
Interpretation of Photo­
desorption Data in a Diffusion 

Model and Application To 
Candidate SSC Beam Tube Surfaces 

Superconducting Super Collider 
Laboratory 

SSCL-610 
January 1993 
Distribution Category: 414 

G. Dugan 





Interpretation of Photodesorption Data in a 
Diffusion Model and Application To Candidate 

SSC Beam Thbe Surfaces 

G. Dugan 

Superconducting Super Collider Laboratory* 
2550 Becldeymeade Ave. 

Dallas, TX 75237 

January 1993 

SSCL-610 

·Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract 
No. DE-AC35-89ER40486. 





1.0 INTRODUCTION 
In this paper, a diffusion model is developed as a phenomenological description of the photodesorption 

process. The model starts from the work described in References 1 and 2. Expressions are derived for the 
dependence of the photo desorption coefficients on certain semi-phenomenological parameters. Photo­
desorption data for possible Superconducting Super Collider (SSC) beam tube surfaces are fitted to the 
derived form, and values for the parameters are extracted from the fits. 

In an application to the vacuum problem for the SSC, the time required to desorb a monolayer is derived as 
a function of the model parameters. The range of parameter space required for long monolayer desorption 
times (up to 4000 hrs) is established, and this is compared with the values of the parameters obtained from the 
fits to photodesorption data discussed above. The sensitivity of the results to various model assumptions is 
also explored. 

2.0 DERIVATION OF EXPRESSIONS 
One of the principal features of the process of photodesorption is the "clean-up" phenomenon. The 

photodesorption coefficient, 1], is defmed as follows: 

1] = f/J /Y. (1) 

In this definition, f/J is the flux of photodesorbed molecules (in molecules/cm2/sec) and y is the incident flux 
in photons/cm2/sec. It is found experimentally that 1] is a monotonically decreasing function of the integrated 
incident particle flux r, where 

r = f Ydt. (2) 

The reduction in 1] with incident integrated flux is referred to as "clean-up" of the surface. 

In the diffusion model, the overall process of photodesorption is described in terms of the liberation of 
molecules directly from the surface into the vacuum due to the incident photon flux, together with transport 
of additional molecules from the volume of the material to the depleted surface by a process of diffusion. 

The direct photo-stimulated liberation of molecules from the material can be related to the microscopic 
process of ejection of a gas molecule from the material by the electromagnetic interaction of the molecule 
with the photon. The flux of photons within the material is assumed to vary like 

y(x) = Y Exp (~TX). (3) 



where x is the depth in the material, and the characteristic length is given by 

(4) 

Here or(E) is the total absorption cross section for the photons (of energy E) in the material, and (l is the 
density (in atoms/cm3) of interacting atoms responsible for the total absorption process. 

Let us designate the cross section (in cm2/molecule) for the photodesorption process as 0D( E,M). Further, 
let c(x,t) be the volume concentration (in molecules/cm3) of gas in the bulk material. Then we have the 
following equation for the flux tP of photodesorbed molecules produced at distance x in the material: 

dtP(x, t) = y(x)c(x, t)o D(E, M) dx 

= y EXP(i;)c(x,t)aD(E,M) dx. 

(5) 

If we designate P(x) as the probability that a molecule desorbed at x escapes from the material, then taking 

P(x) = EXP( -;.:) 

the total flux of desorbed molecules is 

with 

co 

4>(.) = "D(E,MJ f y ExP(). x)c(x,.) dx 

o 

(6) 

(7) 

(8) 

If we assume that the characteristic length A. is small compared to the distance over which c( x, t) varies, then 
we have 

(9) 
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In terms of a phenomenological constant (units cm3), x,where 

x = AO D(E, M), (10) 

we have 

<P(t) = x c(O, t) y. (11) 

This equation for the molecular flux <P( t) leaving the surface provides a boundary condition atx = 0 which 
the solution to the diffusion equation within the metal must satisfy. The diffusion equation is 

D a2c(x, t) _ ac(x, t) 
ax2 - at (12) 

and the boundary condition is 

<P(t) = D ac~~ t) = x c(0, t) y. (13) 

As an initial condition, the concentration as a function of x must be specified at t = o. The case of a localized 
concentration near the surface may be modeled as an exponentially varying function: 

c(x,O) = Co Exp( - xli). (14) 

In this equation, VA represents the distance over which the gas is "localized" adjacent to the metal surface. In 
this case, there is a fmite gas load in the metal. The total gas load per unit area is 

QO 

Q = f c(x,O)dx = ~. (15) 

o 

The solution to the differential Eq. (12), subject to the boundary condition Eq. (13), and initial condition, 
Eq. (14), may be obtained by the method of Laplace transforms.3 The Laplace transform is defined as 
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co 

C(x. p) = f Exp( - pt)c(x. t) dt. 

o 

This transformation is applied to the differential equation (12): 

co 

f Exp(- pt) 

o 

co 

D o2c(x, t) d = D o2c(x, p) = f E ( _ ) oc(x, t) d 
ox2 t ox2 xp pt at t 

o 

= pc(x,p) - C(x, 0). 

Here c(x,O) is the initial condition. The transformed boundary condition is 

D ac(O,p) - -(0)' 
ax - x C ,p y. 

Subject to this boundary condition, then, the transformed ordinary differential equation, 

D a2
c(x,p) = ';./ ) - c( 0) 
ox2 p",x, P x, 

is solved for the quantity c(x,p). Then, the result is inverse Laplace transformed to obtain c(x,t). 

