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for the SSC Collider 

S. Chen and G. Lopez 

Abstract 

A computer program that assumes a point-like structure of the bunches, called 

TADIMMI, has been devised to study the dipole mode multibunch instability in the Su­

perconducting Super Collider (SSC) Collider ring due to a single Positron-Electron Project 

(PEP) test rf cavity and the resistive wall. For the rf cavity, the following cases are consid­

ered: symmetric filling, where good agreement is obtained with ZAP code; nonsymmetric 

filling; elimination of the most dangerous mode of the cavity; De-Q of the cavity, where 

a damping ratio is obtained for the cavity; and the feedback system, where it is verified 

that the proposed system for the Collider will work. For the resistive wall, a resonator 

impedance model approximation is used, which allows use of the same computer program 

to study the instabilities and the associated feedback system. Comparison with the ana­

lytical approach (ZAP) is also made. 
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1.0 INTRODUCTION 
The SSC Collider will be the first machine operating with 17 A24 bunches of protons 

separated by a relatively short distance, 1 5 m. The bunches are injected from the High 

Energy Booster (HEB) into the Collider, which requires eight HEB batches to fill almost 

symmetrically (there is an abort gap) one of its two rings. The batches are injected into 

the upper and lower ring one at a time. To inject one batch in the same ring requires a wait 

of approximately 515 s; the eight batches are injected in approximately 1.14 h. Therefore, 

there is a great deal of concern about possible multibunch instabilities (longitudinal and 

transverse) that the beam might suffer during this time. These instabilities are due to the 

additional electromagnetic forces that a bunch feels because of the wake field created by 

previous bunches passing by any element of the ring, including beam tube, bellows, rf cav­

ities, scraper, beam position monitors (BPM), kickers (K), etc. They can be measured by 

the time during which the amplitude of the bunch has grown considerably, called "growth 

time." 

Transverse multibunch instabilities are characterized by two different types of motions. 

The first motion is related to the structure of the bunch itself. For rigidity motion of the 

bunches, the mode is called dipole. For different-shaped oscillations of the bunch, it is called 

quadrupole, sextupole, etc., depending on the degree of complexity. The second motion is 

related to relative oscillations among the bunches; the maximum mode of oscillations is 

that of the number of bunches. 

Quadrupole and higher-order modes of oscillations are expected to be Landau-damped 

at injection (due to the betatron tune spread, '" 10-4 , produced within the bunch by 

the nonlinear magnetic field at 2 Te V) and during colliding operation (due to the tune 

spread, '" 10-3 , produced within the bunch by the beam-beam interaction at 20 TeV) 

where, clearly, the frequency shift of the multibunch mode instability is required to be 

within the betatron tune spread. However, even if these higher-order modes were not 

Landau-damped, they would be about one order of magnitude less important than the 

dipole mode. 

Two of the most worrisome elements causing transverse instabilities in the Collider are 

the rf cavity and the resistive wall (beam pipe). Shielded bellows and BPMs in the ring and 

collimators at the interaction region (IR) do not contribute much to the total transverse 

impedance of the machine2 and will be neglected. 

The fastest transverse instability at high frequency comes from the rf cavities, and 

the induced transverse multibunch-mode instability is approximately equal to the number 

of bunches. Thus, a wide-band feedback system is required in this case to control the 

instability. We will study this type of instability using the computer program TADIMMI 



(Transverse Dipole Mode Multibunch Instability), which uses a point-like structure for the 

bunches; that is, it restricts itself to study of the dipole-mode (rigid motion of the bunch) 

multibunch instability,3 which is the most dangerous of all. We compare the result with the 

ZAP analytical approach. In addition, we study the following cases: asymmetric filling, 

elimination of the most dangerous rf-cavity modes, De-Q of the rf cavity, and, finally, the 

damping feedback system. 

The fastest transverse instability at low frequency (the revolution frequency times the 

fractional part of the tune), on the other hand, is due to the resistive wal1. 2 However, a 

narrow-band feedback system is able to correct this instability. A model for this impedance 

will be given that allows use of the same program to study this instability and the asso­

ciated feedback system. In this case, the whole beam pipe will be assumed to be uniform 

in temperature; we will ignore the West utility warm section, with a total length of ap­

proximately 1.3 km. The dimension and the composition of the beam pipe in this region 

must be chosen carefully so that the resistive wall impedance here does not represent an 

important contribution to the total resistive wall in the Collider. The elements in this re­

gion (scraper, collimators, and kickers) must be copper-coated to reduced inhomogeneous, 

high transverse impedance values in the ring. 

