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Collective Effects and Beam Decoherence 

G. v. Stupakov and A. W. Chao 

Abstract 

The effect of collective forces due to an impedance on the decoherence process in an accelerator is studied. 
A general formalism is developed that allows treatment of different types of impedances. We show that 
increase of the imaginary impedance causes a slowing down of the decoherence. For the real impedance, our 
theory demonstrates transition from Landau-damped oscillations to instability. 



1.0 INTRODUCTION 
When a charged particle beam interacts electromagnetically with its environment it creates a wakefield 

that acts back on the beam perturbing the particle motion. Typically, the wakefield is invoked for studies of 
the stability problem. Another physical process where the wake might play an important role is the 
decoherence of the beam after a kick.! Understanding of the decoherence process is needed in such 
applications as design of the feedback system and dampers for storage rings2 because the decoherence 
eventually translates coherent betatron oscillations of the beam into the increment of the beam emittance. 

Collective instability and decoherence are intimately related issm~s. The present paper describes our 
attempt to relate these issues. We consider one-dimensional transverse oscillations of a charged bunch in the 
presence of a collective force acting on the beam. The latter is formulated in a general operator form that 
covers as particular cases many different physical situations. An impOltant feature of the collective force is 
that it depends on the averaged displacement of the beam. Starting with the equation of motion for a single 
particle, for a given initial distribution function, we derive an integral equation that governs the time 
evolution of the averaged offset of the beam. This equation is solved using Laplace transform, and with a 
proper scaling of the variables, the result takes the form of a defmite integral depending on a single (complex) 
parameter. Numerical computation of the integral predicts that in many cases decoherence slows down with 
the increase of the wakefield. We also demonstrate that in the presence of wakefields the decoherence can be 
considered as a transient process leading to Landau damping of the be:tatron oscillations. 

2.0 FORMULATION OF THE PROBLEM 
We will consider transverse motion of the beam and will model the additional collective force exerting on 

the beam by adding a term to the right hand side of the single-particl~~ equation of motion. In general, the 
magnitude of this force at a time t depends not only on the beam offset at this moment, but also on the history 
of the beam displacement at previous times. The betatron oscillation of a particle of the beam in this situation 
can be described by the following equation: 

(1) 

where 7J = x / IP is the particle displacement in the transverse direction normalized by the square root of the 
beta function, (J) is the betatron frequency of the given particle, fj = xL IP is the normalized displacement of 
the bunch averaged over the distribution function of the ~eam, and L is a linear operator acting on fj. The 
frequency (J)o is introduced in Eq. (1) so that the operator L has the dimension of the frequency; here (J) 0 can 
be understood as a mean betatron frequency of the beam oscillations. Taking into account that only precedent 
moments can contribute to the current value of the collective force, we can write down a general expression 
for this operator as 

t 

bj = f A(t-t')fj(t')dt', (2) 

_00 

where A(t) is the kernel of the integral operator. 

One can easily relate the operator i with the transverse wake function comparing, for example, the 
equation of motion in Reference 3 with our Eq. (1). This gives 
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" woLf[ = maY L f[(t - nT)w(nT), (3) 
n=l 

where N is the number of particles in the bunch, y is the relativistic factor, T}s the revolution period, and e and 
mo are the particle's charge and rest mass. The kernel of the operator L given by Eq. (3) contains delta 

co 

functions, A(t) oc L w(t)<5(t - nT). 
n=l 

Before ~roceeding further, note that in the simplest case, the operator i reduces to multiplication by a 
constant, Lf[ = cf[. In this case, as is well known, Eq. (1) gives a coherent tune shift <5w coh of the betatron 
frequency of the beam equal to <5w coh = -c /2, so that in terms of <5w coh' Lf[ = - 2<5w cohf[. 

3.0 FORMAL SOLUTION 

A formal solution ofEq. (1) is given by the following expression: 

t 

rJ(t) = rJo cos(wt) + ~ sin(wt) + ~o f dt'if{(t') sin(wt - wt'), (4) 

° 
where rJo and TJo are initial offset and velocity in the transverse direction of the particle. Let 1/J(rJo, TJo, w ) be a 
distribution function of the beam over initial values of rJ ° and TJ ° and the frequency w. We will assume that it 
factors out into the product oftwo functions, 1/J(rJo, TJo'w) = f(rJo, TJo)e(w), normalized so that 

co co 

f dTJo f drJo f(rJo, TJo) = 1, 
- co - co 

co 

f e(w)dw = 1. 

o 

The function f gives the probability for a particle to have initially given offset and deflection angle, and e 
describes the distribution of the betatron frequencies in the beam. These two distribution functions are 
independent of each other if the tune does not depend on the amplitude of the betatron oscillations, which is 
true in the case when the tune spread is caused by the energy spread of the beam together with a nonvanishing 
chromaticity of the ring. For the sake of simplicity assume also that f(rJo, TJo) is such that f[o = 0 (but 
:q ¢ 0), which means that we deal with a kicked beam having no initial offset. 