To simplify the result, we introduce the following quantities with the units of time: 

4 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 



and a quantity with the units of distance, 

The solution to Eq. (12) for the concentration density is, 

c(x, t) --co = 

EXp(t/fp)(fr - ff;) ErfC[ /l;{h A] 
- 2Exp( f + X + .cl ) ff; ErfC[ if + {h A] 

+ Exp( t; + 2.cl )( fr + ff;)ErfC[ /l; + fh A] 
2Exp(.cl)( fr - !f;,) 

The concentration at the surface is given by 

c(O, t) EXp(t/fp) frErfC[ /l;] - Exp(f) ff;ErfC[ if] 
--co = (fr - ff;) 

(22) 

(23) 

(24) 

In the case of an initial concentration density which is uniform in the volume of the metal (i.e., c(O, t) = co), 
the above solutions apply in the limitsA - ° ( fp - 00). The concentration density is 

c(x, t) .1 x Ii] (t x) [fi x Ii] --co = EllL2h vI + Exp :r + Ii Erfc v:r + 2h vI (25) 

and the concentration at the surface is 

(26) 



The total gas/area evolved from the surface at time t, met), is given by 

I I 

met) = f 4>(t')dt' = xy f c(O, t')dt'. (27) 

o 0 

For the case of the concentration at the surface given by Eq. (24), we have 

met) _. [ Exp(f) ./i ErfC[ Jf] - Exp( ip ) .;:r; ErfC[ fli]] 
-c- - xy;;r; 1 - ./i !to 

o ~ - ~p (28) 

while for the concentration at the surface given by Eq. (26), we have 

(29) 

The limit ofEq. (28) as t - 00 is the total gas load Q as given by Eq. (15). The limit ofEq. (29) as t - 00 is, of 
course, infmite. 

Given these expressions, the photodesorption coefficient of Eq. (1) can be written as 

TJ(t) = 4>(t)/y 

= x c(O,t) 

which becomes, upon substitution from Eq. (24), 

1'j(t) Exp(t/~P) ./iErfC[~] - Exp(f) IT;ErfC[ A] 
xco = (./i - ;:r;) 

_ Exp(f)Erfc[ Jf] - Exp( Hi;) /i; ErfC[ jH;] 
- ( 1 - /i;) 
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(31) 



or. in the case of a uniform initial concentration. using Eq. (26). 

(32) 

The photodesorption coefficient is typically expressed as a function of the integrated flux T. given by 
Eq. (2). In the case of y which is constant in time. then 

T = yt. 

Let us defme the parameters Pl. P2. and P3 as follows: 

fTo 
P2 = VTY' 

(33) 

- !l P3 - ..; 'fp . (34) 

Note that all these parameters are dimensionless. Then we have the following for Eqs. (29) and (31). 
respectively. in terms of these parameters: 

(35) 

(36) 

In these equations. X = TITo. To is simply a scaling factor used to define the scaled integrated flux, X. 
Substituting for'f and 'fp from Eqs. (20) and (21) into Eq. (34), we can solve Eqs. (34) for the fundamental 
quantities ". Co andA in terms of the dimensionless parameters, with the following results: 

" = P2jFay' (37) 

Co = loP! jTOY 
P2 D' (38) 

(39) 
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3.0 RESULTS OF FITS 

Photodesorption data for seven measurement sets have been fit to Eq. (36). A fit to Eq. (35) was also 
attempted, and is reported below unless the fit indicated a (nonphysical) negative value for P3. The fit to 
Eq. (35) indicated positive values for P3 for data sets 1,5,6 and 7. In Table I, the data sets are defined. 

TABLE 1. DATA SET DEFINITIONS. 

DATA SET INDEX MATERIAL TREATMENT TEST LOCALE REFERENCE 

1 OHFCCu CERN cleaning; DCI 4 
in-situ bake 

2 Electrodeposited Cu 
on SS 

Unknown BNL 5 

3 Electrodeposited Cu 
on SS 

BNL cleaning BNL 6 

4 OFHC Cu CERN cleaning DCI 7 

5 Electrodeposited Cu 
onSS 

BNL cleaning BINP 8 

6 Electrodeposited Cu 
onSS 

BNL cleaning BINP 9 

7 Electrodeposited Cu 
onSS 

BNL cleaning BNL 10 

The photodesorption data analyzed here were all data taken in long tubes. For such data, the results are 
generally given by presenting the photodesorption coefficient "I as a function of the linear incident photon 
density in the tube (~, in photonsllength). The model discussed above treats the photodesorption coefficient 
as a function of the integrated photon flux r (in photons/area). To relate these two quantities, we write 

r = ~/w, (40) 

where w is the effective circumferential distance in the tube over which the photodesorption process occurs. 
In this analysis, we have taken w = nd, where d is the tube diameter. This is done under the assumption that, 
either as a result of photon scattering in the tube, or through the process of photoelectron production followed 
by subsequent electrodesorption, the entire tube circumference is involved uniformly in the desorption 
process. With this assumption, the scaling parameter is X = rlro = ~/~Ol with ~O 1016 photons/cm. Thus a 
linear photon flux of 1018 photons/meter corresponds to X =1. 

The fits to the seven data sets are illustrated in Figures 1-7. These are log-log plots in which the abscissa is 
log 10 "I, and the ordinate is 10g1O X. The points represent the data; the errors on all data points have been 
(arbitrarily) taken to be 0.1 in 10&10"1. This error has also been used to calculate the errors in the fitted and 
derived parameters, using standard error propagation formulae. In Figures 1-7, the dotted line represents the 
fitted 2-parameter function, Eq. (36), and the solid line represents the 3-parameter function, Eq. (35). In 
Tables 2 and 3, the values of the fit parameters are given. 
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TABLE 2. RESULTS OF 2 PARAMETER FITS. 