2.0 TADIMMI COMPUTER CODE 

Ignoring the possible coupling of different directions in the motion, the transverse ampli­

tude of motion, Y, of a point-like bunch suffering the electromagnetic wake-field interaction, 

ww, can be described by the differential equation 

d2y 
dt2 +w~Y = ww, (1) 

where wf3 is the angular betatron frequency. Let us assume the following: for simplicity, 

there is a single cavity in the ring where there is a point-like interaction, the ring is perfectly 

linear, and the ring has M equally pair-spaced bunches. With these assumptions the short­

range wake field can be omitted, and the long-range is given by the Higher Order Modes 

(HOM) of the rf cavity. Since the rf cavity is usually much shorter than the betatron 

wavelength, the betatron phase advance within the rf cavity can be ignored. When the 

k-bunch passes through the rf cavity for n + 1 turns, the transverse position does not 

change: 

Y(k,n+1)=Y(k,n) , (2a) 

but its momentum is changed by the wake field of the rf cavity. 
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For dipole-mode wake field, the change in the transverse momentum of the k-bunch is 

2 n M 

Y(k, n + 1) = Y(k, n) + ~e I: I: D(j)Y(J, m)W(s/c) , 
o m=l J=l 

(2b) 

where the summation is carried out over the wake field left behind for all the previous 

bunches and turns. The variable s can be written in terms of the space between bunches, 

SB, as 

s = (k - J)S B + (n - m)M S B , (3a) 

where (k - J) and (n - m)M represent the relative bunch and turn numbers. N is the 

total number of protons in the bunch, e is the proton charge, Eo is the relativistic energy, 

Eo = ,mc2 , c is the speed of light, and W(s/c) is the wake function defined as 

{ 
2:.xA.xexp(-a.xs/c)sin(n.xs/c) if s > 0 

W(s/c) = 
o if s ~ 0 . 

The variables A.x, a.x, and n.x are defined as 

and 

(3b) 

(3c) 

(3d) 

(3e) 

and the summation is carried out over all the transverse HOMs of the cavity. Each cavity 

mode is characterized by the resonant angular frequency W.x, the shunt impedance R.x, and 

the resonant quality factor Q.x. The quantity 

(3f) 

gives us the number of bunches that the exited transverse HOM can affect before it decays 

by a factor of 1/ e. The factor D(j), 

o ::; D(j) = N(j)jN ~ 1 , 

defines the distribution of bunches and the number of protons per bunch. 

The bunch is transported from the output to input of the rf cavity using the Courant­

Snyder4 map: 

( 
~ ( k, n + 1») = (COS 11 + a sin 11 

Y ( k, n + 1) -, sin v 

/3 sin 11 ) (Y ( k, n) ) 

cos 11 - a sin 11 Y ( k, n) 
(4) 

where 11, a, /3, and, are the Courant-Snyder parameters valuated at the cavity location. 
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The relations (2), (3), and (4) comprise the model for simulating transverse multibunch 

instabilities with the computer program TADIMMI. 

3.0 SYMMETRIC FILLING AND COMPARISON WITH ZAP 
A 358.9-MHz Positron-Electron Project (PEP) cavity will be taken as the test cavity 

in the TADIMMI program. The characteristics of its transverse HOM are shown in Ap­

pendix A. The initial distribution of bunches is uniform in the amplitude variable with a 

maximum amplitude of 1 mm. The statistic weight, 0 :::; D(j) :::; 1, is random-variable 

with uniform distribution. At the rf location, the dispersion function is zero, as assumed 

in Eq. (4), and the Courant-Snyder parameters have the following values: 

f3 = 112,472.0 mm , 

0: = 0 , 

and 

J.l = 27rfrac( v) = 1. 759292 . 

The characteristics of the bunches are 

N = 7.5 X 109 
, 

M = 17,424 , 

Eo = 2 TeV , 

and 

SE = 5 m. 

The case of nonuniform distribution of particles in the hunches (D(j) = Random[O, 1]) 

will be presented in detail in this section. Figures 1-4 show how the amplitude of different 

bunches of the beam behave as a function of time (turns). Figure 5 shows the distribution 

of the bunches in the phase space once the instability has set in. The bunch that leads 

the amplitude growth may differ from time to time as shown in Figure 6. Finally, from 

the value of the slope on the curve (maximum amplitude of the bunches as a function of 

time), the growth time can be calculated. This curve is shown in Figure 7; the estimated 

growth time is T = 23.8 s. Table 1 summarizes the growth time calculations for different 

cases. 

The comparison with the analytical approach (ZAPS) is shown in Figure 8. The sim­

ulation result for uniform distribution (D(j) = 1) agrees very well with this analytical 

approach. 
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Figure 6. Bunch That Leads the Amplitude Growth. 
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Figure 8. ZAP Growth Time as a Function of the Bunch Length. 
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4.0 ASYMMETRIC FILLING 
A single ring of the Collider is filled from the HEB with eight batches, each with 

2178 bunches. This asymmetric state of the ring during filling can be simulated using 

the above-mentioned variable D(j). For a given number of batches r < 8, this function is 

chosen as 

{ 

Random[O, 1] 
D(j)= 

o 
if j :::; r x 2178 

if otherwise 

The result of our calculations can be seen in Figure 9, where the growth time has been 

plotted as a function of the number of HEB batches. As we can see, the worst situation 

of the dipole mode multibunch instability occurs in the symmetric filling case. This result 

verifies the qualitative analytical approach given by Kohaupt6 for nonsymmetric filling. 

