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Abstract 

An analytical study is done of the change in the Courant-Snyder Invariant (CSI) of 

particles due to the feedback system. Given the tune of the machine, V o , the tune spread 

in the bunch, av = J< (~v)2 >, and the gain of the feedback system, g, the known rela

tion, 47rav /g « 1, is confirmed in the general case, implying 9 2:: 0.05 for the transverse 

feedback system during collision. In addition, results show that the feedback noise trans

mitted to the particles, ax, must be ax ::; 0.25 J-Lm for the feedback system not to cause a 

significant increase of beam emittance during 24 h of Collider operation. 



1.0 INTRODUCTION 

Recent studies on emittance growth1,2 indicate that it can be suppressed by using a low

noise feedback system and by damping the oscillation faster than the decoherent time, Td, of 

the beam. This decoherent time is about 0.34 s for an rms tune spread of I:1v ~ 10-4 , which 

is caused by the nonlinear magnetic field at injection (ignoring chromaticity). However, 

the approach followed by the author was not general, so one may think that the result is 

not true for the general case. The general case will be presented in this paper, confirming 

the validity of this result in general, although the noise contribution expression differs by 

a factor of 8. 

2.0 SINGLE PARTICLE MOTION 

The transverse motion of a particle traveling in a synchrotron linear machine perturbed 

by a pure time-dependent force can be described by the equation3 

d2 x 
ds2 + Kx(s)x = F(8) , (1) 

where the longitudinal coordinate, s, has been used instead of time; x is the transverse 

displacement of the particle; Kx( 8) is defined by the linear lattice; and F( s) describes the 

perturbation in the particles around the machine. Using the transformation 

and 

11(8) = x(s)jJ(3(s) 

p(s) = v[a(s)x(s)jJ(3(s) + ~)x(s)] 

<fo(s) = ~ r d<7j(3(<7) , 
v 10 

Eq. (1) can be written as the dynamical system 

d11 
d<fo = P 

dp 2 
d<fo = -v 11 + f(<fo) , 

(2a) 

(2b) 

(2c) 

(3a) 

(3b) 

where f is the function f( <fo) = v2 (33/2 F (s( <fo)), the identity 2(3 ~ - (r3? + 4(32 K = 4 and 

the notation dj ds =' have been used, and a and (3 are the Courant-Snyder parameters. 

The Courant-Snyder Function (CSF), €, of the particle is ,given by 

(4) 

Actually, it is incorrect to call this expression "invariant," since the interaction f( <fo) 

breaks this property. 



3.0 GENERAL EXPRESSION FOR EMITTANCE GROWTH 

For perturbations depending only on the variable ¢>, as shown in Eqs. (3), it is possible 

to give a general expression for the emittance growth. Assume the motion of a particle 

in the bunch, relative to the centroid q( ¢» = ry( ¢» - rye ( ¢» and p( ¢» = p( ¢» - Pe( ¢», is 

described by the equation 

(5) 

where H( ¢» is an arbitrary function. The solution of this equation satisfying the initial 

conditions q(O) = qo and dq(O)/dt = p(O) = Po is well known4 and is given by (including 

p = dq/dt) : 
Ii¢> A A A 

q(¢» = qh(¢» + - H(¢»sinv(¢> - ¢»d¢> , 
v 0 

(6a) 

(6b) 

where qh( ¢» is the solution of the homogeneous equation. From these equations, a general 

expression for the eSF, € = q2 + (p/v?, can be given as 

21¢> , , , , 
€ = €h+- H(¢»[qh(¢»sinv(¢> - ¢» + Ph(¢»cosv(¢> - ¢»]d¢> 

v 0 

+-;. r¢> r¢> H(¢)H(~)cosv(~-¢)d¢d~. (7a) 
v Jo Jo 

Making averages over the random variables or the tune spread, the second term on 

the right hand side normally vanishes « H(¢)%(¢» >= 0 and < H(¢)Ph(¢» >= 0). 
Therefore, the following general expression can be used for the change in the eSF: 

(7b) 

Thus, by knowing the right hand side of Eq. (5), the emittance growth estimation can be 

reduced to the calculation of the integration (7b). 

4.0 FEEDBACK EFFECT ON THE EMITTANCE GROWTH 
Assume a Beam Position Monitor (BPM) located upstream of a Kicker (K) separated 

by a phase advance of 7r /2, as shown in Figure 1. The BPM measures the centroid of a 

bunch, and K makes a correction to the bunch trajectory providing a kick, 

(8) 
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where 9 is the gain of the feedback system, and /31 and /32 are the beta functions at the 

location of the BPM and K. Since the initial state (Xl, Xl) is connected to the final state 

(X2, X2) through a Courant-Snyder map, 

(9) 

the coordinate Xl can be written in terms of X2 and X2 as Xl = -0:2-1/31/ /32X2 - v'7J1/J2xI, 

and the kick, Eq. (8), can be written as 

(lOa) 

Using Eqs. (2b) and (lOa), it follows that 

b.p = -gP2 . (lOb) 

BPM K 

.~ 
--------'-:~~. /lx' 

'-----1[>>----
TIP-04426 

Figure 1. Bunch Behavior Model. 