DATA SET INDEX P1 c}p, P2 

1 -2.705 0.111 0.07144 

2 -1.526 0.103 0.1365 

3 -1.449 0.2628 0.2609 

4 -2.503 0.0649 0.0746 

5 -0.669 0.2434 0.8166 

6 -0.4502 0.2907 1.0136 

7 -0.4826 0.1397 1.51 

TABLE 3. RESULTS OF 3 PARAMETER FITS. 

DATA SET INDEX P1 liP1 P2 c}P2 P3 
1 -2.811 0.100 0.03078 0.0161 0.07696 

5 -0.802 0.196 0.456 0.315 0.0210 

6 -0.461 0.330 0.859 0.n4 0.00270 

7 -0.3925 0.335 1.466 1.3725 0.00151 

c}P2 

0.0233 

0.0517 

0.1748 

0.0194 

0.5203 

0.7363 

0.5347 

c}P3 

0.0813 

0.0331 

0.0044 

0.00186 

In order to calculate the derived parameters defmed in Eqs. (37) to (39), the photon flux must be known. 
For each data set, the photon flux r, in photons!cm2/sec, has been estimated using the following equation: 

r = 1.28 X 1014 If:. (41) 
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where I is the storage ring beam current in rnA, E is the beam energy in Ge V, (J is the horizontal acceptance 
angle in mrad, I is the length of the tube in em, and w = nd (d = tube diameter). The results are shown in 
Table 4. 

TABLE 4. PHOTON FLUX ESTIMATES. 

DATA SET INDEX E i 8 I w y 
UNITS GeV mA mrad em em 1013/em2/sec 

1 1.72 150 5.0 300 41.0 1.33 

2 0.75 150 3.4 300 10.4 1.57 

3 0.75 150 3.4 300 9.4 1.73 

4 1.72 150 5.0 300 41.0 1.33 

5 0.54 200 0.55 100 10.4 0.733 

6 0.54 200 4.2 100 10.4 5.6 

7 0.75 800 2.1 100 10.4 15.5 

Given the value of y, and given the scale factor Fo = ~oIw from Eq. (40), Eqs. (37)-(39) relate the four 
derived parameters x, Co, D, andA to the three fitted parameters PI, P2, and P3. We must thus determine one of 
the derived parameters from some other source. We choose to fix the value of the diffusion constant, D. 
Previous similar studies of diffusion-modeled photo- and electrodesorption l ,2,l1,12 have obtained 
values for D which range from 10-19 to 7 X 10-18 cm2/sec. We will fix D at a representative number, 
D = 5 X 10-18 cm2/sec, for all the data sets. Then, using Eqs. (37)-(39), we convert the fit parameters PI,P2, 
and P3 into the derived quantities x, Co andA. The parameters T, Tp, and h have also been calculated. The 
results are shown in Tables 5, 6a and 6b. 

Also included in Table 6b are the parameters r and m I. The parameter r is the ratio 

(42) 

This will be discussed further in the next section. The quantity m 1 is the total number of monolayers of gas in 
the bulk; it is calculated as 

(43) 

in which me is the monolayer surface concentration, which is taken as me = 6 x 101S/cm2. 
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TABLE 5. DERIVED PARAMETERS, 2 PARAMETER FITS. 

DATA SET INDEX x c5x Log Co c5Log Co Co T h 

UNITS 10.24 cm3 10-24 cm3 cm-3 cm-3 1021 cm-3 sec A 

1 2.80 0.91 20.84 0.06 0.703 3559 13.4 

2 2.47 0.94 22.08 0.09 12.02 3288 12.8 

3 4.30 2.88 21.9172 0.055 8.26 900 6.72 

4 2.93 0.76 21.03 0.074 1.074 3263 12.8 

5 21.7 13.8 21.99 0.063 9.87 197 3.14 

6 9.75 7.08 22.56 0.053 36.4 16.7 0.91 

7 8.72 3.08 22.57 0.042 37.7 2.7 0.37 

TABLE SA. DERIVED PARAMETERS, 3 PARAMETER FITS. 

DATA SET INDEX x {)x Log Co {)Log Co Co 1M {)(1M) T h 

UNITS 1a-24cm3 1a-24cm3 cm-3 cm-3 1021cm-3 A A sec A 

1 1.207 0.631 21.107 0.156 1.28 402 233 19179 30.96 

5 12.1 8.4 22.11 0.135 13.01 267 265 632 5.62 

6 8.27 7.45 22.62 0.087 41.78 399 372 23 1.07 

7 8.46 7.92 22.68 0.087 47.86 250 97 2.9 0.38 

TABLE SB. DERIVED PARAMETERS, 3 PARAMETER FITS. 

DATA SET INDEX T Tp r m1 

UNITS sec 106 sec 10-4 

1 19179 3.24 59.2 0.86 

5 632 1.43 4.41 5.8 

6 23 3.19 0.072 27.8 

7 2.9 1.26 0.023 20.0 

4.0 INTERPRETATION OF THE MODEL EQUATIONS AND PARAMETERS 
The model equations given above may be conveniently rewritten in terms of scaled time and distance 

variables. The scaled time variables to be used will be t/J = tlr; and np = t/"Cp , where 

2 

r = :L = [AI?] = [Ahf 
"C p "I' (44) 

The scaled distance variables will be ~ = x/h, and rr~ = xA. In terms of these variables, we have, for 
the case of an initially uniform concentration density, the following equations derived respectively from 
Eqs. (25), (32) and (29): 
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C(~o1/Jl = m{ 2 ~) + Exp(~ + 1/JlErfC( N + 2 ~ ) 

~~: = Exp(tiI)Erfc( #) 

f~l = 2/fr - I + Exp(1/JlErfc(N). 