(See Appendix B.) 

• 
60 

30 

Transverse multibunch instabilities 

I 2178 Buncheslfill I 

.~ 
.. "'::::---, .--­'...... . 

.................... ~. 
""""---.-. 

Number of HEB filling in the Collider 
TIP-Q3693 

Figure 9. Growth Time as a Function of the Partial Collider Filling. 

5.0 PASSIVE DAMPING SYSTEM 
One way to increase the growth time of the multibunch instabilities is to eliminate the 

most dangerous rf HOM and to make a De-Q of the cavity. (Landau damping is not 

considered.) As we saw in Section 4, the most dangerous situation is the symmetric filling 

case. Hence, only this case will be considered here. 

Assume that some HOMs of the cavity are eliminated to obtain a possibly more stable 

beam. As Figure 10 shows, if only one mode is eliminated, it does not matter which; the 

beam, as expected, continues to present the dipole-mode multi bunch instability. The bump 
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appearing in the continuous curve is due to the suppression of the rf-HOM3 (Appendix A), 

which has the highest value in the quality factor RI Q and higher influence on growth time. 

The black square marks in Figure 10 represent the growth time for the suppression of 

several dangerous HOMs of the PEP cavity. As can be seen, even if three of these HOMs 

remain in the cavity, the dipole-mode multibunch instability continues to be important. 

Transverse multibunch instabilities 

40 • • • 

17,424 Bunches 

10 • : No. of HOM suppressed 

HOM suppressed 
TIP·03694 

Figure 10. Growth Time as a Function of Suppressed PEP-HOM. 

Figure 11 shows the case for a De-Q of the PEP-cavity, i.e., for the case when the Q 

of all the HOMs of the cavity decrease their value by some given amount, leaving the 

other quality factor, RIQ, fixed. If this type of cavity is used for the SSC Collider, about 

32 single-cell rf cavities would be needed to provide the required power to the beam. Thus, 

the growth time must be divided by 32 in order to obtain the total dipole-mode instability 

growth time for the Collider. In addition, a factor of approximately 3 must be considered 

since, from Table 1, the realistic situation for the Collider is D(j) = 1. Doing so in 

Figure 11, it is seen that for an average value of RIQ = 125 n/m and a luminosity of 

L = 1033 cm-2s -1, the following damping factor is required: 

(5) 

or 

(6a) 

for the growth time to be higher than the injection time, bringing about good stability 

conditions during this time. To see what happens at a higher luminosity, notice from 
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Eqs. (2b), (3b), and (3c) that a higher luminosity is equivalent to increasing the quality 

factor RIQ. Figure 12 shows the effect on the growth time for a decreasing value of this 

factor, leaving the Q values of the HOM fixed. Putting these two pieces of information 

together, the following gross estimation can be made to select Qd, given the number of 

cavities, Nc: 

Q 
4.8 X 106 fJ/m 

d < . - < RJ../Q > Nc 
(6b) 

A single-cell normal cavity with HOM couplers 7 or a single-cell superconducting (s.c.) 

cavity with couplers8 can satisfy this restriction. 

Transverse multibunch instabilities 

\ 17,424 Bunches 
RIO Remains Constant 

• 
\ 
~. 

• 

Reduction factor for 0 
TIP-03695 

Figure 1 L Growth Time as a Function of the De-Q of the PEP Cavity. 
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Figure 12. Growth Time as a Function of the De-RIQ of the PEP Cavity. 

6.0 ACTIVE DAMPING SYSTEM 

Another way to control multibunch instabilities is to use an active feedback system.9 

(Balakin-Novokhatesky-Smirnov, or BNS, damping is ignored.) The SSC Collider will 

have at least three different feedback systems,10 one for injection errors, another for the 

resistive wall, and a third for rf-cavity multibunch instabilities. This last one is the one 

we are interested in here. 

The normal operation of the transverse feedback system uses a BPM to measure the 

transverse displacement of the bunch. The signal is amplified and transmitted to the 

kicker (K), located downstream at a phase advance of 71" /2 (to optimize the damping rate). 

This produces an angular deviation to the bunch given byll 

, 9 
~Y = J(3 (YBPM + bY) , 

BPM(3K 
(7) 

where 9 is the gain of the system, f3 BP M and f3 K are the beta function at the location of 

the BPM and the K, and YBP M and bY are the displacement measured by the BPM and 

the error transmitted by this displacement. This error is called the resolution of the BPM 

and is due to the electronic noise in the system. 