The problem consists in solving for the time evolution of the averaged offset of the beam. In accordance 
with a real situation, we will take into account that particles have a small frequency spread Llw around 
wo, Llw ~ wo' Averaging Eq' (4), 

co 00 00 

if = f dt»e«(J) f <iii. f <iii. f(q .. iJ.)rJ. 
-00 -co -00 
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one fmds the following equation for fJ(t): 
~ t ~ 

if(!) = !~ I ';;,0 sin( wt )e( w)dw + I dt' U;<t') I ';;,0 sin( wt - wt')e( w )dw. (5) 

000 

At this stage it is convenient to define a decoherencefunction, K(t): 

so that Eq. (5) takes the form 

~ 

K(t) == I ~o sin(wt)e(w)dw, 

o 

t 

fJ(t) = eK(t) + I dt'll;(t')K(t - t'), 

o 

(6) 

(7) 

where e = iiol woo As is seen from Eq. (7), the deco~erence function gives the dependence of fJ(t) in the limit 
when there is no wake force acting on the beam, L == O. In other words, K(t) represents the decoherence 
process in the case without the collective force. 

To solve the integral Eq. (7), we will use Laplace transform and introduce the functions a(s), k(s), and /(s) 
of the complex variable s as the Laplace transforms of fJ(t), K(t), and A(t), respectively: 

~ 

0(8) = I fj(t)e-ndt, 

o 
~ 

k(s) = I K(t)e -stdt, 

o 
~ 

/(s) = I A(t)e-stdt. 

o 

Applying Laplace transform to Eq. (7) one fmds 

Ekes) 
a(s) = 1 - k(s)/(s)' 

and performing the inverse transform yields 

C1+j~ 

fJ(t) = ~i f k(s) std 
1 - k(s)/(s) e s. 

C1-jCXl 

(8) 

(9) 

The last equation, in principle, gives a formal solution to the problem. In what follows we elaborate Eq. (9) for 
a particular distribution function e(w). 
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It is worth noting here that the function l(s) is closely related to the impedance associated with the 
wakefield under consideration. More precisely, using Eq. (3) and a definition of the transverse impedance 
Z(w), 

one can show that 

00 

Z(w) = - icT J w(t)e''''dt, 

-00 

00 
'AT 2 

l(s) = llYe I z(nn + is). 
moycT2won= _ 00 

4.0 GAUSSIAN DISTRIBUTION FUNCTION 
Assume a Gaussian distribution over the frequency, 

1 (w - wo) 
[ 2] 

e(w) = {iiL1w exp - 2.dw2 ' 

(10) 

(11) 

where L1w is the rms frequency spread. Such a distribution function corresponds to a Gaussian distribution 
over the energies in a ring with a linear chromaticity. Performing integration in Eq. (6), one easily fmds the 
decoherence function 

which has the following Laplace transform, 

where 

and 

n
1
/
2 

(is) k(s) = 23/ 2L1w" L1w ' 

,,(~) = w(~ + a)-w(~ - a) 

~/.fi 

w(C) = - ie-~2/2 + ke-~2/2 f e- s2ds = - ie-~2/2erfc( - iC/ /2). 
o 

In Eq. (14) we introduced the parameter a, 

a = Wo 
L1w' 

(12) 

(13) 

(14) 

(15) 

(16) 

which according to our assumptions is much larger than one, a ~ 1. Note that the variable ~ = is / L1 (J) in 
Eqs. (14) and (15) has a meaning of frequency measured in terms of the frequency spread in the beam. 
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Defming a new time variable, 

i = L1wt, 

and the function A(S), 

we can express the result in the following form: 

QC) +iv 

e -11](t) = _1_ J 
4~ 

- QC) +iv 

,,(~) -i~rdr 
1 - "(~)A(~) e ,!>, 

(17) 

where the integration is carried out along the horizontal line in the upper half-plane of the complex variable 
~ (v > 0) above all possible singularities of the integrand. 

Assume first that the integrand does not have singularities in the uppc~r half-plane. In this case, we can shift 
the integration path toward the real axis (see Figure 1), casting the integral in Eq. (17) into a Fourier integral. 
The real part of the integrand is a symmetric function of ~, while its imaginary part changes sign when 
~ - - ~. This allows one to perform integration from zero to infmity taking the double real part of the result, 

QC) 

-1-( ) - 1 R f ,,(~) -i~rA~ 
E 1']t -2[bl e l-,,(~)A.(~)e w". 