Similarly, for Eqs. (23), (31) and (28), we have in the scaled variables, 

Exp(fr~ + rI/J)ErfC(!i¢ + 2~)(fr + 1) 

+ EXP(rI/J)ErfC( !i¢ - 2~)( fr - 1) 

- 2Exp(tiI + (1 + fr)~)ErfC( # + ~) 

2Exp( fr~)( fr - 1) 

1J(tiI) Exp(tiI)Erfc(N) - frExp(rI/J)Erfc(!i¢) 
~CO = 1 - fr 

( 
t:i:\ Exp(I'IJI)Erfc( [nj) 

m(tiI) 1 Exp(tiI)Erfc "til J - rr 
[c~] = fr - fr - 1 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

The scaled concentration density, c(~, 1/1), from Eq. (45), is plotted as a function of ~ for several values of 
o 

Log 10 til, in Figure 8. 
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The scaled concentration density shows the characteristic behavior of the solution to a diffusion equation. 
The general relation between distance and time x2 e 4Dt, becomes, in the scaled variables, ~2 e 4tjJ. As 
Figure 8 shows, the distance over which the scaled density varies, in~, is roughly given by 2JtjJ. The distance 
scale parameter, h, as given by Eq. (22), is inversely related to the product xy. Thus, as either the photon flux 
increases, or the effective photodesorption cross section increases, the scale parameter shrinks: the region 
over which the concentration density is depleted, and over which the density gradient is large, tends to be 
confined closer to the surface. 

The scaled concentration density, C(~'otjJ) , from Eq. (48), for the specific case of Log 1 0 r = -4, is plotted as 

a function of ~ for several values of LoglOtjJ, in Figure 9. 
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We see the same general behavior here, except that the initial distribution is exponential. The parameter 1M is 
a measure of the distance over which the initial density varies. The physical interpretation of the time Tp is 
related to this distance 1M. Since IM2=Drp . we may interpret Tp as the characteristic time scale at which 
the exponential nature of the initial distribution will be important in the problem. It is only at times t ~ Tp 
that the effect of the exponential falloff in the initial concentration density will be evident at the surface of the 
metal. 

This can be seen in the form of the scaled photodesorption function, Eq. (49). This function, ~~~, is 

plotted vs. 'I/J for several values of Log lOr, in Figure 10. 
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Figure 10. ~~:, from Eq. (49), vs. t/J, for Several Values of r. 

Figure 10 shows that for large values of 'I/J, the photodesorption coefficient falls off more rapidly for finite 
r than for r = O. Consequently, the slope on the log-log plot is also greater, typically for those values of'I/J for 
which np ~ 1. This behavior can be understood simply from the asymptotic limit of the expressions given 

above for ~~:. The asymptotic limit is found using the following general relation, valid for z ~ 1, 

./i zExp(Z2)Erfc(z) - 1 - 2~2 + 4~4 + ... . (51) 

Using this relation, in the limit 'I/J ~ 1, Eq. (46) has the asymptotic form, 

f/('I/J) __ 1_ _ 1 

"Co j;;p 2 j mp3 . (52) 
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This implies a r<1I2) dependence at large times, which gives a slope of -0.5 on a log-log plot. In the limit 
1/J ~ 1 and np ~ 1, but r ~ 1, Eq. (49) has the asymptotic form 

(53) 

This will give a r(312) dependence at large times, and a slope of -1.5 on a log-log plot, as illustrated in 
Figure 10. 

m(tp) 

The scaled total gas/area evolved during the photodesorption process, [ct/ J given in Eq. (50), is plotted 

in Figure 11 for several values of Log 10 r. 
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Figure 11. [ c~ J from Eq. (49), vs. 1/J, for Several Values of r. 

For r = 0, m( 1/J) increases without limit, since there is an infmite gas load in the bulk of the material. For 
finite r, m( 1/J) increases to a limit. This limit is the total gas load per unit area in the bulk: the quantity Q given 
by Eq. (13). This general behavior, exhibited in Figure 11, can also be obtained from the asymptotic forms 
ofEqs. (47) and (50). Using the limiting expression given in Eq. (51), weobtainfor1/J ~ 1 the following limit 
for Eq. (47): 

(54) 
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This would indicate that the gas evolved/area grows like t<1I2) in the asymptotic limit. We can also obtain, in 
the limit t/J ~ 1 and n/J ~ 1, but r <!E 1, the following result from Eq. (50): 

m(t/J) I (1 + Fr) 
------'---==-'-
[c~] Fr r~ 

(55) 

This indicates that m(t/J) approaches the product 

[Col!].l. = [Col!] [ ~y] = Co 
~y [r ~y AD A (56) 

in the above limit, as expected. 

Fmally, we may plot ~~: vs. [~forvarious values of r. The result isshown in Figure 12. For r - 0, in 

the limit t/J ~ 1, TJ varies like t/J -(112), and m varies like t/J (112), so TJ should vary inversely with m. A 
steeper-than-linear slope on a log-log plot of TJ vs. m would indicate that the total gas load is fmite. The value 
of m for which TJ drops precipitously indicates the magnitude of the finite gas load. 
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5.0 APPLICATION TO THE SSC VACUUM PROBLEM: ESTIMATE OF THE 
MONOLAYER FORMATION TIME 