However, because the protons travel almost at the speed of light, the electronics associ­

ated with the feedback system are not fast enough to implement this same-turn scheme. 
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We have to wait for another turn in order to correct the previous turn (previous-turn 

scheme). Therefore, both schemes must be studied. 

The modification in the program is clear: the kicked bunch in the rf cavity is transported 

to the BPM, where the information of the displacement is extracted. Then, the bunch is 

transported to K, where it receives an appropriate kick, depending on the scheme (same­

turn or previous-turn). Finally, it is transported to the rf cavity, where it experiences the 

known rf kick, and so on. The locations of the BPM, K, and rf system in the ring are 

characterized by (,81, (}:1), (;32, (}:2), and (;33,0), and they are separated by a phase advance 

7r /2, /-l2, and /-l3 such that the total phase advance in the machine is /-l = /-l3 + /-l2 + 7r /2. 
The matrices that make transport from rf to BPM, from BPM to K, and from K to rf are 

given by 

Ifi cos /-l3 v7J17J3 sin /-l3 

- ~( sin/-l3 + (}:1 COS/-l3) /fi( COS/-l3 - (}:1 sin/-l3) 

(8a) 

(}:1/fi v7J17J3 

1 ;;;;;2 -(}:2 fj; (8b) 

and 

1* (cos /-l2 + (}:2 sin /-l2) .JiJi]J3 sin /-l2 

- ~(sin/-l2 - (}:2COS/-l2) Ifi cOS/-l2 

(8c) 

We assume a white noise for the system, with Gaussian distribution for the variable 8Y 

having a standard deviation, 0'5Y, given by the resolution of the BPM. This Gaussian 

distribution is obtained with the help of the Central-Limit-Theorem12 and the distribution 

6 

~ = L(~i - 0.5) , (9a) 
i=l 

where ~i, i = 1, ... ,6 are random variables having values in the interval [0,1]. ~ has the 

following characteristics : 

<~ >=0 (9b) 

and 

(9c) 
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Figure 13 shows this distribution. bY is then given by 

100 

80 
(J) -c: 
Q) 
> 60 Q) -0 .... 
Q) 
.0 
E 40 
::J 
Z 

20 

0 
-2 -1 0 

Figure 13. A Gaussian Distribution. 

1 2 
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(10) 

The feedback systems will be located at the West Utility section of the Collider ring. 

Figure 14 shows the beta function behavior at this region and the location of the BPM 

and K for our simulations. Assume the following characteristics of the feedback system: 

BW 2: 30 MHz, 

f3BPM = 13K ~ 420 m , 

9 = 0.1 , 

and 

0'8Y = 10 pm . 

Figure 15 shows the result for both schemes above and compares them with the no-feedback 

system seen in Figure 7. As is clearly shown, the simulations suggest that this feedback 

system will work for damping the transverse dipole-mode multibunch instability. The 

power required for the kickers can be calculated from the above parameters (see Refer­

ence 11). Due to limitations on the CPU time calculations, it is not possible to study the 

optimization of this feedback system for different noise levels and gains. This study will 

be done in the near future after the program has been simplified. 
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Figure 14. Location of BPM and K in West Utility (Simulations). 
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7.0 APPROXIMATION OF THE RESISTIVE WALL 
MULTIBUNCH INSTABILITY 

The long-range resistive wall impedance for a stainless steel beam tube coated with 

copper is given byl 

(11) 
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where c is the speed of light, C is the circumference, 0'1 is the copper conductivity, 81 IS 

the copper skin depth, 

81(w)= ~, V;;;;::; 
~ is a correction factor that takes into account the stainless-steel effect, 

where 0'2 is the stainless steel conductivity, and Zl and Z2 are given by 

and finally, sin w is the sine function, 

sinw = {~~: if w > 0 
if w <: 0 

(12) 

(13a) 

(13b) 

(14) 

Figure 16 shows the real part of this impedance for a thickness of 0.1 mm of copper 

and 1.0 mm of stainless steel, and a beam pipe radius of 1.622 cm. 

Re [Z..l] 

5. 108 

~--------~--------4_4-------+-------~+_~W 
rOO,OOO -100,_00_0 ___ -_50,000 

We 

50,000 

TIP'()3700 

Figure 16. Resistive Wall 'Transverse Impedance at Low Frequency. 

To perform the multibunch instability simulations, the time-dependent impedance IS 

required. This can be obtained by making the inverse Fourier transformation of Eq. (11). 

However, even if an explicit expression were found, we would need to consider on the order 

of 108 interactions among the bunches per turn (due to the characteristics of this wake 

field). This approach would require hundreds of hours of CPU time for some hundred 

turns. Therefore, a different approach is required to study this case. 
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The first observation from Figure 16 is that the most important frequencies are those 

close to the zero frequency. For protons traveling in a collider machine with angular 

frequency wo, the frequencies of interest are 

(15a) 

where 6./3 is the fractional part of the tune of the machine such that 

-1/2 < 6./3 < 1/2 . (15b) 

Each k corresponds to one possible multibunch mode of oscillation. This mode is stable 

for k ~ 1 and unstable for k ~ -1. The fundamental mode, k = 0, is unstable or 

stable depending on whether 6./3 is negative or positive. The second observation is that 

at this very low frequency the beam wall impedance looks like a resonator impedance. 