(18) 

o 

• • 

TIP-OM77 

Figure 1. The Paths of Integration In the Complex Plane ~. Inltlallnteglratlon path In the Inverse Laplace 
transform Is shown by the horizontal line In the upper half-plane. In a case when the Integrand In 
Eq. (17) does not have poles In the upper half-plane, It can be simply shifted down toward the 
real axes. In the opposite case, the Integration path has to Elncompass the poles as shown In the 
figure, giving rise to the contribution of the residues. 
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An important feature of the function ,,(~) is that it has a sharp peak with the maxima of real and imaginary 
parts located around ~ = a, the width of this function being of the order of unity. In dimensional units, 
W = ~w, the maxima are located at the betatron frequency Wo with the width being of the order of the 
frequency spread LI w in the beam. Let us assume that the width of the function A( ~) is much larger than one; 
this allows us to substitute A(~) in Eq. (18) by its value AO at the point a, AO = A.(a). Referring to Eq. (10) we 
note that our assumption means that the characteristic width of the impedance Z is much larger than the 
frequency spread in the beam Llw; naturally, in this limit only the value of impedance at the betatron 
frequency (and sideband harmonics) contribute to the problem. 

Changing the integration variable in Eq. (18) to ; = ~ - a, one fmds 
00 

e- l 7j(t) = - Re_1_e- iar f we;) e-~'t:~, 
2$ 1 + W(;)Ao 

(19) 

- 00 

where we have extended the integration from minus to plus infinity because we;) rapidly goes to zero for 
large values of ;. We emphasize here that Eq. (19) gives a closed form for the time evolution of the averaged 
displacement 7j(t), which depends only on one (complex) parameter AO' With the function we;) given by 
Eq. (15), the integral (19) can be evaluated numerically. 

We performed numerical integration and found the modulus of the complex function given by the right 
hand side ofEq. (19), which we callA. The results for different real values of Aoare displayed in Figure 2. 
Turning to the discussion of this plot, note first that real AO corresponds to a purely imaginary impedance (see 
Eq. (10» and can be related to the coherent frequency shift of the beam caused by the wake force. Indeed, for 
an operator i that reduces to a multiplication by a (real) constant c, one can fmd that AO = n 1

/
2c/23

/
2L1w. 

Since c = - 2Owcoh (see Section 2.0), one fmds dWcoh = - (2/n)1/2A~W' The ratio dWcoh/Llw is 
indicated in Figure 2 rather than AO itself. As is seen from Figure 2, for dw coh = 0 (no wakefield) we recover a 
Gaussian decay in agreement with Eq. (12). However, increasing the coherent frequency shift slows down the 
decoherence process. 

As a simple analysis shows, the result of the integration in Eq. (19) does not depend on the sign of A()o so 
that the curves in Figure 2 are also valid for dw coh - - dw coh' 

In the limit JA.ol ~ I, the following asymptotic formula can be derived from Eq. (19): 

e-1if(t) = sin(1:[a - (2/n)1/2Ao])exp( - (2/n)1/21:A~e-Ayn). (20) 

It tells us that instead of Gaussian decay according to Eq. (12) without a collective force, large coherent tune 
shift produces an exponential fall of fj. Such behavior is anticipated from the theory of Landau damping. The 
dimensional damping rate is given by the exponent in Eq. (20): 

m. (dW ) 2 1(6WCOh)2 
Y = Wo v' ~ LI:;h e"2 "'A,;"" • (21) 

In a more general case of complex A()t an initial kick does not necessarily decohere. The reason is that for 
an arbitrary impedance one can encounter an instability that, in a linear theory, exhibits itself as unlimited 
growth of an initial perturbation. To illustrate this point, we performed numerical integration for a set of 
purely imaginary A()t AO = ii, where I is real. This case corresponds to a real impedance Z. As calculations 
show, in this case one has to start from Eq. (17), because for I > 1 the integrand has two poles in the upper 
half-plane of the complex variable ~. Having moved the integration path onto the real axis, we have to add the 
contribution from the residues of the poles (see Figure 1). The two poles give complex conjugate 
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contributions, so that one can double the real part of one of the poles. The presence of the poles in the upper 
half-plane implies instability, with the growth rate given by the real part of the pole coordinates. The results of 
numerical calculations for this case are shown in Figure 3. Note that since I is a measure of impedance in tenns 
of the frequency spread of the beam LIm, the absence of instability at I < 1 means that the instability 
disappears when the beam has a sufficiently large tune spread. This is a manifestation of the instability 
suppression by the effect of Landau damping.4 
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Figure 2. Decoherence Curves for Real Values of .A.O' 
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Figure 3. Decoherence Curves for Imaginary Values of AO" 

5.0 SUMMARY 

We have developed a simple theory of decoherence in the presence of a wakefield acting on a bunch of 
charged particles. Having used an assumption of a broad-band impedance, we found that the decoherence is 
determined by the value of the impedance at the betatron frequency (and its sidebands). For purely 
imaginary Z, (which gives rise to the coherent frequency shift of the beam), the decoherence slows down with 
the increase of dw coho This feature seems to be in qualitative agreement with simulation and experimental 
observation of the space-charge effects. 

For real Z, the theory recovers both stable and unstable situations. In the former case, the initial kick 
decoheres rapidly. In the latter case, we observe a growth of the beam oscillation amplitude over time after an 
initial kick. 
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