In the cold (4.2 K) bore tube of the sse, the photodesorption process evolves gas which is rapidly frozen 
onto the surface of the tube. This gas accumulates as a weakly bound layer on the surface. Thermal desorption 
at 4 K releases gas from this layer into the cold bore vacuum; the vapor pressure of this gas in equilibrium is a 
function of the surface concentration of frozen gas. When the surface concentration of hydrogen gas reaches 
the density of a monolayer (mo = 6 x 1 015/cm2), the vapor pressure rises rapidly to a level roughly two orders 
of magnitude higher than that tolerable for sse operation. When this occurs, the accelerator must be shut 
down and the cold bore tube warmed up to about 20 K, in order for the frozen hydrogen to evaporate and be 
pumped out. Since this operation represents a downtime for the accelerator, there is a lower limit requirement 
on the time to desorb a monolayer of hydrogen gas, which is related to the availability goals of the accelerator. 
The current availability budget allocates 5 hydrogen-gas warmup/pumpout cycles per year. Since the 
vacuum requirement which dictates this warmup is a local one, each time a piece of the accelerator's beam 
pipe is replaced, that piece will have to start the desorption cleanup process anew. It is currently estimated that 
six sse dipoles will need to be replaced each year; each of these will require a restart of the cleanup process. 
The requirement of no more than five warmups/year thus sets the lower limit for the time between warmups 
(which equals the time to desorb a monolayer) at roughly one year. Since only time when the beam is present 
at full energy contributes, this lower limit is the total amount of "live time" at full energy per year, estimated 
to be 4000 hrs, or about 1.4 x 107 sec. 

The equations developed in the preceding sections of this paper may be used to relate the time to form a 
monolayer (tmono) to the parameters of this model. If we define ""mono = tmond-r, then the inequality 

[ 

E (,II )Erfi ( ~) _ ExP(rlPmono)ErfC( ~] coD 1 xp 't'mono C vlJlmono (r 
m(tPmono) = -. r: - r: S mo 

"I' .;r .;r - 1 
(57) 

defmes the range of the model parameters which is acceptable. 

5.1 r = 0 

5.1.1 Estimate of Required Co 

For the case of r = 0, the expression is 

c;: [ 21"";M - 1 + Exp(tP"""",)Erfc( jtP ..... )] '" mo . (58) 

This expression is considerably simpler in the asymptotic limit ""mono ~ 1. This limit implies 

(59) 
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or 

x ~ x min = ~. y tmonoY:.! 
(60) 

For the SSC parameters Y =1013/cm2/sec. tmono = 1.4 X 107 sec. and D = 5 X 10-18 cm2/sec. we have 
x min = 6 x 10-26 cm3. Typical values of x found in the data fits above (see Tables 5 and 6) are in the range of 
10-24 cm3 or greater. so this inequality is satisfied. It is thus appropriate to use the limiting form of m(tp). 
Eq. (54). We have that Eq. (58) becomes. to leading order in tpmono. 

( ) coD 2 jtpmono 
m tpmono = xY ~ S mo (61) 

Substituting tpmono = tmonolT. and using Eq. (20) for t'. we obtain: 

(62) 

Using the numerical values for mo. tmono• and D given above. this gives 

(63) 

Comparing this result with the values obtained from the data. shown in Table 5. we see that the data exceeds 
this limit by factors ranging from 1.15 to 63. This would imply monolayer formation times smaller than tmono 
by the square of these factors. according to Eq. (62). In the worst case. this implies a monolayer formation 
time of 1.4 x 107 sec/(63)2 = 3500 sec (about 1 hour). 

This estimate is somewhat pessimistic. since for these short times. the condition (59) is not satisfied. so 
that the full expression for m(tp). Eq. (57). should be used. In Figure 13. we show the (co. x) parameter space: 
the curves shown correspond to the values of (co. x) which satisfy the equality in Eq. (58). for a series of 
values for tmono ranging from 4000 down to 2 hours. Also shown are the values of the (co. x) parameters 
obtained from the fits to the photodesorption data (from Table 5). 

Only data sets 1 and 5 (corresponding to OFHC copper) are close to satisfying the requirements for 
tmono = 4000 hrs; the others would correspond to tmono between 2 and 48 hrs. For the electrodeposited 
Cu data. a reduction in co of from 1.2 to 1.8 orders of magnitude would be required to reach tmono = 4000 hrs. 
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Figure 13. (co,x) Parameter Space, Showing Curves of Constant trnono (as Labeled) from Eq. (58), and the 

Data from Table 5. For y = 1013jcm2j sec. 

5.1.2 Effect of Varying the Photon Flux 

The flat regions for the curves in Figure 13 correspond to the region in which the asymptotic limit 
(Eq. (62» is applicable: in this region, co is independent of x. It is also true, in this region, that co is 
independent of y. That is: the monolayer formation time does not depend on the photon flux. 

The origin of this result can be seen simply as follows. The total gas evolved per unit area is given by 

t t 

met) = f 4>(t')dt' = y f 1/(t')dt' (64) 

o 0 

Starting from Eq. (13), we have the following development: 

4>(t) = D cJc~~ t) = rJY , 

4>(t) === D ~~ (65) 

in which Llx is the region near the surface over which the concentration density varies from co to a number 
close to zero,in the asymptotic limit (see Figure 8). This is the region over which the diffusion is primarily 
occurring, and the general relation between time and distance implicit in all solutions to the diffusion 
equation requires that 
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Llx == [iii (66) 

where t is the time taken for the gradient colLlx to develop. Hence, substituting into Eq. (60), we obtain 

4J(t) == ..5L. 
[iii (67) 

which shows that 4J( t), and hence m( t) , is independent of y. Physically, this arises because, as Eq. (65) shows, 
the gas flux leaving the surface in this model is determined entirely by that diffusing from the bulk, which 
depends only on the diffusion constant D, the concentration density Co, and the time. This independence of 4J 
from y also implies, from Eq. (65), that 7J varies inversely with y. This inverse dependence of 7J on y is a 
fundamental prediction of the diffusion model and has been observed. I I 

The independence of m(t) from y breaks down when the asymptotic limit fails (for very small times 
or small values of y). However, even for photon fluxes equal to 11100 that of the baseline sse rate 
(1013/cm2/sec), the approximation of independence is reasonably good. This is shown in Figure 14, which is 
calculated from Eq. (58) and shows the (co, ,,) parameter space, with curves of constant tmono = 4000 hrs, for 
various values of y. 
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Figure 14. (co,x) Parameter Space, Showing Curves of Constant tmono = 4000 hrs, for Various Values of i' 
(As Labeled) from Eq. (58), Together with the Data from Table 5. 