Hence, it can be approximated by this resonator impedance (see Figure 17), where the 

resonant frequency is the above-mentioned Wk, the shunt impedance is just Re[Zl.(wk)], 

and the quality factor Qo can be selected to approximate the shape of the resistive wall 

impedance. Therefore, the problem is reduced to the previous multi bunch instability due 

to an rf system, and the above program can be applied using this new resonator impedance. 
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W 

TIP-03701 

Figure 17. Comparison Between Resistive and Resonant Impedances. 
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The growth time of the instability and its dependence with the copper thickness will be 

estimated. Figure 18 shows the maximum amplitude as a function of the number of turns, 

obtaining a growth time of about 0.09 s (D(j)=l). Figure 19 shows how this growth time 

depends on the fractional part of the tune for three different thicknesses of copper. This 

figure indicates a clear benefit when the thickness of copper in the beam tube increases. 

For a copper thickness of 0.64 mm, the resistive wall instability is influenced only by the 

copper (for a fractional part of the tune between 0.1 and 0.9). This happens because, 

at the minimum value 6.(3 = 0.1, the resonant frequency (wm = 16.(3lwo = 2.163 kHz) 

coincides with the critical frequency, We, which is such that the copper skin depth has the 

same value as the copper thickness at this frequency (81(we ) = 0.64 mm). Higher value 

of copper thickness is almost irrelevant for the resistive wall instability. If for a copper 

thickness of 0.05 mm a maximum pressure of 0.646 atm is expected at the midplane of the 

beam tube during a main dipole quench,13 the maximum pressure expected for a copper 

thickness of 0.1 mm, 0.3 mm, and 0.64 mm would be 1.29 atm, 3.87 atm, and 8.2 atm 

(18.94 psi, 56.81 psi, and 120.3 psi). The value of 8.2 atm is inside the tolerable values 

for a stainless steel thickness of 1 mm, and with a very wide safety margin for a thickness 

of 1.5 mm. 14 

The growth-time dependence with the quality factor Qo will now be addressed. Figure 20 

shows how the growth time depends on the quality factor Qo, selected to fit the resistive 

wall impedance. The figure shows a variation of about 10% in the growth time for a 

variation of 400% in Qo. Therefore, the result is not strongly dependent on the fitting 

parameter. 

To verify that the instability is that of the resistive wall, the phase space of the bunches 

must be examined. Figure 21 shows the growth time for higher-order modes of multibunch 

oscillations. Figures 22-24 show the phase space generated by the bunches during the 

instability at some particular turn for the fundamental mode (6.(3), and the next two 

higher-order modes (6.(3 - 1 and 6.(3 - 2). As can be seen, they represent the expected 

phase space due to resistive wall instability. 

Figure 25 shows the comparison of the simulations with the analytical approach (ZAP 

code) for several higher-order modes and two different materials, copper and stainless steel. 

(It is pointed out that ZAP code does not handle a stainless steel beam tube coated with 

copper.) From this figure, it is seen that the simulation results are very consistent with 

analytical results. 
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7.1 Single-Unit Feedback System for the Resistive Wall Instability 
U sing a single-unit feedback system (one BPM and one K with associated electronics) 

to correct the beam displacements, the procedure is the same as that seen in Section 5 but 

taking p turns average value of the displacements of the Lunches at the BPM (p could be 

a rational number): pM 
1 ~ BPM < Y >p= M L.,.,Yi , 

p i=l 

(16) 

that is, the correction to the trajectory of the particle changes every p-turns, and all the 

bunches receives the same correction proportional to < Y >p, except for noise. This 

implies that the kicker flat-top time is 

jt = p x 2.904 X 10-4 sec. (17) 

The bandwidth (BW) of the feedback system will be assumed that one defined by the 

batch to batch separation (1.7 /Js), BW~0.3 MHz. 

Varying the parameters gain (g), noise (bY), and flat-top (p), the simulations indicate 

that this single-unit feedback system must be very strong to damp completely the insta­

bility for a copper thickness of 0.1 mm. Figure 26 shows the average displacement of the 

beam at the BPM as a function of the time (number of turns) for a feedback system with 

parameters: 9 = 0.1, bY = 10 /Jm, p = 2, and 1::l.(3 = -0.75. The growth of the oscillations 

after 100 turns comes from the inability of the feedback system to damp entirely the insta­

bility. However, this single unit is able to damp the resistive wall instability for a copper 

thickness greater than 0.3 mm. 
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Figure 26. Two-Turns Average Value of the Beam Behavior with Single-Unit Feedback for a Copper Thickness 
of 0.1 mm. 
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Figures 27 and 28 show this damping effect for g = 0.05, bY = 100 11m, p = 2, and 