This implies that the behavior of the centroid and any particle in the bunch can be 

descri bed by the two-dynamical system: 

(lla) 

(llb) 

and 

(12a) 

(12b) 
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where ('r/c, Pc) and ('r/, p) represent the state of the centroid and the particle in the bunch; 

(8 p)c represents the noise on the variable Pc in the feedback system; 827r ( ¢» is the delta 

function of period 27r: 
J 

827r ( ¢» = L 8( ¢> - 27rn) ; (13) 
n=O 

and Vo and v (v = Vo + ~v) are the tune (ioG dcr / f3( cr )27r) of the centroid and the particle. 

] is a fixed number of turns. Note that because of the characteristic of the feedback 

system, any particle in the bunch is affected by the same centroid kick, Eq. (8). Taking 

only the time-independent average component of 827r ( ¢», 

1 11>~, , 
1/ It = 1/27r =< 827r >= -] ~ 8( ¢> - 27rn )d¢> , 

27r 0 
n=O 

(14) 

on the term proportional to pc, the motion of the centroid is governed by the equation 

(15) 

The solution of this equation satisfying initial conditions 'r/c(O) 

(d'r/c/ d¢> )1>=0 = Pco is well known and is given by 

'r/co and 

gexp(-g¢>/2/l) (1> A A A A A 

'r/c( ¢» = 'r/ch ( ¢» - n } 0 (8 P )c( ¢> )827r ( ¢» exp(g¢> /2/l) sin n( ¢> - ¢> )d¢> , (16) 

where 'r/ch (¢» is the solution of the homogeneous equation, 

'r/ch(¢» = ['r/cocosn¢> + (p~o + ~:~) sinn¢>J exp(-g¢>/2/l) (17a) 

Pch(¢» = [pco cos n¢> - ('r/c~; + ~~~) sinn¢>J exp(-g¢>/2/l) , (17b) 

(including its velocity Pc), where n is defined as 

(18) 

To simplify the analysis, consider the long time behavior (g¢>/2/l » 1) of the second term 

on the right hand side of Eq. (16): 

exp( -g¢>/2/l)1 11> (8p )c827r( J) exp(gJ/2/l) sin n( ¢> - J)dJI 

~ exp( -g¢>/2/l) 11> I( 8p)cI827r( J) exp(gJ/2/l)dJ 

~(2/l/g)I(8p)cI827r(¢» . 
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Therefore, Eq. (16) can be written in this limit in the form 

(20) 

Using Eqs. (11) and (12), the motion of the particles relative to the bunch centroid, 

q( ¢» = 7]( ¢» - 7]e( ¢» and p( ¢» = p( ¢» - Pe( ¢», can be described by the equation 

(21) 

where the second-order term in ~v has been neglected. Defining the right hand side of 

Eq. (15) as H(¢» = -(2vo~v)7]e(¢», the relation (7b) can be used to determine the change 

in the CSF of the particle, 

(22) 

where the average over the random variables has been used, and the correlation function, 

K(J -~) =< (8P)e(J)(8P)e(~) >, has been defined. The first term on the right hand side 

of Eq. (22) represents the coherent contribution to the emittance growth, and the second 

term gives the feedback noise contribution to the emittance. 

For the collider, Vo »g/47r. Therefore, the following relations, 

(23a) 

n - v ~ ~v, (23b) 

and 

(23c) 

and long time behavior (¢> large), g¢>/2J-l » 1, can be used to simplify the first term on 

the right hand side of Eq. (22). In addition, using Eq. (13) and assuming white noise, 

K(27rn - 27rm) = O"pbn,m, Eq. (22) can be written as 

where teo = 7]~o + (Peo/vo)2 is the CSF of the centroid. From Eq. (24), it is seen that there 

is a large increment in the CSF of the beam if ~v ~ 9 /2J-l. Therefore, the case of real 

interest for minimizing the effect of the feedback kick on the CSF is ~v < < 9 /2J-l. In this 
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case and averaging over the tune of the particles, the second term inside the bracket in 

Eq. (24) is canceled, and the emittance growth is given by 

(25) 

where a v is the tune spread in the bunch. It is important to observe that the restriction 