It is clear from Figure 14 that reduction of y from the baseline rate by a factor of 100 results in only a small 
change in the value of co required to achieve tmono = 4000 hrs. In order to reach tmono = 4000 hrs with the 
values of Co corresponding to the electrodeposited copper data, y must be reduced to the range of 
109-10101cm21sec, a factor of IQ3-1Q4 below the baseline sse value. 
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5.1.3 Effect of Varying the Diffusion Constant 

Equation (62) indicates that the required value of co varies inversely with the square root of D. The 
diffusion constant D has been taken in all the fits and calculations to be D = 5 X 10-18 cm2/sec, which is a 
number appropriate to room temperature. This is correct for the data fits, since all the data analyzed has been 
taken at room temperature. However, for the situation we are considering for the SSC beam tube, the 
diffusion process is occurring in the metal or oxide film at 4 K. In general, the diffusion constant D may be 
expected to depend upon the temperature, at least linearly and more probably exponentially. In order to 
explore the sensitivity of the predictions of the diffusion model to this effect, the calculations have been 
repeated for a smaller value of D, equal to that scaled down from 5 x 10-18 cm2/sec by the temperature ratio: 

(4.2/300) x 5 x 10- 18 cm2j sec = 7 x 10-20 cm2j sec . 

The results are shown in Figure 15. 
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Figure 15. (cO' ,,) Parameter Space, Showing Curves of Constant tmono (As Labeled) from Eq. (58), and the 

Data from Table 5. For r = 1013 /cm2 / sec, and for D = 7 x 10-.20 cm2/ sec. 

(68) 

Since D is smaller, the requirements on Co are relaxed, as expected from Eq. (62). In this case, the 
electrodeposited copper data exceeds the required value of CO for tmono = 4000 hours by only 0.25 to 0.85 
orders of magnitude, a considerable improvement over the prediction of Figure 13. 

Measurements13 have been made of the photodesorption coefficient 1'/ for hydrogen at 4 K by the 
SSC-CDG. These measurements found virtually no difference in the room temperature coefficient and the 
4 K coefficient. The diffusion model, with the diffusion constant varying linearly with temperature as 
assumed above, would predict roughly an order of magnitude smaller coefficient at 4 K, which was clearly 
not seen in the data. However, it is noted in Reference 13 that the cold measurements were done for surfaces 
which had become coated with about 0.1 monolayers ofH2 from extraneous sources. Data from Reference 5 
indicates that photodesorption from cold surfaces coated with "physisorbed" H2 is enhanced due to the 
presence of this hydrogen by factors of about 300 times the fractional monolayer coverage of the physisorbed 
hydrogen. In this case, then, one might expect a 30 x enhancement factor due to the 0.1 monolayers of 
physisorbed hydrogen, which could explain the observed rough equality between the cold and warm 
photodesorption measurements. 
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5.2 r > 0 

5.2.1 Estimate of Required CO 
We now discuss the case of finite r. In this case, the equation which defines the acceptable range of 

parameter space is Eq. (57). Again, we may consider the applicability of the asymptotic limit, which would 
correspond to the limit in Eq. (55). In this case, not only do we have the requirement cited in Eq. (60), but we 
also require that 11/Jmono ~ 1, which implies; 

1 
tmono ~ 'rp = A2D ' 

1. ~ [1.] = jDtmono 
A A max 

(69) 

(70) 

Using tmono = 1.4 x 107 secandD=5 x 1O-18 cm2/sec we obtain (11A)max =836 A. The values ofllA found 
from the fits to the data, as given in Table 6a, are smaller than (11A )max, but not by very much. Thus, we may 
expect that the asymptotic form will not be very useful. Nevertheless, it is instructive to examine it. The 
analog ofEq. (61) is 

(71) 

Substituting 1/Jmono = tmonol-r, and using Eq. (20) for -r and Eq. (44) for r, we obtain the following relation: 

moA 
Co s ---;::===--'""""i==== 

D 1 

[,...,,]2 -I A 2mmonoD 
""f •• mono 

1 -
(72) 

The condition which obtains in the limit tmoDo - 00 is just Co < moA, that is, that the total gas load is less than 
1 monolayer. Corrections to this for fmite tmono are represented by the two square-root terms in the 
denominator. However, this form is not very useful because the requirements of Eqs. (59) and (69), under 
which the asymptotic limit is obtained, require that each of these square-root terms be small compared to 1. 
Hence this form is only appropriate to evaluate small corrections to the limit Co < moA. 

We must refer to the complete expression, Eq. (57), in general. In Figure 16, we show the (co,A) parameter 
space: the curves shown correspond to the values of (co,A) which satisfy the equality in Eq. (57), for a series 
of values for tmono ranging from 4000 down to 2 hours. The solid curves correspond to" = 10-24 cm3; the 
dotted curves correspond to" = 1 0-23 cm3• Also shown are the values of the (co. A) parameters obtained from 
the fits to the photodesorption data (from Table 6). 