6.(3 = -0.75. Table 2 summarizes most 0f the calculations made with the single-unit 

feedback system. 
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Figure 27. Two-Turns Average Value of the Beam Behavior with Single-Unit Feedback for a Copper Thickness 
of 0.3 mm. 
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Figure 28. Amplitude Behavior of Bunch 1000 with Single-Unit Feedback for a Copper Thickness of 0.3 mm. 
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Table 2. Single-Unit Feedback System. a 

-1 + ~i3 = -0.75 

eu Thickness-tl (mm) 0.1 0.3 

Growth Timeb-r (ms) 56 139 

BPM Resolution-6Y (J.Lm) ~ 100 ~ 500 

Gain-g ~ 0.30 ~ 0.01 

flat-top-(p) 2 2 

a stainless steel thickness t z = 1.0 mm 
b without feedback system 

0.64 

225 

same 

same 

same 

7.2 Two-Unit Feedback System for the Resistive Wall Instability 
U sing a two-unit feedback system to correct the resistive wall instability affords more 

degrees of freedom. The units could be spatially separated or overlapped, as shown in 

Figure 29. The corresponding matrix transformations are more complicated than those in 

expressions (S) and are given, for the separated case, by 

and 

)1; COS~l 

d= 
OB2) ~~~ 

_1 + OK20B2 

Jf3K2f3B2 

25 

..)(3 BI (3 R sm ~ 1 

) 1:1 ( cos ~1 - OBI sin ttl) 
(lSa) 

(lSb) 

(lSc) 

(lSd) 
- 0 K2 [fui'; V7fK2 

(lSe) 



where the meaning of the subindex is clearly deduced from Figure 29 (a). The kicks 

provided by the kickers to the bunches are given by expression (7) but using the average 

value in expression (16). The first point to make is that the results do not depend much 

on the separation phase j.l2, as long as both feedback units are located in the dispersion­

free region of the Collider. Although there is an improvement in the damping, the results 

indicate that the two-unit overlapped case seen in Figure 29(b) and (c) behaves very much 

like the one-unit case; i.e., it is unable to damp the resistive wall instability generated by 

the copper thickness of 0.1 mm in the beam pipe. Therefore, this case will not be discussed 

further. 

(b) Overlapped 

r-----it> rrJ2 

I:2r-~ 
(BPM)1 (BPM)2 K1 K2 

~ = ~1 + ~2+~3+rrJ2 

(c) Overlapped 

~ = ~1 + ~2+~3+7t/2 
TIP-03713 

Figure 29. Two-Unit Feedback System Configurations. 

Using the separated case (a), Figures 30 and 31 show the damping effect on the two­

turns average value of the amplitude of the oscillations at (BPM) 1 of Figure 29 and on the 

amplitude of bunch 1000. The characteristics of the feedback system of both units are the 

same as shown in these figures. Table 3 is a summary of the calculations. 

26 



0.4 

0.2 

(\J 

A 0 >-v 

-0.2 

-0.4 

0 100 

Resistive wall 

Feedback 
9 = 0.05 
8Y= 500 mm 

200 
Turns 

300 

TIP·03714 
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Figure 31. Amplitude Behavior of Bunch 1000 with Two-Unit Separated Feedback System for a Copper 
Thickness of 0.1 mm. 
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Table 3. Two-Independent-Unit Feedback System. a 

-1 + D../3 = -0.75 

eu Thickness-t 1 (mm) 0.1 0.3 

Growth Timeb-T (ms) 56 139 

BPM Resolution-bY (/Jm) :::; 500 :::; 1000 

Gain-g ~ 0.03 ~ 0.01 

flat-top-(p) 2 2 

a stainless steel thickness t2 = 1.0 mm 
b without feedback system 

8.0 COMMENTS AND CONCLUSION 

0.64 

225 

same 

same 

same 

The transverse dipole-mode multibunch instability in the Collider due to an rf cavity 

and the resistive wall was simulated using the code TADIMMI. 

For the rf cavity case the following results were obtained: Using a single PEP cavity, 

the resulting growth time is approximately 9 s for the symmetric filling case with uniform 

distribution, which is in good agreement with the analytical approach (ZAP code). The 

growth time is higher for the nonsymmetric case than for the symmetric case, which verifies 

the qualitative analytical approach. Killing some of the HOM of the PEP cavity does not 

help much to eliminate the dipole-mode multibunch instability. However, the De-Q and De­

R/ Q are very effective in increasing the growth time of this instability. A De-Q factor of 250 

« R/Q >"-' 125 [lim) is good enough to overcome the instability even at higher luminosity. 