47ra v < < 9 avoids having gain very close to the zero value. For gain equal to zero, it 

is clear from Eqs. (15) and (16) that there will not be any emittance growth. Using the 

relations (2b) and (10), the noise 8p can be associated with the noise 8x. To do this, 

observe that at the kicker location the following relation follows: 

(26) 

But from (9), the relation X2 = -xI! vfiJ1iJ2 - a2xd (32 is obtained. Thus, the noisy part, 

8X2, can be written as 
1 a2 vfiJ1iJ2( 8Xl) - -(3 (8X2) . 
1 2 2 

(27) 

Substituting this in relation (26), the noise relation is given by 

(28) 

and the rms value is given by 
Vo ap = V7J1ax , (29) 

which can be used in Eq. (25) to get 

A _ (47rav )2 (87rava x )2 J < L...l€ > - €co + I7r ' 
9 \fPl 

(30) 

where (31 is the beta function at the BPM location. The first term on the right hand side 

of Eq. (30) agrees with that of Reference 1, but the second term differs by a factor of 8. 

The linear increase of the emittance with respect to the number of turns described by the 

second term on the right hand side of Eq. (30) was expected.5 Thus, given the tune spread 

of the bunch, the first term on the right hand side of Eq. (30) determines the gain, g, and 

the second term the BPM resolution, ax. In terms of the damping time, Tg = 2To/g (To is 

the revolution time), and the decoherent time, Tv = To/av, the emittance growth rate, 

d < € > Idt = fo < ~€ > IJ, can be written as 

d<€>_(47rTg)2 d€CO 4fO(4 )2 --- - -- -- + - 7ravax . 
dt Tv dt (31 

(31) 
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The first and second terms on the right hand side of this expression are really independent 

since the centroid motion (therefore, dEco/ dt) is driven by the instabilities of the beam 

(mainly by the dipole mode multibunch instability), and this instability can be driven by 

the feedback noise only if this noise is very high. 6 So, each term can be studied separately. 

To avoid emittance growth due to decoherence of the bunch, the condition g/2/-l » av 

can be expressed as 

Tg « Tv /47r . (32) 

For a tune spread of approximately 10-4 due to nonlinear magnetic field at injection 7 

(1.8 x 10-3 for the beam-beam interaction8 ), the decoherent time is approximately Tv ~ 

2.9 s (0.16 s), and the damping time resulting from Eq. (27) is Tg « 0.23 s (Tg « 0.013 s). 

The gain is then 9 > 0.0025 (g > 0.04), i.e., the damping must be carried out in less than 

2/g < 800 turns (50 turns) to avoid emittance growth due to decoherence. 

The doubling time due to the feedback noise, T2 = Eo/(dE/dt)noise, is written as 

(33) 

which brings about the following BPM resolution expression: 

(34) 

Figure 2 shows the BPM resolution as a function of the tune spread in the bunch for 

doubling times of 24 h, i.e., during collision operation ((31 = 400 m and Eo = 5 x 10-1°). 

The tune spread at injection may be approximately 10-4 , so the BPM resolution could be 

approximately 2.5 /-lm. However, if the total tune spread during collision due to beam-beam 

interaction is approximately 1.8 x 10-3 , then the BPM resolution must be approximately 

0.25 /-lm to avoid degradation in the luminosity due to emittance growth. 
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Figure 2. BPM Resolution as a Function of Tune Spread. 

5.0 CONCLUSIONS 

U sing the Courant-Snyder function of particles, an analytical study was made of the 

emittance growth due to the feedback system. The relation 47rav /g « 1 was confirmed 

within this general approach. It was assumed that the gain and the BPM resolution can 

be studied separately since the feedback noise is too low to cause coherent perturbation. 

Relation (32) determines the gain of the feedback system, which can vary as long as this 

relation is maintained. For the collider, a gain of g ~ 0.05 can be established independent 

of the tune spread. On the other hand, the BPM resolution depends much more strongly 

on the tune spread and is dominated by the tune spread during collision (1.8 x 10-3), 

which determines a tune BPM resolution of ax = 0.25 /-Lm. Selection of these values 

guarantees control of the dipole mode multibunch instabilities and emittance growth due 

to the feedback system during collider operation. In addition, these limit values should 

be established independently on the frequency bandwidth of the feedback, i. e., they must 

be applied to the resistive wall and rf transverse multi bunch instabilities feedback system. 

Other external perturbations on the beam-such as ground vibration, quadrupole random 

errors, vibration due to fluid or gas motion inside the magnets, etc.-are important when 

considering the total emittance growth of the beam. Although they were not considered 

here, the reader can find the treatment of these problems in References 1, 2, and 9. 
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