Again, only data set 1 (OHFC copper) is close to satisfying the requirements for tmono = 4000 hrs; the 
others would correspond to tmono between 2 and 48 hrs. However, for the electrodeposited Cu data, the 
reduction in Co required to reach tmono = 4000 hrs is now seen to be smaller than in the analysis with r = 0: it 
ranges from 0.8-1.3 orders of magnitude. 
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Figure 16. (co' A) Parameter Space, Showing Curves of Constant tmono, (As Labeled) from Eq. (57), and the 
Data from Tables 6a and 6b. The solid curves correspond to x = 10-24 cm3; the dotted curves 
correspond to x = 10-23 cm3. The dot-dash line represents the asymptotic limit Co = moA. The curves 
have been calculated for r = 1013/cm2/sec. 

5.2.2 Effect of Varying the Photon Flux 

Again, we may look at the dependence on y for this case. This is shown in Figure 17. This figure shows the 
(co, A) parameter space, with curves of constant tmono = 4000 hrs, for various values of y. 
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Figure 17. (co,A) Parameter Space, Showing Curves of Constant tmono = 4000 hrs, from Eq. (57), and the 
Data from Tables 6a and 6b. The curves are labeled by the corresponding valued of r. x has been 

fixed at 5 x 10-24 cm3. 

In this case, y would need to be reduced to about 10IO/cm2/sec in order to reach tmono = 4000 hrs for the 
worst-case electrodeposited copper beam tube data. 

25 



5.2.3 Effect of Varying the Diffusion Constant 
The effect of a reduced D is shown in Figure 18. As was the case for r = 0, there is a substantial 

improvement in the value of co required, although the improvement is not as great as in the case of r = O. This 
is not unreasonable: the smaller D slows down the diffusion process, so that the advantage of a fmite gas load 
is reduced. The worst-case data fails for tmono = 4000 hrs by about 0.8 orders of magnitude. 
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(co,A) Parameter Space, Showing Curves of Constant ~ (As Labeled) from Eq. (57), and 
the Data from Tables 6a and ab. The curves correspond to" = 5 X 10-24 cm3, D = 7 x 10-20 cm2/sec, 
and y = 10-13 cm2/sec. 

5.3 Estimates of the Effect of a Magnetic Field 

It is generally believed 14 that the liberation of gas in the photodesorption process is mediated by low 
energy photoelectrons. The photons produce slow (few tens to a hundreds of eV) electrons through the 
photoelectric effect; these photoelectrons, in turn, liberate gas molecules through electrodesorption. This 
two-step mechanism is believed to dominate over the direct ejection of gas molecules via photon-molecule 
interactions. 

In a closed tube, such as a beam tube, the photoelectrons would in general be ejected such that they 
electrodesorb the whole inside surface of the tube, relatively independent of the point on the tube at which the 
photons are incident. Thus, the assumption of uniform desorption from the entire inside diameter of the tube, 
as has been made in the analysis above, is appropriate, even though the photon beams typically are tightly 
collimated and illuminate only a narrow strip a few millimeters high along the length of the beam tube. 

The situation is altered significantly, however, in the presence of a magnetic field transverse to the axis of 
the beam tube. If this field is sufficiently strong that the cyclotron radius ofhundred-e V electrons is less than a 
few millimeters, then all the photoelectrons produced by a narrowly collimated photon beam will be confined 
to the region of the tube's surface which the photon beam illuminates, and will electrodesorb this area only. In 
this case, the effective flux will be quite high over this area,and zero elsewhere. This area will clean up 
rapidly. Other areas of the beam tube will only liberate gas due to photons scattered from the directly 
illuminated area. These other areas will clean up more slowly. The net result will be an "average" 
photodesorption coefficient which has a more complicated dependence on time than in the simple diffusion 
model. 

26 



This process can be modeled in the following way. Let s designate the circumferential distance inside the 
tube which is directly illuminated by the photon beam; then the rest of the tube's inside surface is Ted - s, 
where d is the tube inside diameter. Let (J designate the fraction of the photons which are reflected upon direct 
illumination. We assume that these photons are reflected such that they are uniformly distributed around the 
rest of the tube's inner diameter. With these assumptions, we can write for y}. the photon flux associated with 
the directly illuminated surface s (surface 1). 

(73) 

where Ny is the photon flux per linear centimeter, y = Ny ITed is the "average" value of the photon flux 
(defmed as in the earlier sections above), d = sid, andu} = (l--(J)/d. Similarly, for Y2, the photon flux on the 
indirectly illuminated surface (surface 2) due to reflections from the directly illuminated region, we have 

(74) 

with U2 = (J (1-0). The photodesorption coefficient for surface i (i = 1,2) is 

y(x) = Exp(x)Erfc( R) (75) 

where 

= u/W . (76) 

The gas per unit time, per unit length along the tube. evolved from surfaces 1 and 2 is then 

(77) 
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The "average" photodesorption coefficient can then be written as 

1](tp) = (gl1r~g2) 

= dO'I1] 1 + (1 - d)a21]2 ' 

~~1 = (1 - e)y(O'}2tp) + eY(0'22tp) (78) 

The first term in this expression represents the contribution from the directly illuminated surface, which 
cleans up rapidly (since typically d ~ 1 so a} ~ 1). The second term represents the contribution from the 
indirectly illuminated surface, which cleans up slowly (if e is small, since 0'2 is proportional to e), and which 
is suppressed by the factor e. We recover the original expression for 1](tp) when e = 1~. 