This same estimation indicates that a single-cell cavity with couplers may be the best 

option to control multibunch instability. Since D(j) was taken as a random variable 

and can be associated with the product D(j)R>./Q>., the calculations also estimated the 

statistical effect on the impedance peak of the HOM of the cavity.I5 Finally, the feedback 

scheme designed for the Collider, whether a same-turn or previous-turn scheme, is able 

to damp completely the transverse dipole-mode instability. In summary, a safe control of 

the transverse dipole-mode multibunch instability due to the rf system is obtained using 

single-cell rf cavities (normal or s.c.) with HOM couplers (De-Q) and the feedback system. 

For the resistive wall case, a resonant impedance approximation was made to the resistive 

wall impedance behavior at low frequency. This approximation allowed us to use the same 

computer program to estimate the growth time of the resistive wall multi bunch instability. 

The results agree very well with the analytical approach, ZAP code for pure materials, 

copper, and stainless steel. (ZAP does not handle copper-coated tubes.) The resistive wall 

impedance expression and the resonant approximation indicate that a copper thickness 

greater than 0.64 mm does not have a significant effect on the beam instability. In addition, 
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the dipole quench analysis and the maximum allowable stress in the beam tube suggest 

that the value 0.64 mm is tolerable in the beam tube. The fast growth time of the resistive 

wall instability, approximately 0.1 s, allowed us to study the feedback system as a function 

of the noise levels and the gain of the system. The ma~n result of these studies is that 

a single-unit feedback system would have to be very strong to kill the instability that 

arises because of a copper thickness of 0.1 mm (see Table 2). A feedback system one 

order of magnitude weaker can be obtained using a two-independent-unit feedback system 

(see Table 3). This better control of the resistive wall instability using two BPMs and 

two Ks was recently pointed out at Dubna (UNK).16 Note that the restrictions on the 

BPM resolution in Tables 2 and 3 correspond to the control of the transverse dipole-mode 

multibunch instability. This noise is likely to blow up the emittance. To avoid emittance 

blow-up due to this feedback system, reduction of this BPM resolution by about two orders 

of magnitude may be required. (Work is in progress.) 

One might think that if the aperture of the beam pipe were increased by a factor of 

approximately 1.5 and the liner were used, the resistive wall would not be a problem with 

0.1 mm of copper thickness and a single-unit feedback system. However, this increment re­

duces the impedance by a factor of only 1/3.37, ((Eq.(ll)), and the liner may increase the 

impedance by a factor of 2.5 since its operational temperature is 80 K, bringing about just a 

25% reduction in the impedance. Moreover, upgrading the Collider to 1034 cm-2 sec-1 lu­

minosity has the equivalent effect of a tenfold increase in the resistive wall interaction, 

making dubious the control of the instability with these elements. Therefore, a good con­

trol of the transverse dipole-mode multibunch instability due to the resistive wall can be 

obtained using a two-unit feedback system (two BPMs and two Ks with a gain 9 = 0.03) 

and a copper thickness of 0.3 mm in the beam pipe. 

It is pointed out that for each BPM there may be another BPM' associated with it and 

separated by a phase advance of 7r /2, which may be necessary for large changes in the 

correction signal phase due to changes in tune. 17 Since this BPM' does not affect the beam 

dynamics, it has not been considered in the simulations. Finally, optimization analysis of 

the two BPM-two K feedback system is underway and will be reported in the near future. 
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APPENDIX A 
PEP CAVITY 

Table A.l lists some characteristics of the 358.9-MHz PEP cavity. 

Table A.1. Characteristics of the 358.9-MHz PEP Cavity. 

.A w" R" Q" (~) .A ~ w" B 

(MHz) (Mn/m) (n/m) 

1 3179.29 1.57 47,100 33.33 1777 

2 3982.28 1.81 62,700 28.86 1889 

3 4865.69 17.32 48,500 357.11 1196 

4 6078.35 2.30 98,400 23.37 1943 

5 6854.95 5.78 41,500 92.04 1099 

6 6873.80 12.28 41,500 295.90 724 

7 7809.99 2.50 59,300 42.16 911 

8 8589.11 13.37 67,300 198.66 940 

9 10,090.79 3.41 62,800 54.29 747 

10 10,662.56 6.71 63,500 105.67 714 



APPENDIX B 

SYMMETRIC AND NONSYMMETRIC ANALYTICAL APPROACH 

For the symmetric case, suppose that all the degrees of freedom of the particle motion 

are uncoupled, and that all the bunches are equally spaced and uniformly distributed along 

the ring. If there are B bunches in the ring, the equation that governs the distribution of 

particles of the j-bunch due to the wake-field force of the other bunches, F(f, x, v, t), is 

called the Vlasov's equation and can be written as 

alj alj alj at + v ax + F(f, x, v, t) av = 0 ,for j = 1, ... , B, (B.1) 

where t, x, and v represent the time, the transverse bunch displacement, and the transverse 

bunch velocity, respectively, and I is the beam vector, I = (jI, ... , I B ). Because of the 

electromagnetic origin of the wake-field forces, F is a linear operator with respect to the 

beam vector. 

