2 1/2(LByGIBR),2 

alS 1.6000 ·158.1425 124.1087 281.6793 11.0942 57.1478 
a2 6.0000 24.1795 360.8029 89.9257 30.8241 1.9148 
a3 3.0000 18.1915 384.9854 52.8652 4.9662 0.0936 
04 3.0000 13.0045 210.2463 40.7834 0.7569 0.0285 
a5 6.0000 -24.8420 24.2395 297.3577 0.1469 22.0997 
Q6F 6.0000 26.3340 314.1087 36.9311 27.7104 0.3831 
aD 6.0000 -27.669Q 58.9451 15U414 1.0773 7.1580 
aF 6.0000 27.6690 149.767< 36.3443 8.9547 0.4096 
a7D 6.0000 -23. ~445 29.9737 182.6077 0.1949 7.2342 
a6 3.0000 ·5.6835 84.8636 134.6716 0.0137 0.0593 
a9 3.0000 ·1.5205 131.1204 98.7556 0.0040 0.0022 
al0 3.0000 30.0980 448.1577 67.7391 18.4218 0.4209 
aIlS 1.0500 -~4C.a525 218.3808 149.9946 11.7352 5.5362 

SUM F,. 113.90 102.49 
The Old Resistive Solution 
NAME LIM) GRAOIENT{TIM) BETA-X BETA-Y 112(LBxG'BR)2 1 12(LBvG'BR) 2 
al 11.0000 -28.3665 161.3399 458.8160 28.5123 230.5826 
a2 11.0000 26.4910 506.3062 99.1843 244.8844 9.3977 
a3 5.5000 ·7.4195 90.8802 62.1883 0.1547 0.0725 
a4 5.5000 ·29.6530 26.4560 367.1841 0.2094 40.3444 

as 11.0000 22.4820 357.2793 109.0587 87.8261 8.1833 
a6 5.5000 -27.2e95 101.8415 235.2640 2.6144 14.0069 
a7 5.5000 28.6415 62.9353 225.1731 1.1058 14.1548 
a8 5.5000 ·25.9490 20.6711 291.0493 0.0979 19.4112 
a9 5.5000 9.0260 242.1876 103.2969 1.6262 0.2958 
al0 5.5000 24.2050 404.9941 124.2181 32.7028 3.0765 
all 1 I .0000 -23.3505 153.5710 338.4647 17.5045 a5.0270 
a12 5.5000 29.3165 437.6811 5.74n 58.0296 0.0097 
a13 5.5000 ~29.2340 56.8344 490.9189 0.9395 70.0929 

SUM F= 474.21 494.56 

24 



(a) 

100 

80 

gOO 
Q) 
::> 
<:T 
!!! 
u. 

20 

(b) 

1.0 

(c) 

100 

80 

20 

(d) 

2oorr"rr"-r~T-r".-"'-rr,,-r,,,, 

150 

1.0 
np.()4593 

Figure 8-1. Sensitivity to Gradient Errors (Compact Resistive lattice). (11) d~xeq/~xeq %. (b) % Emittance 
Dilution (bF due to d~x). (c) d~yeq/~yeq %. (d) % Emmlttancl! Dilution (bF due to d~y). 
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