The expression for1] is plotted in Figure 19, for various values of e, to illustrate the transition from the fast 
cleanup to slow cleanup terms. The value of d has been taken as representative of that in the sse situation: 
s = 4 mm, d = 33 mm, so d = 3.8%. 
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Figure 19. 'Xc' from Eq. (78), vs.1/J, for Several Values of (! (As Labeled). Calculated for 0 = 0.038. o 

This modification of the effective photodesorption coefficient will clearly have some impact on the 
monolayer formation time. A rough feeling for the impact can be (?btained by writing down the expression 
relating the effective photodesorption coefficient to the total gas evolved, and examining it in the asymptotic 
limit. Using Eqs. (78) , we have that 
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1 

m(t) = ;d f [81(t') + 82(t')] dt' • 

o 
'1/1(1) 

m(t) = YXCo f [(1 - e)Y(u,""')<, + eY(u,,,,,')<,] dip' , 

o 
'1/1 

m(1/J) = f[(1 - e)y(a ~,) + Ly(a ~')] dtp' 
__ 1 2 [
CoD] a 2 1 a 2 2 

K)i 0 

(79) 

The results of doing the integral are given in Eq. (47). In the asymptotic limit. al2rp~ 1 and a22rp~ (which. 
for small <5 and e, amounts to the requirement that e2,p~ 1), we have, using Eq. (54), 

(80) 

In the asymptotic limit, the total gas evolved from the surface, per unit area, is thus independent of e and <5. 
This result is not surprising, given the fact that this quantity, in the asymptotic limit, was shown in the 
previous section to be independent of the photon flux. 

We may thus expect that the monolayer formation time will not be very dependent upon e or <5, except for 
very small e. for which the asymptotic limit e2,p ~ 1 is not reached. In this case, the equation relating the 
parameters of the problem to the monolayer formation time is derived by integrating Eq. (79); the result, in a 
form analogous to Eq. (58), is 

crfJ (1 u~,e) [2 ju,~ ..... -1 + EXp(U,"" ..... )Em:( ,/u,"" ..... )] + 

Xi' u:' [ 2 ju,~ ..... - 1 + ExP(U,"" ..... )Etfc( '/u,""_o)] 

The values of the parameters (co, x) which satisfy the equality are shown in Figure 20, for a fixed 
tmono = 4000 hrs, and for various values of e. 
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Figure 20. (co' ,,) Parameter Space. Showing Curves of Constant e (As Labeled). for tmono = 4000 hrs. 
From Eq. (81); data from Table 5. For r = 1 013/cm2/sec. and d = 0.038. 

Very little change is seen for e > 0.01, except for small". Values of the reflectivity e in the range of 0.000 1 
or lower are required to reach the electrodeposited copper data sets. This would require >99.99% of the 
photons to be absorbed in the directly illuminated area. Measurements15 of e from an unpolished electro­
deposited copper surface at incidence angles of 1 0 have obtained values of e of2 x 10-3 for 120 e V photons. 
The incidence angle at the sse will be about 0.1 0 .It seems unlikely that values of e in the range of 10-4 can 
be achieved. 

We can also extend this model to the case offmite r. The equation analogous to Eq. (81), for finite r, is 

S rno . (82) 

In Figure 21, the (co, A) parameter space is shown: the curves correspond to the values of Co andA which 
satisfy the equality in Eq. (82), for fixed values of tmono = 4000 hrs, and for" = 5 x 10-24 cm3 and d = 0.038. 
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Figure 21. (co,A) Parameter Space, Showing Curves of Constant tmono = 4000 hrs, from Eq. (82), and the 
Data from Table 6. The curves are labeled by the corresponding values of lJ. " has been fixed 
at 5 x 10-24 cm3, d = 0.038, and r = 1013/cm2/sec. 

In this case, we see that values of e at the level of a few parts per thousand would be satisfactory for data 
set 5, although another order of magnitude would be required if the surface had the parameters of data 
sets 60r7. 

6.0 CONCLUSIONS 
A diffusion model has been applied to analyze hydrogen photodesorption data from a number of surfaces 

which may be useful as candidates for the inside diameter of the sse beam tube. The model has been used to 
extract semi-phenomenological parameters from the data, which are related to the hydrogen volume 
concentration in the metal (or surface oxide), the effective cross section for photodesorption, and the finite 
total gas load in the metal. 

The model has then been applied to the sse situation in order to make estimates of the time required to 
desorb a monolayer of hydrogen. Sensitivity of the estimates to the details of the model, the photon flux rate, 
possible dependences of the diffusion constant on temperature, and the possible effects of a magnetic field, 
have been explored. 

A summary of the results is given in Tables 7a and 7b. We choose to focus on data set 6 only, as 
representative of the baseline sse electrodeposited copper beam tube surface. In Tables 7a and 7b, we 
present the change in the parameters of the surface (cO,A, D ore) orin the photon flux y, which, considered 
by itself, is required to reach tmono = 4000 hours. As the detailed discussion above has shown, none of these 
changes are related each other or to tmono in a linear fashion. Any combination of changes must be studied 
specifically using the tools developed above. 
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TABLE 7A. FOR THE 2-PARAMETER (r = 0) MODEL. 

PARAMETER CHANGE REQUIRED TO REACH tmono = 4000 HRS 

Concentration Density at the Surface Co Factor of 63 Reduction 

Photon Flux y Factor of 104 Reduction 

Diffusion Constant: D Factor of 4000 Reduction 

Surface Reflectivity (} « 10-5 

TABLE 7B. FOR THE 3-PARAMETER (r = 0) MODEL. 

PARAMETER CHANGE REQUIRED TO REACH tmono = 4000 HRS 

Concentration Density at the Surface Co Factor of 22 Reduction 

Concentration Density Mean Depth: (1M) Factor of 25 Reduction 

Photon Flux y Factor of 2000 Reduction 

Diffusion Constant: D Factor of 4000 Reduction 

Surface Reflectivity (} <10-4 
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