This nonlinear couple-integral-differential equation is, in general, very difficult to solve. 

Therefore, the usual approach is to use a first-order perturbation in the density, i. e., assume 

a bunch density of the form 

Ij = It + yj exp( -int) , (B.2) 

where Ii is the initial distribution and n is the coupled bunch frequency of oscillation. 

Substituting (B.2) in (B.1) and keeping first-order terms, the following equation is ob-

tained: 
. j 

. ay' .aIOF( ... l"\) l"\ j . B -zv ax - Z av y, H = Hy J = 1, ... , , (B.3) 

where the dependence of F on x and v has been ignored. In addition, assume that the 

frequency of oscillation is almost the same as the betatron frequency, wj3, so that we can 

substitute this frequency on the left-hand side of (B.3); then, the following eigenvalue 

equation results: 

(B.4) 

where L, the Sacherer's operator,18 can be expressed in the following way: 

L . a .alt F( ) =-zvax-z av ,wj3. (B.5) 

The solutions of (B.4) bring about the eigenmode couple bunch oscillations of the beam. 

The imaginary part of the eigenvalue gives the growth rate of the multibunch motion, 

1 
r = Im(n) , (B.6) 



which is unstable if this is positive. In this case, T is called the growth time of the unstable 

mode. This solution must satisfy the requirement of being a small perturbation, i.e., 

Iyj exp (Im(O)t)1 ::; Inl , (B.7) 

which also give us the maximum time for the approximation to be valid. For a time longer 

than this, the solution (and the whole approach) may be meaningless. 

For the nonsymmetric case, we can make the same assumptions as above. So, there 

are B bunches uniformly distributed along a ring, and the behavior of the bunches is 

described by the Sacherer equation (B.4), which clearly depends on the number of bunches. 

Each density function yj is proportional to the number of particles in the bunch. Thus, 

the set of beam vectors 

M = {:II} , (B.8) 

such that 

(B.9) 

forms a vector space of dimension B over the complex number (in general). In this vector 

space it is possible to define an inner product 

(B.lO) 

where e represents the variables of integration and p( e) is a measure III this space, 

and + represents the adjoint operation. With this inner product, the set of eigenvec­

tors, {Yk, k = 1, ... , B}, of the linear equation (B.3), 

(B.ll) 

can be chosen to be a orthonormal set, 

(B.I2) 

Therefore, any vector, y, of the space M can be expressed as a linear superposition of this 

orthonormal set: 
B 

Y = L CkYk , (B.I3) 
k=l 

where Ck, k=I, ... ,B are complex numbers. The norm in this space can be defined through 

the inner product as 
B 

Ilyll = J< yly > = L ICkl 2 
. (B.I4) 

k=l 



Assume now that the vector space is divided into two vector subspaces V and W. 

If Lv = Llv, Lw = Llw are the restrictions of the linear operator L to these spaces, they 

are invariant spaces of these operaturs; i. e., Lv(V) ~ V and Lw(W) ~ W. 

In addition, if vn and wm are eigenvectors associated with the operators Lv and Lw, 

(B.15) 

and 

(B.16) 

these vectors turn out to be orthogonals, < vnlwm >= O. Therefore, the vector space M is 

the direct sum of the two orthogonal vector subspaces, M = V EB W, and the vector 

.... Vn ( .... ) Yvw = wm (B.17) 

is a vector in the M space. Thus, it can be written as 

B 
.... ~ nm .... 
Yvw = ~ok Yk· (B. IS) 

k=l 

Applying the operator L to the left- and right-hand sides of (B.18), it follows that 

( 
LV(Vn)) ('Ynvn) B 

L(yvw) = .... = .... = L o;:m AkYk . 
Lw(wm) TJmWm k=l 

(B.19) 

Consequently, the product < YvwIL(yvw) > is given by 

B 

'Ynllvnll~ + TJmllwmllW = L 10;:m12 Ak , (B.20) 
k=l 

where the norm in the vector subspaces is understood. similarly, as relation (B.14)' and 

the relation (B.12) has been used. 

Assume now a partial filling ring, wm = O. From the definition of relation (B.18) and 

relation (B.ll), it follows that 

B 

IIYvwll 2 
= IIvnll~ = L 10;:12 

. (B.2!) 
k=l 

Substituting this result in relation (B.20), we get 

(B.22) 



This is the Kohaupt's result, 6 which relates the eigenvalues of the symmetric filling case 

\vith the eigenvalues of the asymmetric filling case through nonnegative real numbers, 

lakO 12. From this expression it is possible to give the following qualitative result. For any 

k and n, 

1) If M is stable (I m(>.k) :::; 0) ::} V is also stable. 

2) If V is stable (Imhn) :::; 0) *' M is stable. 

In other words, the symmetric case represents the worst-case scenario for multi bunch 

instabilities due to any type of wake-field source. 


